Long-Term Efficacy and Toxicity of Intensity-Modulated Radiotherapy in Bulky Cervical Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Radiotherapy
2.3. Chemotherapy
2.4. Adverse Events
2.5. Radical Surgery in Patients with Residual Disease after CCRT
2.6. Follow-Up Strategy
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Keys, H.M.; Bundy, B.N.; Stehman, F.B.; Muderspach, L.I.; Chafe, W.E.; Suggs, C.L.; Walker, J.L.; Gersell, D. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N. Engl. J. Med. 1999, 340, 1154–1161. [Google Scholar] [CrossRef]
- Whitney, C.W.; Sause, W.; Bundy, B.N.; Malfetano, J.H.; Hannigan, E.V.; Fowler, W.C., Jr.; Clarke-Pearson, D.L.; Liao, S.-Y. Randomized Comparison of Fluorouracil Plus Cisplatin Versus Hydroxyurea as an Adjunct to Radiation Therapy in Stage IIB-IVA Carcinoma of the Cervix with Negative Para-Aortic Lymph Nodes: A Gynecologic Oncology Group and Southwest Oncology Group Study. J. Clin. Oncol. 1999, 17, 1339. [Google Scholar] [CrossRef]
- Rose, P.G.; Bundy, B.N.; Watkins, E.B.; Thigpen, J.T.; Deppe, G.; Maiman, M.A.; Clarke-Pearson, D.L.; Insalaco, S. Concurrent Cisplatin-Based Radiotherapy and Chemotherapy for Locally Advanced Cervical Cancer. N. Engl. J. Med. 1999, 340, 1144–1153. [Google Scholar] [CrossRef]
- Huguet, F.; Cojocariu, O.-M.; Levy, P.; Lefranc, J.-P.; Darai, E.; Jannet, D.; Ansquer, Y.; Lhuillier, P.-E.; Benifla, J.-L.; Seince, N.; et al. Preoperative Concurrent Radiation Therapy and Chemotherapy for Bulky Stage IB2, IIA, and IIB Carcinoma of the Uterine Cervix with Proximal Parametrial Invasion. Int. J. Radiat. Oncol. 2008, 72, 1508–1515. [Google Scholar] [CrossRef]
- Rotman, M.; John, M.J.; Moon, S.H.; Choi, K.N.; Stowe, S.M.; Abitbol, A.; Herskovic, T.; Sall, S. Limitations of adjunctive surgery in carcinoma of the cervix. Int. J. Radiat. Oncol. 1979, 5, 327–332. [Google Scholar] [CrossRef]
- Rutledge, F.N.; Wharton, J.T.; Fletcher, G.H. Clinical studies with adjunctive surgery and irradiation therapy in the treatment of carcinoma of the cervix. Cancer 1976, 38, 596–602. [Google Scholar] [CrossRef]
- Mundt, A.J.; Mell, L.K.; Roeske, J.C. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int. J. Radiat. Oncol. 2003, 56, 1354–1360. [Google Scholar] [CrossRef]
- Nakamura, K.; Sasaki, T.; Ohga, S.; Yoshitake, T.; Terashima, K.; Asai, K.; Matsumoto, K.; Shioyama, Y.; Honda, H. Recent advances in radiation oncology: Intensity-modulated radiotherapy, a clinical perspective. Int. J. Clin. Oncol. 2014, 19, 564–569. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Cervical Cancer Version 1.2022. 2022. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1426 (accessed on 16 April 2022).
- Mundt, A.J.; Lujan, A.E.; Rotmensch, J.; Waggoner, S.E.; Yamada, S.; Fleming, G.; Roeske, J.C. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int. J. Radiat. Oncol. 2002, 52, 1330–1337. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, J.-C.; Jan, J.-S.; Ho, S.-C.; Wang, L. Definitive intensity-modulated radiation therapy with concurrent chemotherapy for patients with locally advanced cervical cancer. Gynecol. Oncol. 2011, 122, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated with Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison with Conventional Radiotherapy. Int. J. Radiat. Oncol. 2007, 67, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Wang, L.; Lin, J.-C.; Jan, J.-S. The prognostic factors for locally advanced cervical cancer patients treated by intensity-modulated radiation therapy with concurrent chemotherapy. J. Formos. Med. Assoc. 2015, 114, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Eifel, P.J.; Lu, J.; Grigsby, P.W.; Levenback, C.; Stevens, R.E.; Rotman, M.; Gershenson, D.M.; Mutch, D.G. Pelvic Radiation with Concurrent Chemotherapy Compared with Pelvic and Para-Aortic Radiation for High-Risk Cervical Cancer. N. Engl. J. Med. 1999, 340, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Pearcey, R.; Brundage, M.; Drouin, P.; Jeffrey, J.; Johnston, D.; Lukka, H.; MacLean, G.; Souhami, L.; Stuart, G.; Tu, D. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J. Clin. Oncol. 2002, 20, 966–972. [Google Scholar] [CrossRef]
- Gandhi, A.K.; Sharma, D.N.; Rath, G.K.; Julka, P.K.; Subramani, V.; Sharma, S.; Manigandan, D.; Laviraj, M.; Kumar, S.; Thulkar, S. Early Clinical Outcomes and Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study. Int. J. Radiat. Oncol. 2013, 87, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Kidd, E.A.; Siegel, B.A.; Dehdashti, F.; Rader, J.S.; Mutic, S.; Mutch, D.G.; Powell, M.A.; Grigsby, P.W. Clinical Outcomes of Definitive Intensity-Modulated Radiation Therapy with Fluorodeoxyglucose–Positron Emission Tomography Simulation in Patients with Locally Advanced Cervical Cancer. Int. J. Radiat. Oncol. 2010, 77, 1085–1091. [Google Scholar] [CrossRef]
- Lee, W.-M.; Park, S.-I.; Kim, B.-J.; Kim, M.-H.; Choi, S.-C.; Lee, E.-D.; Ryu, S.-Y. Clinicopathologic factors for central recurrence in patients with locally advanced bulky cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Peters, W.A., 3rd; Liu, P.Y.; Barrett, R.J.; Stock, R.J.; Monk, B.J.; Berek, J.S.; Souhami, L.; Grigsby, P.; Gordon, W., Jr.; Alberts, D.S. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J. Clin. Oncol. 2000, 18, 1606–1613. [Google Scholar] [CrossRef]
- Azria, E.; Morice, P.; Haie-Meder, C.; Thoury, A.; Pautier, P.; Lhomme, C.; Duvillard, P.; Castaigne, D. Results of hysterectomy in patients with bulky residual disease at the end of chemoradiotherapy for stage IB2/II cervical carcinoma. Ann. Surg. Oncol. 2005, 12, 332–337. [Google Scholar] [CrossRef]
- Boers, A.; Arts, H.J.; Klip, H.; Nijhuis, E.R.; Pras, E.; Hollema, H.; Wisman, G.B.A.; Nijman, H.W.; Mourits, M.J.; Reyners, A.K.; et al. Radical Surgery in Patients with Residual Disease After (Chemo)Radiation for Cervical Cancer. Int. J. Gynecol. Cancer 2014, 24, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Houvenaeghel, G.; Lelievre, L.; Buttarelli, M.; Jacquemier, J.; Carcopino, X.; Viens, P.; Gonzague-Casabianca, L. Contribution of surgery in patients with bulky residual disease after chemoradiation for advanced cervical carcinoma. Eur. J. Surg. Oncol. 2007, 33, 498–503. [Google Scholar] [CrossRef]
- Morice, P.; Uzan, C.; Zafrani, Y.; Delpech, Y.; Gouy, S.; Haie-Meder, C. The role of surgery after chemoradiation therapy and brachytherapy for stage IB2/II cervical cancer. Gynecol. Oncol. 2007, 107 (Suppl. 1), S122–S124. [Google Scholar] [CrossRef] [PubMed]
- Ota, T.; Takeshima, N.; Tabata, T.; Hasumi, K.; Takizawa, K. Adjuvant hysterectomy for treatment of residual disease in patients with cervical cancer treated with radiation therapy. Br. J. Cancer 2008, 99, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.A.; Jhingran, A.; Thames, H.D.; Levenback, C.F.; Bodurka, D.C.; Ramondetta, L.M.; Eifel, P.J. Comparison of Treatment Tolerance and Outcomes in Patients with Cervical Cancer Treated with Concurrent Chemoradiotherapy in a Prospective Randomized Trial or with Standard Treatment. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Ngan, H.Y.; Cheung, A.N.; Lauder, I.; Cheng, D.K.; Wong, L.; Ma, H. Tumour markers and their prognostic value in adenocarcinoma of the cervix. Tumor Biol. 1998, 19, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Ngan, H.Y.S.; Cheung, A.N.Y.; Lauder, I.J.; Wong, L.C.; Ma, H.K. Prognostic significance of serum tumour markers in carcinoma of the cervix. Eur. J. Gynaecol. Oncol. 1996, 17, 512–517. [Google Scholar]
- Borras, G.; Molina, R.; Xercavins, J.; Ballesta, A.; Iglesias, J. Tumor Antigens CA 19.9, CA 125, and CEA in Carcinoma of the Uterine Cervix. Gynecol. Oncol. 1995, 57, 205–211. [Google Scholar] [CrossRef]
- Bender, D.P.; Sorosky, J.I.; Buller, R.E.; Sood, A.K. Serum CA 125 is an independent prognostic factor in cervical adenocarcinoma. Am. J. Obstet. Gynecol. 2003, 189, 113–117. [Google Scholar] [CrossRef]
- Zhang, G.; Fu, C.; Zhang, Y.; Wang, J.; Qiao, N.; Yang, Q.; Cheng, Y. Extended-Field Intensity-Modulated Radiotherapy and Concurrent Cisplatin-Based Chemotherapy for Postoperative Cervical Cancer with Common Iliac or Para-Aortic Lymph Node Metastases: A Retrospective Review in a Single Institution. Int. J. Gynecol. Cancer 2012, 22, 1220–1225. [Google Scholar] [CrossRef]
- Naik, A.; Gurjar, O.; Gupta, K.; Singh, K.; Nag, P.; Bhandari, V. Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: A randomized prospective study. Cancer Radiother. 2016, 20, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Du, X.-L.; Tao, J.; Sheng, X.-G.; Lu, C.-H.; Yu, H.; Wang, C.; Song, Q.-Q.; Li, Q.-S.; Pan, C.-X. Intensity-modulated radiation therapy for advanced cervical cancer: A comparison of dosimetric and clinical outcomes with conventional radiotherapy. Gynecol. Oncol. 2012, 125, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Klopp, A.H.; Yeung, A.R.; Deshmukh, S.; Gil, K.M.; Wenzel, L.; Westin, S.N.; Gifford, K.; Gaffney, D.K.; Small, W.; Thompson, S.; et al. Patient-Reported Toxicity During Pelvic Intensity-Modulated Radiation Therapy: NRG Oncology–RTOG 1203. J. Clin. Oncol. 2018, 36, 2538–2544. [Google Scholar] [CrossRef] [PubMed]
- Hasselle, M.D.; Rose, B.S.; Kochanski, J.D.; Nath, S.K.; Bafana, R.; Yashar, C.M.; Hasan, Y.; Roeske, J.C.; Mundt, A.J.; Mell, L.K. Clinical Outcomes of Intensity-Modulated Pelvic Radiation Therapy for Carcinoma of the Cervix. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Mell, L.K.; Kochanski, J.D.; Roeske, J.C.; Haslam, J.J.; Mehta, N.; Yamada, S.D.; Hurteau, J.A.; Collins, Y.C.; Lengyel, E.; Mundt, A.J. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Liao, Z.; Liu, H.; Ajani, J.; Swisher, S.; Cox, J.D.; Komaki, R. Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer. World J. Gastroenterol. 2006, 12, 5501–5508. [Google Scholar] [CrossRef]
- Kang, H.-C.; Shin, K.H.; Park, S.-Y.; Kim, J.-Y. 3D CT-based high-dose-rate brachytherapy for cervical cancer: Clinical impact on late rectal bleeding and local control. Radiother. Oncol. 2010, 97, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.J.; Kidd, E.; Dehdashti, F.; Siegel, B.A.; Mutic, S.; Thaker, P.H.; Massad, L.S.; Powell, M.A.; Mutch, D.G.; Markovina, S.; et al. Intensity Modulated Radiation Therapy and Image-Guided Adapted Brachytherapy for Cervix Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 103, 1088–1097. [Google Scholar] [CrossRef]
- Thomas, K.M.; Maquilan, G.; Stojadinovic, S.; Medin, P.; Folkert, M.R.; Albuquerque, K. Reduced toxicity with equivalent outcomes using three-dimensional volumetric (3DV) image–based versus nonvolumetric point–based (NV) brachytherapy in a cervical cancer population. Brachytherapy 2017, 16, 943–948. [Google Scholar] [CrossRef]
- Derks, K.; Steenhuijsen, J.L.; Berg, H.A.V.D.; Houterman, S.; Cnossen, J.; Van Haaren, P.; De Jaeger, K. Impact of brachytherapy technique (2D versus 3D) on outcome following radiotherapy of cervical cancer. J. Contemp. Brachytherapy 2018, 10, 17–25. [Google Scholar] [CrossRef]
- Tanderup, K.; Fokdal, L.U.; Sturdza, A.; Haie-Meder, C.; Mazeron, R.; van Limbergen, E.; Jürgenliemk-Schulz, I.; Petric, P.; Hoskin, P.; Dörr, W.; et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother. Oncol. 2016, 120, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Charra-Brunaud, C.; Harter, V.; Delannes, M.; Haie-Meder, C.; Quetin, P.; Kerr, C.; Castelain, B.; Thomas, L.; Peiffert, D. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: Results of the French STIC prospective study. Radiother. Oncol. 2012, 103, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kang, H.-C.; Kim, Y.S. Impact of intracavitary brachytherapy technique (2D versus 3D) on outcomes of cervical cancer: A systematic review and meta-analysis. Strahlenther. Onkol. 2020, 196, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Fokdal, L.; Sturdza, A.; Mazeron, R.; Haie-Meder, C.; Tan, L.T.; Gillham, C.; Šegedin, B.; Jürgenliemk-Schultz, I.; Kirisits, C.; Hoskin, P.; et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study. Radiother. Oncol. 2016, 120, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Sturdza, A.E.; Knoth, J. Image-guided brachytherapy in cervical cancer including fractionation. Int. J. Gynecol. Cancer 2022, 32, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Watanabe, M.; Uno, T.; Sekii, S.; Tsujino, K.; Kasamatsu, T.; Machitori, Y.; Aoshika, T.; Kato, S.; Hirowatari, H.; et al. Large volume was associated with increased risk of acute non-hematologic adverse events in the hybrid of intracavitary and interstitial brachytherapy for locally advanced uterine cervical cancer: Preliminary results of prospective phase I/II clinical trial. Jpn. J. Clin. Oncol. 2022, 52, 859–868. [Google Scholar] [CrossRef] [PubMed]
No. of Patients (Total of 98 Patients) | ||
---|---|---|
Age | <50 | 24 (24.49%) |
≥50 | 74 (75.51%) | |
Tumor size | 40–<60 mm | 67 (68.37%) |
≥60 mm | 31 (31.63%) | |
Clinical stage | IB2 | 14 (14.29%) |
IIA2 | 1 (1.02%) | |
IIB | 38 (38.78%) | |
IIIA | 1 (1.02%) | |
IIIB | 43 (43.88%) | |
IVA | 1 (1.02%) | |
Underlying disease | Hypertension | 25 (25.51%) |
Diabetes mellitus | 14 (14.29%) | |
Pretreatment Hemoglobin | <11 g/dL | 37 (37.76%) |
≥11 g/dL | 61 (62.24%) | |
Creatinine during treatment period | <1.3 mg/dL | 80 (81.63%) |
≥1.3 mg/dL | 18 (18.37%) | |
Clinical lymph node metastasis | No | 80 (81.63%) |
Yes | 18 (18.37%) | |
Histology | Squamous cell carcinoma | 83 (84.69%) |
Clear cell carcinoma | 1 (1.02%) | |
Adenocarcinoma | 12 (12.24%) | |
Carcinoma | 2 (2.04%) | |
Differentiation | Well differentiated | 6 (6.12%) |
Moderately differentiated | 17 (17.35%) | |
Poorly differentiated | 68 (69.39%) | |
Undifferentiated | 1 (1.02%) | |
Unrecorded | 6 (6.12%) | |
Initial SCC-Ag a | <4 ng/mL | 39 (39.80%) |
≥4 ng/mL | 59 (60.20%) | |
Initial CA-125 | <40 U/mL | 78 (79.60%) |
≥40 U/mL | 20 (30.40%) |
No. of Patients (Total of 98 Patients) | ||
---|---|---|
Brachytherapy | No | 5 (5.10%) |
Yes | 93 (94.90%) | |
Concurrent chemotherapy | No | 8 (8.16%) |
Cumulative cisplatin ≤180 mg/m2 | 36 (36.73%) | |
Cumulative cisplatin >180 mg/m2 | 43 (43.88%) | |
Cisplatin + 5FU | 5 (5.10%) | |
Oral Ufur | 6 (6.12%) | |
Post CCRT b radical hysterectomy | Yes | 6 (6.12%) |
No | 92 (93.88%) | |
Outcome | ||
Recurrence | Total | 28 (28.57%) |
Recurrence type | Local recurrence | 7 (7.14%) |
Local and distant recurrence | 6 (6.12%) | |
Distant recurrence | 12 (12.24%) | |
Persistent disease after CCRT and surgery | 3 (3.06%) | |
Persistence disease after CCRT but no recurrence after surgery (hysterectomy) | 4 (4.08%) | |
Deaths | 25 | |
Follow-up years | (median) | 6.84 (1.63–9.15) a |
Simple Model | Multiple Model | |||||
---|---|---|---|---|---|---|
HR | (95% CI) | p-Value | HR | (95% CI) | p-Value | |
Age (years) | ||||||
<50 | 1.00 | |||||
≥50 | 0.84 | (0.37–1.91) | 0.679 | |||
Histology | ||||||
Squamous cell carcinoma | 1.00 | |||||
Others | 1.63 | (0.66–4.03) | 0.288 | |||
Lymph node metastasis | ||||||
No | 1.00 | 1.00 | ||||
Yes | 2.30 | (1.01–5.25) | 0.047 * | 3.22 | (1.35–7.68) | 0.008 ** |
Stage | ||||||
I + II | 1.00 | |||||
III + IV | 1.59 | (0.75–3.34) | 0.224 | |||
Tumor size (mm) | ||||||
40–60 mm | 1.00 | |||||
≥60 mm | 1.54 | (0.72–3.30) | 0.262 | |||
Creatinine during treatment | ||||||
<1.3 mg/dL | 1.00 | 1.00 | ||||
≥1.3 mg/dL | 3.02 | (1.39–6.55) | 0.005 ** | 3.00 | (1.28–7.03) | 0.012 * |
Initial CA-125 | ||||||
≤34.86 U/mL | 1.00 | 1.00 | ||||
>34.86 U/mL | 3.21 | (1.50–6.86) | 0.003 ** | 2.67 | (1.19–6.02) | 0.017 * |
Chemotherapy | ||||||
a Cisplatin > 180 mg/m2 | 1.00 | 1.00 | ||||
a Cisplatin ≤ 180 mg/m2 | 2.36 | (0.94–5.91) | 0.068 | 2.35 | (0.92–6.01) | 0.075 |
Other | 5.09 | (1.59–16.34) | 0.006 ** | 7.24 | (1.37–15.03) | 0.013 ** |
No | 2.32 | (0.60–8.98) | 0.223 | 3.39 | (0.45–7.96) | 0.382 |
Pretreatment Hemoglobin | ||||||
<11 | 1.00 | |||||
≥11 | 0.77 | (0.36–1.63) | 0.491 | |||
Differentiation | ||||||
Well and moderately differentiated | 1.00 | |||||
Poorly differentiated | 0.76 | (0.34–1.69) | 0.503 |
Simple Model | |||
---|---|---|---|
HR | (95% CI) | p-Value | |
Age (years) | |||
<50 | 1.00 | ||
≥50 | 2.77 | (0.83–9.25) | 0.098 |
Histology | |||
Others | 1.00 | ||
Squamous cell carcinoma | 1.41 | (0.53–3.76) | 0.493 |
Grade | |||
Well and moderately differentiated | 1.00 | ||
Poorly differentiated | 0.73 | (0.31–1.69) | 0.457 |
Lymph nodes | |||
No | 1.00 | ||
Yes | 1.50 | (0.60–3.75) | 0.390 |
Stage | |||
I + II | 1.00 | ||
III + IV | 1.59 | (0.72–3.50) | 0.250 |
Tumor size (mm) | |||
40–60 mm | 1.00 | ||
≥60 mm | 1.01 | (0.43–2.34) | 0.985 |
Creatinine during treatment | |||
<1.3 mg/dL | 1.00 | ||
≥1.3 mg/dL | 1.73 | (0.72–4.15) | 0.218 |
Initial CA-125 | |||
≤34.86 U/mL | 1.00 | ||
>34.86 U/mL | 1.19 | (0.47–2.98) | 0.712 |
Chemotherapy | |||
a Cisplatin > 180 mg/m2 | 1.00 | ||
a Cisplatin ≤ 180 mg/m2 | 1.60 | (0.60–4.30) | 0.351 |
Other | 5.66 | (1.88–17.00) | 0.002 ** |
No | 2.79 | (0.72–10.81) | 0.137 |
Total (n = 98) | Tumor Size (mm) | p-Value | |||||
---|---|---|---|---|---|---|---|
40–<60 mm (n = 67) | ≥60 mm (n = 31) | ||||||
n | (%) | n | (%) | n | (%) | ||
Side effects | 0.167 | ||||||
No | 3 | (3.06%) | 1 | (1.49%) | 2 | (6.45%) | |
Yes | 95 | (96.93%) | 66 | (98.51%) | 29 | (93.55%) | |
Nausea grade | 0.152 | ||||||
Grade 1 | 17 | (17.35%) | 15 | (22.39%) | 2 | (6.45%) | |
Grade 2 | 24 | (24.49%) | 15 | (22.39%) | 9 | (29.03%) | |
Grade 3 | 1 | (1.02%) | 1 | (1.49%) | 0 | (0.00%) | |
Vomiting grade | 0.803 | ||||||
Grade 1 | 10 | (10.20%) | 7 | (10.45%) | 3 | (9.68%) | |
Grade 2 | 12 | (12.24%) | 9 | (13.43%) | 3 | (9.68%) | |
Grade 3 | 1 | (1.02%) | 1 | (1.49%) | 0 | (0.00%) | |
Diarrhea grade (acute) | 0.006 ** | ||||||
Grade 1 | 35 | (35.71%) | 26 | (38.81%) | 9 | (29.03%) | |
Grade 2 | 28 | (28.57%) | 23 | (34.33%) | 5 | (16.13%) | |
Grade 3 | 8 | (8.16%) | 2 | (2.99%) | 6 | (19.35%) | |
Hemoglobin grade | 0.117 | ||||||
Grade 1 | 16 | (16.33%) | 12 | (17.91%) | 4 | (12.90%) | |
Grade 2 | 45 | (45.92%) | 32 | (47.76%) | 13 | (41.94%) | |
Grade 3 | 12 | (12.24%) | 5 | (7.46%) | 7 | (22.58%) | |
Leukopenia grade | 0.139 | ||||||
Grade 1 | 17 | (17.35%) | 13 | (19.40%) | 4 | (12.90%) | |
Grade 2 | 22 | (22.45%) | 12 | (17.91%) | 10 | (32.26%) | |
Grade 3 | 40 | (40.82%) | 31 | (46.27%) | 9 | (29.03%) | |
Thrombocytopenia grade | 0.142 | ||||||
Grade 1 | 48 | (48.98%) | 39 | (58.21%) | 9 | (29.03%) | |
Grade 2 | 5 | (5.10%) | 2 | (2.99%) | 3 | (9.68%) | |
Grade 3 | 2 | (2.04%) | 2 | (2.99%) | 0 | (0.00%) | |
Grade 4 | 1 | (1.02%) | 1 | (1.49%) | 0 | (0.00%) | |
Radiation proctitis grade (long term) | 0.386 | ||||||
Grade 1 | 14 | (14.29%) | 10 | (16.39%) | 4 | (12.90%) | |
Grade 2 | 9 | (9.18%) | 5 | (7.46%) | 4 | (12.90%) | |
Grade 3 | 11 | (11.22%) | 8 | (11.94%) | 3 | (9.68%) | |
Radiation cystitis grade (long term) | 0.624 | ||||||
Grade 1 | 8 | (8.16%) | 6 | (8.96%) | 2 | (6.45%) | |
Grade 2 | 7 | (7.14%) | 4 | (5.97%) | 3 | (9.68%) | |
Grade 3 | 13 | (13.27%) | 10 | (14.93%) | 3 | (9.68%) | |
Rectovaginal fistula a | 1.000 | ||||||
No | 92 | (93.88%) | 63 | (94.03%) | 29 | (93.55%) | |
Yes | 6 | (6.12%) | 4 | (5.97%) | 2 | (6.45%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lo, T.-T.; Wang, L.; Hsu, S.-T.; Hwang, S.-F.; Lu, C.-H.; Sun, L. Long-Term Efficacy and Toxicity of Intensity-Modulated Radiotherapy in Bulky Cervical Cancer. Int. J. Environ. Res. Public Health 2023, 20, 1161. https://doi.org/10.3390/ijerph20021161
Wang Y, Lo T-T, Wang L, Hsu S-T, Hwang S-F, Lu C-H, Sun L. Long-Term Efficacy and Toxicity of Intensity-Modulated Radiotherapy in Bulky Cervical Cancer. International Journal of Environmental Research and Public Health. 2023; 20(2):1161. https://doi.org/10.3390/ijerph20021161
Chicago/Turabian StyleWang, Yu, Tan-Tzu Lo, Lily Wang, Shih-Tien Hsu, Sheau-Feng Hwang, Chien-Hsing Lu, and Lou Sun. 2023. "Long-Term Efficacy and Toxicity of Intensity-Modulated Radiotherapy in Bulky Cervical Cancer" International Journal of Environmental Research and Public Health 20, no. 2: 1161. https://doi.org/10.3390/ijerph20021161
APA StyleWang, Y., Lo, T.-T., Wang, L., Hsu, S.-T., Hwang, S.-F., Lu, C.-H., & Sun, L. (2023). Long-Term Efficacy and Toxicity of Intensity-Modulated Radiotherapy in Bulky Cervical Cancer. International Journal of Environmental Research and Public Health, 20(2), 1161. https://doi.org/10.3390/ijerph20021161