Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronne, L.J.; Nelinson, D.S.; Lillo, J.L. Obesity as a disease state: A new paradigm for diagnosis and treatment. Clin. Cornerstone 2009, 9, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D.W.; Sharma, A.M.; Le Roux, C.W. Controversies in Obesity; Springer: London, UK; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Halpern, B.; Mancini, M.C.; de Melo, M.E.; Lamounier, R.N.; Moreira, R.O.; Carra, M.K.; Kyle, T.K.; Cercato, C.; Boguszewski, C.L. Proposal of an obesity classification based on weight history: An official document by the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Society for the Study of Obesity and Metabolic Syndrome (ABESO). Arch. Endocrinol. Metab. 2022, 66, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Kahan, S. Overweight and Obesity Management Strategies. Am. J. Manag. Care 2016, 22, 186–196. [Google Scholar]
- Le Roux, C.W.; Alruwaili, H. Treating obesity as a disease. Acad. Lett. 2021, 1–6. [Google Scholar] [CrossRef]
- Scorsatto, M.; Rosa, G.; Pimentel, A.D.C.; Luiz, R.R.; De Oliveira, G.M.M. Is it possible to easily identify metabolically healthy obese women? Arq. Bras. Cardiol. 2018, 111, 733–737. [Google Scholar] [CrossRef]
- Scarsella, C.; Després, J.-P. Tratamiento de la obesidad: Necesidad de centrar la atención en los pacientes de alto riesgo caracterizados por la obesidad abdominal. Cad. Saude Publica 2003, 19 (Suppl. 1), S7–S19. [Google Scholar] [CrossRef]
- World Obesity. Available online: https://data.worldobesity.org/publications/?cat=2 (accessed on 2 March 2023).
- de Castro Pimentel, A.; Scorsatto, M.; de Oliveira, G.M.M.; Rosa, G.; Luiz, R.R. Characterization of metabolically healthy obese Brazilians and cardiovascular risk prediction. Nutrition 2015, 31, 827–833. [Google Scholar] [CrossRef]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and cardiovascular disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef]
- Dippe, T., Jr.; Cerci, R.J. Obesity: A Risk Marker or an Independent Risk Factor for Coronary Artery Disease? Int. J. Cardiovasc. Sci. 2020, 33, 55–56. [Google Scholar] [CrossRef]
- Kang, G.D.; Guo, L.; Guo, Z.R.; Hu, X.S.; Wu, M.; Yang, H.T. Continuous metabolic syndrome risk score for predicting cardiovascular disease in the Chinese population. Asia Pac. J. Clin. Nutr. 2012, 21, 88–96. [Google Scholar] [CrossRef]
- Wijndaele, K.; Beunen, G.; Duvigneaud, N.; Matton, L.; Duquet, W.; Thomis, M.; Lefevre, J.; Philippaerts, R.M. A continuous metabolic syndrome risk score: Utility for epidemiological analyses. Diabetes Care 2006, 29, 2329. [Google Scholar] [CrossRef] [PubMed]
- Deboer, M.D.; Gurka, M.J. Clinical utility of metabolic syndrome severity scores: Considerations for practitioners. Diabetes Metab. Syndr. Obes. 2017, 10, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Bim, R.H.; Westphal, G.; Thon, R.A.; Pereira, I.A.S.; Castilho, M.M.; Oltramari, K.; Martins, F.M.; Júnior, N.N. Revista Brasileira de Obesidade, Nutrição e Emagrecimento prevalência de fatores de risco cardiometabólico em adultos com obesidade. RBONE—Rev. Bras. De Obes. Nutr. E Emagrecimento 2022, 2, 1270–1282. [Google Scholar]
- Geloneze, B.; Vasques, A.C.J.; Stabe, C.F.C.; Pareja, J.C.; de Lima Rosado, L.E.F.P.; De Queiroz, E.C.; Tambascia, M.A. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq. Bras. De Endocrinol. Metabol. 2009, 53, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Diniz, M.D.F.H.S.; Beleigoli, A.M.R.; Schmidt, M.I.; Duncan, B.B.; Ribeiro, A.L.P.; Vidigal, P.G.; Benseñor, I.M.; Lotufo, P.A.; Santos, I.S.; Griep, R.H.; et al. Homeostasis model assessment of insulin resistance (HOMA-IR) and metabolic syndrome at baseline of a multicentric Brazilian cohort: ELSA-Brasil study. Cad. Saude Publica 2020, 36. [Google Scholar] [CrossRef]
- Vasques, A.C.J.; Rosado, L.E.F.P.L.; Alfenas, R.d.C.G.; Geloneze, B. Análise crítica do uso dos índices do Homeostasis Model Assessment (HOMA) na avaliação da resistência à insulina e capacidade funcional das células-beta pancreáticas. Arq. Bras. De Endocrinol. Metabol. 2008, 52, 32–39. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean national health and nutrition examination survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Er, L.-K.; Wu, S.; Chou, H.-H.; Hsu, L.-A.; Teng, M.-S.; Sun, Y.-C.; Ko, Y.-L. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Choudhary, M.K.; Eräranta, A.; Koskela, J.; Tikkakoski, A.J.; Nevalainen, P.I.; Kähönen, M.; Mustonen, J.; Pörsti, I. Atherogenic index of plasma is related to arterial stiffness but not to blood pressure in normotensive and never-treated hypertensive subjects. Blood Press 2019, 28, 157–167. [Google Scholar] [CrossRef]
- Gurka, M.J.; Golden, S.H.; Musani, S.K.; Sims, M.; Vishnu, A.; Guo, Y.; Cardel, M.; Pearson, T.A.; DeBoer, M.D. Independent associations between a metabolic syndrome severity score and future diabetes by sex and race: The Atherosclerosis Risk in Communities Study and Jackson Heart Study. Diabetologia 2017, 60, 1261–1270. [Google Scholar] [CrossRef]
- World Health Organization. WHO|Waist Circumference and Waist–Hip Ratio. Report of a WHO Expert Consultation. Geneva, 8–11 December 2008. 2011, pp. 8–11. Available online: http://www.who.int (accessed on 5 March 2023).
- Malachias, M.V.B.; Plavnik, F.L.; Machado, C.A.; Malta, D.; Scala, L.C.N.; Fuchs, S. 7a Diretriz Brasileira de Hipertensão Arterial: Capítulo 1-Conceituação, Epidemiologia e Prevenção Primária. Arq. Bras. Cardiol. 2016, 107, 1–6. Available online: http://www.gnresearch.org/doi/10.5935/abc.20160151 (accessed on 5 March 2023). [CrossRef] [PubMed]
- Faludi, A.A.; Izar, M.C.D.O.; Saraiva, J.F.K.; Chacra, A.P.M.; Bianco, H.T.; Afiune, A.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; Sposito, A.C.; et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose–2017. Arq. Bras. De Cardiol. 2017, 109 (Suppl. S1), 1–76. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using SPSS Statistics; SAGE Publications: Thousand Oaks, CA, USA, 2009; Volume 66, p. 822. Available online: http://www.amazon.com/Discovering-Statistics-using-IBM-SPSS/dp/1446249182 (accessed on 25 March 2023).
- de Paulo, O.J.E.; Foss-Freitas, M.C.; Junior, R.M.M.; Vencio, S. Diretrizes da Sociedade Brasileira de Diabetes 2017–2018; Dados Internacionais de Catalogação na Publicação (CIP): Câmara Brasileira do Livro, Brasil, 2017. [Google Scholar] [CrossRef]
- McAuley, K.A.; Williams, S.M.; Mann, J.I.; Walker, R.J.; Lewis-Barned, N.J.; Temple, L.A.; Duncan, A.W. Diagnosing insulin resistance in the general population. Diabetes Care 2001, 24, 460–464. [Google Scholar] [CrossRef]
- Loria, A.; Arroyo, P.; Fernández, V.; Laviada, H. Strategy to establish a cut-off point for hyperinsulinemia. Rev. Invest. Clin. 2010, 62, 276–278. [Google Scholar]
- Won, K.-B.; Heo, R.; Park, H.-B.; Lee, B.K.; Lin, F.Y.; Hadamitzky, M.; Kim, Y.-J.; Sung, J.M.; Conte, E.; Andreini, D.; et al. Atherogenic index of plasma and the risk of rapid progression of coronary atherosclerosis beyond traditional risk factors. Atherosclerosis 2021, 324, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.S.; Cheah, W.L.; Lwin, S.; Nwe, T.M.; Win, T.T.; Aung, M. Understanding the Relationship between Atherogenic Index of Plasma and Cardiovascular Disease Risk Factors among Staff of an University in Malaysia. J. Nutr. Metab. 2015, 2018, 7027624. [Google Scholar] [CrossRef]
- Cai, G.; Shi, G.; Xue, S.; Lu, W. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine 2017, 96, e8058. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, L.; Zhou, H.; Ma, Q.; Zhou, X.; Lei, T.; Hu, J.; Xu, W.; Yi, N.; Lei, S. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018, 17, 37. [Google Scholar] [CrossRef]
- Eickemberg, M.; Amorim, L.D.A.F.; Almeida, M.D.C.C.D.; De Aquino, E.M.L.; Fonseca, M.D.J.M.D.; Santos, I.D.S.; Chor, D.; Diniz, M.D.F.S.; Barreto, S.; De Matos, S.M.A. Indicators of abdominal adiposity and carotid intima-media thickness: Results from the longitudinal study of adult health (ELSA-Brazil). Arq. Bras. Cardiol. 2019, 112, 220–227. [Google Scholar] [CrossRef]
- Valerio, G.; Licenziati, M.R.; Tortorelli, P.; Calandriello, L.F.; Alicante, P.; Scalfi, L. Lower Performance in the Six-Minute Walk Test in Obese Youth With Cardiometabolic Risk Clustering. Front. Endocrinol. 2018, 9, 701. [Google Scholar] [CrossRef]
- de Carvalho, C.A.; Fonseca, P.C.D.A.; Barbosa, J.B.; Machado, S.P.; Santos, A.M.D.; Da Moura Silva, A.A. The association between cardiovascular risk factors and anthropometric obesity indicators in university students in São Luís in the state of Maranhão, Brazil. Cienc. E Saude Coletiva 2015, 20, 479–490. [Google Scholar] [CrossRef]
- Junqueira, A.S.M.; Filho, L.J.M.R.; Junqueira, C.D.L.C. Evaluation of the degree of vascular inflammation in patients with metabolic syndrome. Arq. Bras. Cardiol. 2009, 93, 360–366. [Google Scholar] [CrossRef]
- Westphal, G.; Baruki, S.B.S.; de Mori, T.A.; Montebello, M.I.D.L.; Pazzianotto-Forti, E.M. Effects of Individualized Functional Training on the Physical Fitness of Women with Obesity. Lect. Educ. Física Y Deportes 2020, 25, 61–75. [Google Scholar] [CrossRef]
- Gurka, M.J.; Lilly, C.L.; Oliver, M.N.; Deboer, M.D. An Examination of Sex and Racial/Ethnic Differences in the Metabolic Syndrome among Adults: A Confirmatory Factor Analysis and a Resulting Continuous Severity Score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef]
- Gurka, M.J.; Filipp, S.L.; Musani, S.K.; Sims, M.; De Boer, M.D. Use of BMI as Marker of Adiposity in a Metabolic Syndrome Severity Score: Derivation and Validation in Predicting Long- term Disease Outcomes. Metabolism 2018, 83, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Okosun, I.S.; Boltri, J.M.; Lyn, R.; Davis-Smith, M. Continuous Metabolic Syndrome Risk Score, Body Mass Index Percentile, and Leisure Time Physical Activity in American Children. J. Clin. Hypertens. 2010, 12, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Millar, S.R.; Perry, I.J.; Phillips, C.M. Assessing cardiometabolic risk in middle-aged adults using body mass index and waist–height ratio: Are two indices better than one? A cross-sectional study. Diabetol. Metab. Syndr. 2015, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.A. Obesity and early mortality in the United States. Obesity 2013, 21, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Flint, A.J.; de Gonzalez, A.B.; Bernstein, L.; Brotzman, M.; MacInnis, R.J.; Moore, S.C.; Robien, K.; Rosenberg, P.S.; Singh, P.N.; et al. Association between Class III Obesity (BMI of 40–59 kg/m2) and Mortality: A Pooled Analysis of 20 Prospective Studies. PLoS Med. 2014, 11, e1001673. [Google Scholar] [CrossRef] [PubMed]
Antrometric and Body Composition Parameters | Obesity Class I (n = 76) | Obesity Class II (n = 141) | Obesity Class III (n = 160) | Super Obesity (n = 27) | p-Value |
---|---|---|---|---|---|
Age (years) | 41.66 ± 8.75 | 39.50 ± 9.10 | 38.27 ± 8.77 | 37.15 ± 8.32 | 0.028 * |
Height (m) | 162.92 ± 8.03 | 163.97 ± 8.69 | 165.04 ± 8.11 | 165.85 ± 10.64 | 0.23 |
Body Mass (kg) | 88.38 ± 9.86 a.b.c | 100.20 ± 11.27 a.d.e | 119.14 ± 15.53 b.d.f | 156.03 ± 25.99 c.e.f | <0.001 * |
Body Mass Index (kg/m2) | 33.16 ± 1.28 a.b.c | 37.32 ± 1.48 a.d.e | 43.70 ± 2.65 b.d.f | 56.88 ± 6.60 c.e.f | <0.001 * |
Lean Body Mass (kg) | 37.21 ± 13.96 b.c | 39.29 ± 15.82 d.e | 47.20 ± 2.65 b.d.f | 59.29 ± 22.31 c.e.f | <0.001 * |
Skeletal Muscle Mass (kg) | 29.91 ± 6.98 b.c | 31.21 ± 6.14 e | 32.93 ± 5.82 b.f | 39.18 ± 6.99 c.e.f | <0.001 * |
Body fat (%) | 45.62 ± 5.28 b | 48.60 ± 5.17 | 53.86 ± 31.70 b | 55.67 ± 2.54 | 0.009 * |
Absolute Body Fat (kg) | 51.17 ± 12.98 a.b.c | 60.91 ± 13.31 a.d.e | 71.93 ± 15.97 b.d.f. | 96.74 ± 19.28 c.e.f | <0.001 * |
Lean Mass/Body Fat Ratio (kg) | 0.82 ± 0.43 | 0.71 ± 0.37 | 0.71 ± 0.29 | 0.64 ± 0.24 | 0.052 |
Neck Circumference (cm) | 37.91 ± 3.91 b.c | 39.01 ± 4.06 e | 40.73 ± 4.33 b.f | 43.46 ± 4.92 c.e.f | <0.001 * |
Waist Circumference (cm) | 96.27 ± 7.56 a.b.c | 103.86 ± 9.78 a.d.e | 114.24 ± 10.05 b.d.f | 130.67 ± 16.72 c.e.f | <0.001 * |
Abdomen Circumference (cm) | 105.40 ± 7.62 a.b.c | 114.62 ± 10.52 a.d.e | 126.81 ± 10.83 b.d.f | 147.63 ± 15.32 c.e.f | <0.001 * |
Hip Circumference (cm) | 117.03 ± 10.56 a.b.c | 124.37 ± 12.75 a.d.e | 131.80 ± 11.06 b.d.f | 148.41 ± 16.21 c.e.f | <0.001 * |
Waist/Height Ratio (cm) | 0.59 ± 0.04 a.b.c | 0.63 ± 0.05 a.d.e | 0.69 ± 0.05 b.d.f | 0.79 ± 0.09 c.e.f | <0.001 * |
Hemodynamic/Health Related Physical Fitness Variables | |||||
Systolic Blood Pressure (mmHg) | 123.25 ± 14.70 c | 127.32 ± 14.52 | 127.41 ± 13.78 | 132.25 ± 11.79 c | 0.027 * |
Diastolic Blood Pressure (mmHg) | 79.67 ± 12.08 | 81.65 ± 12.54 | 82.43 ± 10.27 | 84.85 ± 12.49 | 0.178 |
SPO2 (%) | 96.71 ± 3.36 | 96.51 ± 12.54 | 96.04 ± 2.35 | 92.26 ± 1.77 | 0.197 |
HR (bpm) | 77.80 ± 8.89 b | 80.76 ± 12.87 | 84.06 ± 11.26 b | 84.89 ± 12.66 | 0.001 * |
Six Minutes’ Walk Test (m) | 505.33 ± 86.25 c | 496.02 ± 73.95 e | 485.63 ± 70.27 f | 431.83 ± 81.54 c.e.f | <0.001 * |
Plank Strength Test (s) | 28.88 ± 26.85 | 27.96 ± 24.54 | 25.31 ± 22.81 | 17.05 ± 14.55 | 0.116 |
Dynamic Lower Limb Muscular Endurance (n rep.) | 15.72 ± 4.54 | 15.16 ± 4.69 | 14.40 ± 3.78 | 13.78 ± 4.29 | 0.064 |
Flexibility (cm) | 22.79 ± 8.14 b.c | 19.62 ± 9.86 d | 14.67 ± 7.77 b.d | 15.14 ± 10.27 c | <0.001 * |
Biochemical Parameters | |||||
Glycemia (mg/dL) | 95.25 ± 12.16 b | 101.73 ± 30.87 | 111.96 ± 50.52 b | 106.70 ± 31.43 | 0.010 * |
Insulin (mU/L) | 18.68 ± 9.15 c | 23.02 ± 11.39 | 22.35 ± 10.99 | 28.52 ± 14.89 c | 0.001 * |
Homa IR | 4.45 ± 2.46 b.c | 5.73 ± 3.13 | 6.22 ± 4.42 b | 7.25 ± 3.60 c | 0.001 * |
Homa β | 67.34 ± 32.87 c | 81.68 ± 44.17 | 74.49 ± 38.71 f | 99.86 ± 58.88 c.f | 0.002 * |
US-CRP (mg/L) | 4.02 ± 3.44 b.c | 5.81 ± 5.35 | 7.52 ± 6.50 b | 8.45 ± 5.43 c | <0.001 * |
Total cholesterol (mg/dL) | 192.74 ± 40.01 | 190 ± 36.17 | 196.22 ± 38.30 | 179.78 ± 38.65 | 0.161 |
HDL-c (mg/dL) | 49.92 ± 12.25 | 46.73 ± 11.99 | 46.74 ± 12.36 | 48.78 ± 15.78 | 0.236 |
LDL-c (mg/dL) | 117.08 ± 36.94 | 113.84 ± 30.74 | 119.05 ± 31.51 | 107.47 ± 30.33 | 0.259 |
VLDL-c (mg/dL) | 23.99 ± 11.34 | 27.88 ± 15.19 | 28.68 ± 15.79 | 23.16 ± 8.41 | 0.051 |
Non-HDL Cholesterol (mg/dL) | 140.34 ± 39.93 | 141.78 ± 36.03 | 149.40 ± 36.76 | 135.93 ± 37.63 | 0.12 |
Triglycerides (mg/dL) | 127.53 ± 65.03 | 145.55 ± 84.86 | 158.25 ± 106.17 | 126.15 ± 74.53 | 0.061 |
Glycated Hemoglobin (%) | 5.52 ± 0.54 | 5.66 ± 0.98 | 5.79 ± 1.44 | 5.50 ± 0.79 | 0.288 |
Indices Derived From Biochemical/Anthropometric Parameters | |||||
AIP (mg/dL) | 0.37 ± 0.26 | 0.45 ± 0.27 | 0.47 ± 0.29 | 0.38 ± 0.28 | 0.067 |
MetS-Z BMI | 0.38 ± 0.55 | 0.86 ± 0.79 | 1.35 ± 1.24 | 1.67 ± 0.66 | 0.059 |
Percentile BMI | 63.35 ± 18.91 a.b.c | 75.34 ± 15.43 a.d.e | 83.70 ± 13.35 b.d.f | 92.52 ± 6.84 c.e.f | <0.001 * |
MetS-Z WC | 0.17 ± 0.60 a.b.c | 0.60 ± 0.83 a.d | 1.03 ± 1.17 b.d | 1.10 ± 0.67 c | <0.001 * |
Percentile WC | 55.43 ± 21.08 a.b.c | 67.39 ± 18.57 a.d.e | 75.83 ± 17.73 b.d | 82.30 ± 13.05 c.e | <0.001 * |
TYG (mg/dL) | 8.59 ± 0.53 b | 8.74 ± 0.58 | 8.87 ± 0.71 b | 8.65 ± 0.57 | 0.011 * |
TYG-BMI | 284.92 ± 21.22 a.b.c | 326.44 ± 25.10 a.d.e | 387.97 ± 42.01 b.d.f | 493.35 ± 75.64 c.e.f | <0.001 * |
TYG-WC | 828.17 ± 94.33 a.b.c | 909.97 ± 117.98 a.d.e | 1015.51 ± 137.87 b.d.f | 1133.68 ± 179.47 c.e.f | <0.001 * |
Antrometric and Body Composition Parameters | Young Adults (n = 197) | Middle Age Adults (n = 207) | p-Value |
---|---|---|---|
Age (years) | 31.84 ± 5.26 | 46.32 ± 5.17 | <0.001 * |
Height (m) | 166.16 ± 7.36 | 162.57 ± 9.12 | <0.001 * |
Body Mass (kg) | 114.90 ± 22.65 | 103.78 ± 20.57 | <0.001 * |
Body Mass Index (kg/m2) | 41.61 ± 6.98 | 39.19 ± 5.79 | <0.001 * |
Lean Body Mass (kg) | 45.19 ± 17.70 | 41.63 ± 17.20 | 0.041 * |
Skeletal Muscle Mass (kg) | 32.68 ± 6.30 | 31.69 ± 6.84 | 0.131 |
Body fat (%) | 52.38 ± 28.83 | 48.89 ± 5.57 | 0.088 |
Absolute Body Fat (kg) | 69.71 ± 20.22 | 62.15 ± 16.06 | <0.001 * |
Lean Mass/Body Fat Ratio (kg) | 0.71 ± 0.33 | 0.73 ± 0.36 | 0.613 |
Neck Circumference (cm) | 39.88 ± 4.34 | 39.42 ± 4.46 | 0.296 |
Waist Circumference (cm) | 109.79 ± 13.46 | 106.94 ± 13.42 | 0.034 * |
Abdomen Circumference (cm) | 122.42 ± 14.55 | 117.53 ± 15.44 | 0.001 * |
Hip Circumference (cm) | 129.92 ± 13.87 | 125.92 ± 14.45 | 0.019 * |
Waist/Height Ratio (cm) | 0.66 ± 0.07 | 0.65 ± 0.07 | 0.679 |
Hemodynamic/Health Related Physical Fitness Variables | |||
Systolic Blood Pressure (mmHg) | 124.46 ± 12.41 | 129.26 ± 15.43 | 0.001 * |
Diastolic Blood Pressure (mmHg) | 80.89 ± 10.36 | 82.65 ± 12.66 | 0.128 |
SPO2 (%) | 96.55 ± 2.13 | 96.15 ± 2.75 | 0.102 |
HR (bpm) | 82.87 ± 12.36 | 80.75 ± 11.41 | 0.075 |
Six Minutes’ Walk Test (m) | 495.51 ± 77.21 | 483.51 ± 76.81 | 0.118 |
Plank Strength Test (s) | 24.91 ± 21.61 | 27.72 ± 25.84 | 0.237 |
Dynamic Lower Limb Muscular Endurance (n rep.) | 14.61 ± 4.16 | 15.12 ± 4.45 | 0.239 |
Flexibility (cm) | 18.46 ± 8.82 | 17.47 ± 9.77 | 0.289 |
Biochemical Parameters | |||
Glycemia (mg/dL) | 99.86 ± 27.56 | 109.67 ± 45.89 | 0.010 * |
Insulin (mU/L) | 23.31 ± 11.03 | 21.34 ± 11.50 | 0.081 |
Homa IR | 5.79 ± 3.38 | 5.77 ± 3.97 | 0.966 |
Homa β | 88.22 ± 41.80 | 71.75 ± 41.33 | 0.006 * |
US-CRP (mg/L) | 6.58 ± 6.1 | 6.08 ± 5.33 | 0.376 |
Total cholesterol (mg/dL) | 184.65 ± 35.05 | 199.56 ± 39.37 | <0.001 * |
HDL-c (mg/dL) | 45.53 ± 12.22 | 49.31 ± 12.47 | 0.002 * |
LDL-c (mg/dL) | 110.99 ± 29.17 | 120.93 ± 34.33 | 0.002 * |
VLDL-c (mg/dL) | 26.20 ± 14.03 | 28.04 ± 14.96 | 0.202 |
Non-HDL Cholesterol (mg/dL) | 138.40 ± 34.11 | 149.58 ± 39.43 | 0.003 * |
Triglycerides (mg/dL) | 143.02 ± 98.22 | 148.62 ± 83.27 | 0.536 |
Glycated Hemoglobin (%) | 5.40 ± 0.74 | 5.92 ± 1.34 | <0.001 * |
Indices Derived From Biochemical/Anthropometric Parameters | |||
AIP (mg/dL) | 3.58 ± 3.28 | 3.34 ± 2.48 | 0.41 |
MetS-Z BMI | 0.97 ± 0.86 | 1.06 ± 1.17 | 0.267 |
Percentile BMI | 77.34 ± 17.53 | 77.73 ± 16.71 | 0.818 |
MetS-Z WC | 0.65 ± 0.82 | 0.78 ± 1.12 | 0.168 |
Percentile WC | 68.82 ± 19.99 | 70.10 ± 20.19 | 0.524 |
TYG (mg/dL) | 4.68 ± 0.32 | 4.76 ± 0.31 | 0.012 * |
TYG-BMI | 361.83 ± 70.31 | 346.85 ± 59.86 | 0.021 * |
TYG-WC | 955.34 ± 154.02 | 947.52 ± 152.18 | 0.608 |
Single Parameter | Men (n = 85) | Women (n = 319) |
---|---|---|
Glycated Hemoglobin (%) | 34.1 | 31.3 |
Non-HDL Cholesterol (mg/dL) | 36.5 | 26.3 |
HDL-c (mg/dL) | 40 | 45.1 |
LDL-c (mg/dL) | 41.2 | 25.7 |
Insulin (mU/L) * | 45.8 | 32.9 |
Triglycerides (mg/dL) | 51.7 | 28.5 |
Total cholesterol (mg/dL) | 52.9 | 49.5 |
Diastolic Blood Pressure (mmHg) | 54.1 | 47.6 |
Glycemia (mg/dL) | 57.6 | 36.9 |
Systolic Blood Pressure (mmHg) | 77.6 | 59.8 |
Insulin (mU/L) ** | 84.7 | 83.1 |
US-CRP (mg/L) | 89.4 | 89.9 |
Waist Circumference (cm) | 90.6 | 95.9 |
Index or ratios | Man (n = 85) | Women (n = 319) |
Homa IR | 89.4 | 86.2 |
Homa β | 95.3 | 94.4 |
MetS-Z BMI | 95.3 | 92.1 |
AIP (mg/dL) | 100 | 92.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westphal-Nardo, G.; Chaput, J.-P.; Faúndez-Casanova, C.; Fernandes, C.A.M.; de Andrade Gonçalves, E.C.; Utrila, R.T.; Oltramari, K.; Grizzo, F.M.F.; Nardo-Junior, N. Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity. Int. J. Environ. Res. Public Health 2023, 20, 6263. https://doi.org/10.3390/ijerph20136263
Westphal-Nardo G, Chaput J-P, Faúndez-Casanova C, Fernandes CAM, de Andrade Gonçalves EC, Utrila RT, Oltramari K, Grizzo FMF, Nardo-Junior N. Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity. International Journal of Environmental Research and Public Health. 2023; 20(13):6263. https://doi.org/10.3390/ijerph20136263
Chicago/Turabian StyleWestphal-Nardo, Greice, Jean-Philippe Chaput, César Faúndez-Casanova, Carlos Alexandre Molena Fernandes, Eliane Cristina de Andrade Gonçalves, Raquel Tomiazzi Utrila, Karine Oltramari, Felipe Merchan Ferraz Grizzo, and Nelson Nardo-Junior. 2023. "Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity" International Journal of Environmental Research and Public Health 20, no. 13: 6263. https://doi.org/10.3390/ijerph20136263
APA StyleWestphal-Nardo, G., Chaput, J.-P., Faúndez-Casanova, C., Fernandes, C. A. M., de Andrade Gonçalves, E. C., Utrila, R. T., Oltramari, K., Grizzo, F. M. F., & Nardo-Junior, N. (2023). Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity. International Journal of Environmental Research and Public Health, 20(13), 6263. https://doi.org/10.3390/ijerph20136263