Does the Sound of a Singing Bowl Synchronize Meditational Brainwaves in the Listeners?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Singing Bowl Sound
2.2. Acoustic Apparatus for Recording and Acoustic Analysis
2.3. Brain Wave Measurements
2.4. EEG Analysis
3. Results
3.1. Temporal and Spectral Characteristics of the Singing Bowl Sound
3.2. Synchronized Activation of Brain Waves at the Beat Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ahn, I.S.; Kim, M.S.; Bae, M.J. A Study on the Characteristics of Singing Bowl’s Sound. AJMAHS 2018, 8, 269–276. [Google Scholar]
- Kim, J.H. A phenomenological study on the experience of gestalt music therapy for the social discontent-type-random criminals. KAPA 2018, 14, 195–225. [Google Scholar]
- Goldsby, T.L.; Goldsby, M.E.; McWalters, M.; Mills, P.J. Effects of singing bowl sound meditation on mood, tension, and well-being: An observational study. Evid. Based Complement. Altern. Med. 2017, 22, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landry, J.M. Physiological and psychological effects of a Himalayan singing bowl in meditation practice: A quantitative analysis. Am. J. Health Promot. 2014, 28, 306–309. [Google Scholar] [CrossRef]
- Cahn, B.R.; Polich, J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 2006, 132, 180. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Golocheikine, S.A. Non-linear dynamic complexity of the human EEG during meditation. Neurosci. Lett. 2002, 330, 143–146. [Google Scholar] [CrossRef]
- Jacobs, G.D.; Lubar, J.F. Spectral analysis of the central nervous system effects of the relaxation response elicited by autogenic training. Behav. Med. 1989, 15, 125–132. [Google Scholar] [CrossRef]
- Travis, F.; Wallace, R.K. Autonomic and EEG patterns during eyes-closed rest and transcendental meditation (TM) practice: The basis for a neural model of TM practice. Conscious. Cogn. 1999, 8, 302–318. [Google Scholar] [CrossRef]
- Warrenburg, S.; Pagano, R.R.; Woods, M.; Hlastala, M. A comparison of somatic relaxation and EEG activity in classical progressive relaxation and transcendental meditation. J. Behav. Med. 1980, 3, 73–93. [Google Scholar] [CrossRef]
- Ritskes, R.; Ritskes-Hoitinga, A.; Stødkilde-Jørgensen, A.; Bærentsen, K.B.; Hartmann, T. MRI scanning during Zen meditation: The picture of enlightenment. In The Relevance of the Wisdom Traditions in Contemporary Society: The Challenge to Psychology; Mark, B., Peter, B., Johnna, B., Michael, D., Yutaka, H., Saroja, S., Eds.; Eburon Publishers: Delft, The Netherlands, 2004; pp. 195–198. [Google Scholar]
- Newberg, A.; Pourdehnad, M.; Alavi, A.; d’Aquili, E.G. Cerebral blood flow during meditative prayer: Preliminary findings and methodological issues. Percept. Mot. Ski. 2003, 97, 625–630. [Google Scholar] [CrossRef]
- Shin, Y.W.; Kwon, J.S.; Hahm, B.J. Meditation in Medical Perspective. J. Korean Neuropsychiatr. Assoc. 2007, 46, 349. [Google Scholar]
- Dillbeck, M.C.; Bronson, E.C. Short-term longitudinal effects of the Transcendental Meditation technique on EEG power and coherence. Int. J. Neurosci. 1981, 14, 147–151. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, W.J.; Lee, S.J. The Effect of Practicing Hatha Yoga on the Autonomic Nervous System and Electroencephalogram Patterns of Middle-aged Women. Korean J. Sport Sci. 2014, 23, 1187–1202. [Google Scholar]
- Aftanas, L.I.; Golocheikine, S.A. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neurosci. Lett. 2001, 310, 57–60. [Google Scholar] [CrossRef]
- Anand, B.; Chhina, G.S.; Singh, B. Some aspects of electroencephalographic studies in yogis. Electroencephalogr. Clin. Neurophysiol. 1961, 13, 452–456. [Google Scholar] [CrossRef]
- Banquet, J.P. Spectral analysis of the EEG in meditation. Electroencephalogr. Clin. Neurophysiol. 1973, 35, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Corby, J.C.; Roth, W.T.; Zarcone, V.P., Jr.; Kopell, B.S. Psychophysiological correlates of the practice of tantric yoga meditation. Arch. Gen. Psychiatry 1978, 35, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Elson, B.D.; Hauri, P.; Cunis, D. Physiological changes in yoga meditation. PSPHAF 1977, 14, 52–57. [Google Scholar] [CrossRef]
- Fenwick, P.B.; Donaldson, S.; Gillis, L.; Bushman, J.; Fenton, G.W.; Perry, I. Metabolic and EEG changes during transcendental meditation: An explanation. Biol. Psychol. 1977, 5, 101–118. [Google Scholar] [CrossRef]
- Hebert, R.; Lehmann, D. Theta bursts: An EEG pattern in normal subjects practicing the transcendental meditation technique. Electroencephalogr. Clin. Neurophysiol. 1977, 42, 397–405. [Google Scholar] [CrossRef]
- Wallace, R.K.; Benson, H.; Wilson, A.F. A wakeful hypometabolic physiologic state. Am. J. Physiol. Cell Physiol. 1971, 221, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Faber, P.L.; Lehmann, D.; Gianotti, L.R.R.; Kaelin, M.; PascualMarqui, R.D. Scalp and intracerebral (LORETA) theta and gamma EEG coherence in meditation. In Proceedings of the Meeting of the International Society for Neuronal Regulation, Winterthur, Switzerland, 24–28 February 2004. [Google Scholar]
- Tei, S.; Faber, P.L.; Lehmann, D.; Tsujiuchi, T.; Kumano, H.; Pascual-Marqui, R.D.; Gianotti, L.; Kochi, K. Meditators and non-meditators: EEG source imaging during resting. Brain Topogr. 2009, 22, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, G.D.; Friedman, R. EEG spectral analysis of relaxation techniques. Appl. Psychophysiol. Biofeedback 2004, 29, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.M.; Schoicket, S.; Carrington, P.; Woolfolk, R.L. Psychophysiological and cognitive responses to stressful stimuli in subjects practicing progressive relaxation and clinically standardized meditation. Behav. Res. 1980, 18, 293–303. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Woolfolk, R.L.; Rooney, A.J.; McCann, B.; Carrington, P. Progressive relaxation and meditation: A study of psychophysiological and therapeutic differences between two techniques. Behav. Res. 1983, 21, 651–662. [Google Scholar] [CrossRef]
- Wolpert, E.A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Arch. Gen. Psychiatry 1969, 20, 246–247. [Google Scholar] [CrossRef]
- Murata, T.; Koshino, Y.; Omori, M.; Murata, I.; Mishio, M.; Sakamoto, K.; Horie, T.; Isaki, K. Quantitative EEG Study on Zen Meditation (Zazen). Psychiatry Clin. Neurosci. 1994, 48, 881–890. [Google Scholar] [CrossRef]
- Jacobs, G.D.; Benson, H.; Friedman, R. Topographic EEG mapping of the relaxation response. Biofeedback Self Regul. 1996, 21, 121–129. [Google Scholar] [CrossRef]
- Faber, P.L.; Lehmann, D.; Gianotti, L.R.; Milz, P.; Pascual-Marqui, R.D.; Held, M.; Kochi, K. Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization. Cogn. Process. 2015, 16, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, D.; Faber, P.L.; Achermann, P.; Jeanmonod, D.; Gianotti, L.R.; Pizzagalli, D. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatry Res. 2001, 108, 111–121. [Google Scholar] [CrossRef]
- Mathew, R.J.; Wilson, W.H.; Chiu, N.Y.; Turkington, T.G.; Degrado, T.R.; Coleman, R.E. Regional cerebral blood flow and depersonalization after tetrahydrocannabinol administration. Acta Psychiatr. Scand. 1999, 100, 67–75. [Google Scholar] [CrossRef]
- Miller, B.L.; Seeley, W.W.; Mychack, P.; Rosen, H.J.; Mena, I.; Boone, K. Neuroanatomy of the self: Evidence from patients with frontotemporal dementia. Neurology 2001, 57, 817–821. [Google Scholar] [CrossRef]
- Lazar, S.W.; Bush, G.; Gollub, R.L.; Fricchione, G.L.; Khalsa, G.; Benson, H. Functional brain mapping of the relaxation response and meditation. NeuroReport 2000, 11, 1581–1585. [Google Scholar] [CrossRef] [PubMed]
- Newberg, A.; Alavi, A.; Baime, M.; Pourdehnad, M.; Santanna, J.; d’Aquili, E. The measurement of regional cerebral blood flow during the complex cognitive task of meditation: A preliminary SPECT study. Psychiatry Res. 2001, 106, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azari, N.P.; Nickel, J.; Wunderlich, G.; Niedeggen, M.; Hefter, H.; Tellmann, L. Neural correlates of religious experience. Eur. J. Neurosci. 2001, 13, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Kellaris, J.J.; Rice, R.C. The influence of tempo, loudness, and gender of listener on responses to music. Psychol. Mark. 1993, 10, 15–29. [Google Scholar] [CrossRef]
Time (s) | Delta Wave | Theta Wave | Beat Frequency | Alpha Wave | Beta Wave | Gamma Wave | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Changes in EEG (%) | p | Changes in EEG (%) | p | Changes in EEG (%) | p | Changes in EEG (%) | p | Changes in EEG (%) | p | Changes in EEG (%) | p | ||
Before exp. | 0~50 | 100 | - | 100 | - | 100 | - | 100 | - | 100 | - | 100 | - |
Experiment | 50~100 | 93.52 | 0.014 | 103.16 | 0.176 | 163.90 | 0.006 | 103.69 | 0.137 | 98.48 | 0.248 | 87.99 | 0.000 |
100~150 | 100.09 | 0.985 | 108.57 | 0.015 | 144.40 | 0.160 | 97.69 | 0.411 | 97.54 | 0.280 | 85.18 | 0.000 | |
150~200 | 100.37 | 0.933 | 106.85 | 0.037 | 227.66 | 0.006 | 97.57 | 0.533 | 99.16 | 0.579 | 85.53 | 0.000 | |
200~250 | 102.71 | 0.641 | 108.09 | 0.031 | 199.67 | 0.032 | 95.47 | 0.275 | 98.78 | 0.586 | 84.10 | 0.000 | |
250~300 | 109.62 | 0.220 | 116.16 | 0.003 | 251.98 † | 0.021 | 87.40 | 0.003 | 95.19 | 0.067 | 85.65 | 0.006 | |
300~350 | 117.95 | 0.029 | 114.34 | 0.004 | 182.19 | 0.001 | 89.07 | 0.010 | 95.09 | 0.062 | 81.86 † | 0.000 | |
After exp. | 350~400 | 135.18 † | 0.001 | 117.07 † | 0.002 | 157.06 | 0.049 | 85.28 † | 0.005 | 93.75 † | 0.012 | 90.41 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C.; Choi, M.-J. Does the Sound of a Singing Bowl Synchronize Meditational Brainwaves in the Listeners? Int. J. Environ. Res. Public Health 2023, 20, 6180. https://doi.org/10.3390/ijerph20126180
Kim S-C, Choi M-J. Does the Sound of a Singing Bowl Synchronize Meditational Brainwaves in the Listeners? International Journal of Environmental Research and Public Health. 2023; 20(12):6180. https://doi.org/10.3390/ijerph20126180
Chicago/Turabian StyleKim, Seong-Chan, and Min-Joo Choi. 2023. "Does the Sound of a Singing Bowl Synchronize Meditational Brainwaves in the Listeners?" International Journal of Environmental Research and Public Health 20, no. 12: 6180. https://doi.org/10.3390/ijerph20126180