Air Pollution and Migration Decision of Migrants in Low-Carbon Society
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Methodology
3.1.1. Conditional Logit Model
3.1.2. Instrumental Variable Design
3.1.3. Control Function Method
3.2. Data
3.2.1. Migrants
3.2.2. City Characteristics
4. Empirical Results
4.1. Baseline Regression Results
4.2. Robustness Tests
4.3. Heterogeneity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. An Auxiliary Check on the Excludability of VC
Variables | Dependent Variable: ln(vc) |
---|---|
Temperature | 0.002 (0.008) |
Precipitation | −0.005 (0.011) |
Average wage | −0.212 *** (0.053) |
Industrial structure | −0.003 (0.006) |
Educational level | 0.021 (0.017) |
Medical level | −0.007 (0.034) |
Population size | −0.118 (0.038) |
Provincial capital | −0.020 (0.119) |
N | 267 |
R2 | 0.252 |
References
- Hill, T.D.; Jorgenson, A.K.; Ore, P.; Balistreri, K.S.; Clark, B. Air Quality and Life Expectancy in the United States: An Analysis of the Moderating Effect of Income Inequality. SSM Popul Health 2019, 7, 100346. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.C.K.; Li, V.O.K.; Han, Y.; Zhang, Q.; Lu, Z.; Gilani, Z. In Search of Bluer Skies: Would People Move to Places of Better Air Qualities? Environ. Sci. Policy 2021, 117, 8–15. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zhou, A.; Zhang, M. Exploring the Effect of Subjective Air Pollution on Happiness in China. Environ. Sci. Pollut. Res. 2020, 27, 43299–43311. [Google Scholar] [CrossRef]
- Levinson, A. Valuing Public Goods Using Happiness Data: The Case of Air Quality. J. Public Econ. 2012, 96, 869–880. [Google Scholar] [CrossRef]
- Roback, J. Wages, Rents, and the Quality of Life. J. Political Econ. 1982, 90, 1257–1278. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Li, Y. The Effect of Air Pollution on Children’s Migration with Parents: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 12499–12513. [Google Scholar] [CrossRef]
- Hering, L.; Poncet, S. Environmental Policy and Exports: Evidence from Chinese Cities. J. Environ. Econ. Manag. 2014, 68, 296–318. [Google Scholar] [CrossRef]
- Huang, X.; Dijst, M.; van Weesep, J.; Jiao, Y.; Sun, Y. Residential Choice among Rural–Urban Migrants after Hukou Reform: Evidence from Suzhou, China. Popul. Space Place 2017, 23, e2035. [Google Scholar] [CrossRef]
- Zou, J.; Deng, X. Return Intention, Subjective Social Status and Residential Choices of Rural Migrant Worker Households: Evidence from China. Hous. Theory Soc. 2020, 37, 417–438. [Google Scholar] [CrossRef]
- Feijten, P.; Hooimeijer, P.; Mulder, C.H. Residential Experience and Residential Environment Choice over the Life-Course. Urban Stud. 2008, 45, 141–162. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, S.; Nielsen, I.; Smyth, R. Effect of Internal Migration on the Environment in China. Energy Econ. 2017, 64, 31–44. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, F.A.; Lai, W. The Impact of Indoor Air Pollution on Health Outcomes and Cognitive Abilities: Empirical Evidence from China. Popul. Environ. 2019, 40, 388–410. [Google Scholar] [CrossRef]
- Thiede, B.; Gray, C.; Mueller, V. Climate Variability and Inter-Provincial Migration in South America, 1970–2011. Glob. Environ. Chang. 2016, 41, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Tiebout, C.M. A Pure Theory of Local Expenditures. J. Political Econ. 1956, 64, 416–424. [Google Scholar] [CrossRef]
- Brunner, E.J.; Imazeki, J. Tiebout Choice and Universal School Vouchers. J. Urban Econ. 2008, 63, 253–279. [Google Scholar] [CrossRef]
- Nechyba, T.J. Mobility, Targeting, and Private-School Vouchers. Am. Econ. Rev. 2000, 90, 130–146. [Google Scholar] [CrossRef] [Green Version]
- Bayoh, I.; Irwin, E.G.; Haab, T. Determinants of Residential Location Choice: How Important Are Local Public Goods in Attracting Homeowners to Central City Locations? J. Reg. Sci. 2006, 46, 97–120. [Google Scholar] [CrossRef]
- Cameron, T.A.; McConnaha, I.T. Evidence of Environmental Migration. Land Econ. 2006, 82, 273–283. [Google Scholar] [CrossRef]
- Spencer Banzhaf, H.; Walsh, R.P. Do People Vote with Their Feet? An Empirical Test of Tiebout’s Mechanism. Am. Econ. Rev. 2008, 98, 843–863. [Google Scholar] [CrossRef]
- Chen, S.; Oliva, P.; Zhang, P. The Effect of Air Pollution on Migration: Evidence from China. J. Dev. Econ. 2022, 156, 102833. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Ma, S. Would Smog Lead to Outflow of Labor Force? Empirical Evidence from China. Emerg. Mark. Financ. Trade 2017, 53, 1122–1134. [Google Scholar] [CrossRef]
- Cui, C.; Wang, Z.; He, P.; Yuan, S.; Niu, B.; Kang, P.; Kang, C. Escaping from Pollution: The Effect of Air Quality on Inter-City Population Mobility in China. Environ. Res. Lett. 2019, 14, 124025. [Google Scholar] [CrossRef]
- Qin, Y.; Zhu, H. Run Away? Air Pollution and Emigration Interests in China. J. Popul. Econ. 2018, 31, 235–266. [Google Scholar] [CrossRef]
- Chay, K.Y.; Greenstone, M. Does Air Quality Matter? Evidence from the Housing Market. J. Political Econ. 2005, 113, 376–424. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Cao, J.; Kahn, M.E.; Sun, C. Real Estate Valuation and Cross-Boundary Air Pollution Externalities: Evidence from Chinese Cities. J. Real Estate Financ. Econ. 2014, 48, 398–414. [Google Scholar] [CrossRef]
- Burkhardt, J.; Bayham, J.; Wilson, A.; Carter, E.; Berman, J.D.; O’Dell, K.; Ford, B.; Fischer, E.V.; Pierce, J.R. The Effect of Pollution on Crime: Evidence from Data on Particulate Matter and Ozone. J. Environ. Econ. Manag. 2019, 98, 102267. [Google Scholar] [CrossRef]
- Herrnstadt, E.; Heyes, A.; Muehlegger, E.; Saberian, S. Air Pollution and Criminal Activity: Microgeographic Evidence from Chicago. Am. Econ. J. Appl. Econ. 2021, 13, 70–100. [Google Scholar] [CrossRef]
- Deryugina, T.; Heutel, G.; Miller, N.H.; Molitor, D.; Reif, J. The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction. Am. Econ. Rev. 2019, 109, 4178–4219. [Google Scholar] [CrossRef]
- He, G.; Fan, M.; Zhou, M. The Effect of Air Pollution on Mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Anderson, M.L. As the Wind Blows: The Effects of Long-Term Exposure to Air Pollution on Mortality. J. Eur. Econ. Assoc. 2020, 18, 1886–1927. [Google Scholar] [CrossRef] [PubMed]
- Farhidi, F.; Mawi, Z. Is It Costly to Transition from Fossil Fuel Energy: A Trade-Off Analysis. Energies 2022, 15, 7873. [Google Scholar] [CrossRef]
- Li, Y.; Guan, D.; Yu, Y.; Westland, S.; Wang, D.; Meng, J.; Wang, X.; He, K.; Tao, S. A Psychophysical Measurement on Subjective Well-Being and Air Pollution. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sass, V.; Kravitz-Wirtz, N.; Karceski, S.M.; Hajat, A.; Crowder, K.; Takeuchi, D. The Effects of Air Pollution on Individual Psychological Distress. Health Place 2017, 48, 72–79. [Google Scholar] [CrossRef]
- Beatty, T.K.M.; Shimshack, J.P. Air Pollution and Children’s Respiratory Health: A Cohort Analysis. J. Environ. Econ. Manag. 2014, 67, 39–57. [Google Scholar] [CrossRef]
- Song, Y.; Guo, S.; Zhang, M. Will Environmental Regulations Affect Subjective Well-Being?—A Cross-Region Analysis in China. Environ. Sci. Pollut. Res. 2019, 26, 29191–29211. [Google Scholar] [CrossRef]
- Shah, P.S.; Balkhair, T. Air Pollution and Birth Outcomes: A Systematic Review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef]
- Malley, C.S.; Kuylenstierna, J.C.I.; Vallack, H.W.; Henze, D.K.; Blencowe, H.; Ashmore, M.R. Preterm Birth Associated with Maternal Fine Particulate Matter Exposure: A Global, Regional and National Assessment. Environ. Int. 2017, 101, 173–182. [Google Scholar] [CrossRef]
- Heyes, A.; Zhu, M. Air Pollution as a Cause of Sleeplessness: Social Media Evidence from a Panel of Chinese Cities. J. Environ. Econ. Manag. 2019, 98, 102247. [Google Scholar] [CrossRef]
- Jerrett, M. The Death Toll from Air-Pollution Sources. Nature 2015, 525, 102247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, Y.; Zhao, H.; Lu, X.; Zhang, Y.; Zhu, W.; Nielsen, C.P.; Li, X.; Zhang, Q.; Bi, J.; et al. Trade-Driven Relocation of Air Pollution and Health Impacts in China. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschênes, O.; Greenstone, M.; Shapiro, J.S. Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program. Am. Econ. Rev. 2017, 107, 2958–2989. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Kahn, M.E.; Zheng, S. Self-Protection Investment Exacerbates Air Pollution Exposure Inequality in Urban China. Ecol. Econ. 2017, 131, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Graff Zivin, J.; Neidell, M. Days of Haze: Environmental Information Disclosure and Intertemporal Avoidance Behavior. J. Environ. Econ. Manag. 2009, 58, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.; Oliva, P. The Effect of Pollution on Labor Supply: Evidence from a Natural Experiment in Mexico City. J. Public Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Lichter, A.; Pestel, N.; Sommer, E. Productivity Effects of Air Pollution: Evidence from Professional Soccer. Labour. Econ. 2017, 48, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Mu, Q. Air Pollution and Defensive Expenditures: Evidence from Particulate-Filtering Facemasks. J. Environ. Econ. Manag. 2018, 92, 517–536. [Google Scholar] [CrossRef]
- Lu, H.; Yue, A.; Chen, H.; Long, R. Could Smog Pollution Lead to the Migration of Local Skilled Workers? Evidence from the Jing-Jin-Ji Region in China. Resour Conserv. Recycl. 2018, 130, 177–187. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behaviour. In Frontiers of Econometrics; Zarembka, P., Ed.; Academic Press: London, UK, 1974; pp. 105–142. [Google Scholar]
- Wooldridge, J.M. Control Function Methods in Applied Econometrics. J. Hum. Resour. 2015, 50, 420–445. [Google Scholar] [CrossRef]
Variables | Obs | Mean | Std | Min | Max |
---|---|---|---|---|---|
Age | 6115 | 37.67 | 11.29 | 15 | 64 |
Gender (male = 1) | 6115 | 0.47 | 0.49 | 0 | 1 |
Marriage (married = 1) | 6115 | 0.87 | 0.34 | 0 | 1 |
Education year | 6115 | 9.43 | 3.98 | 0 | 22 |
Family level | 6115 | 3.12 | 1.87 | 0 | 10 |
PM2.5 concentration (10 μg/m3) | 267 | 3.31 | 1.61 | 0.30 | 7.47 |
Average temperature (°C) | 267 | 13.98 | 5.11 | −1.60 | 25.82 |
Precipitation (100 mm) | 267 | 8.32 | 4.79 | 0.14 | 21.10 |
Ln(ve) (Ln(ve) represents the log of Ventilation Coefficient) (IV) | 267 | 6.43 | 0.43 | 5.52 | 8.04 |
Average wage (1000 yuan) | 267 | 4.98 | 1.30 | 3.21 | 10.80 |
Industrial structure (non-agricultural proportion, %) | 267 | 83.71 | 8.98 | 56.83 | 98.84 |
Educational level (teachers per 1000 people) | 267 | 8.23 | 1.68 | 5.12 | 20.24 |
Medical level (hospital beds per 1000 people) | 267 | 3.11 | 1.32 | 1.27 | 9.33 |
Ln (population) (Ln (population) represents the log of population size) | 267 | 7.92 | 0.81 | 5.21 | 11.11 |
Whether the city is provincial capital | 267 | 0.11 | 0.32 | 0 | 1 |
Whether the origin city and the alternative city is in the same province | 606,891 | 0.05 | 0.21 | 0 | 1 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Raw Coefficient | % Change in Odds | Raw Coefficient | % Change in Odds | Raw Coefficient | % Change in Odds | |
PM2.5 | 0.059 *** (0.008) | 6.1 | −0.042 *** (0.007) | −4.0 | −0.102 *** (0.011) | −9.7 |
Temperature | 0.069 *** (0.004) | 7.1 | 0.091 *** (0.005) | 9.6 | 0.067 *** (0.007) | 6.9 |
Precipitation | 0.055 *** (0.005) | 5.6 | 0.021 *** (0.006) | 2.1 | 0.035 *** (0.006) | 3.6 |
Average wage | 0.237 *** (0.009) | 26.9 | 0.186 *** (0.013) | 20.4 | ||
Industrial structure | 0.068 *** (0.004) | 7.1 | 0.038 *** (0.003) | 3.9 | ||
Educational level | 0.055 *** (0.007) | 5.6 | ||||
Medical level | 0.225 *** (0.014) | 25.2 | ||||
Population size | 0.434 *** (0.025) | 54.5 | ||||
Provincial capital | 0.493 *** (0.038) | 63.8 | ||||
Chi2 | 1279.65 | 4779.63 | 9089.78 | |||
R2 | 0.031 | 0.095 | 0.201 | |||
N | 1,632,705 | 1,632,705 | 1,632,705 |
Step 2: Clogit | ||
---|---|---|
Raw Coefficient | % Change in Odds | |
PM2.5 | −0.238 *** (0.021) | −21.2 |
Residual from step 1 | 0.187 *** (0.027) | 20.5 |
Temperature | 0.077 *** (0.005) | 8.2 |
Precipitation | 0.026 *** (0.007) | 2.7 |
Average wage | 0.178 *** (0.011) | 19.5 |
Industrial structure | 0.046 *** (0.003) | 4.7 |
Educational level | 0.030 *** (0.008) | 3.1 |
Medical level | 0.241 *** (0.012) | 27.3 |
Population size | 0.491 *** (0.032) | 63.9 |
Provincial capital | 0.374 *** (0.044) | 45.3 |
Chi2 | 9679.47 | |
R2 | 0.115 | |
Step 1: OLS regression of air pollution on ventilation coefficient | ||
Ln(ve) | −1.140 *** (0.171) | |
Control variables | Yes | |
F-value | 44.25 | |
R2 | 0.491 | |
N | 1,632,705 |
Clogit + IV | ||
---|---|---|
Raw Coefficient | % Change in Odds | |
PM2.5 | −0.279 *** (0.029) | −24.3 |
Residual from step 1 | 0.211 *** (0.039) | 23.5 |
Temperature | 0.063 *** (0.009) | 6.5 |
Precipitation | 0.067 *** (0.008) | 6.9 |
Average wage | 0.168 *** (0.013) | 18.3 |
Industrial structure | 0.071 *** (0.005) | 7.3 |
Educational level | 0.039 *** (0.011) | 4.0 |
Medical level | 0.253 *** (0.021) | 28.9 |
Population size | 0.547 *** (0.049) | 72.8 |
Provincial capital | 0.251 *** (0.061) | 28.5 |
Chi2 | 7478.76 | |
R2 | 0.172 | |
Clogit | ||
PM2.5 | −0.142 *** (0.017) | −13.2 |
Control variables | Yes | |
Chi2 | 7234.67 | |
R2 | 0.171 | |
N | 813,360 |
(1) Clogit | (2) Clogit + IV | |||
---|---|---|---|---|
Raw Coefficient | % Change in Odds | Raw Coefficient | % Change in Odds | |
PM2.5 | −0.151 *** (0.020) | −14.1 | −0.401 *** (0.045) | −33.0 |
Whether in the same province or not | 1.143 *** (0.041) | 213.6 | 1.232 *** (0.048) | 242.8 |
Residual from step 1 | 0.301 *** (0.043) | 35.1 | ||
Control variables | Yes | Yes | ||
Chi2 | 6798.64 | 7212.33 | ||
R2 | 0.271 | 0.283 | ||
N | 606,891 | 606,891 |
Age | Gender | Marital Status | |||||
---|---|---|---|---|---|---|---|
15–29 | 30–44 | 45–64 | Male | Female | Married | Unmarried | |
Clogit + IV | |||||||
PM2.5 | −0.246 *** (0.041) | −0.259 *** (0.027) | −0.201 *** (0.034) | −0.245 *** (0.027) | −0.188 *** (0.021) | −0.221 *** (0.023) | −0.127 * (0.062) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Chi2 | 3479.42 | 4085.22 | 2352.78 | 5161.62 | 4597.24 | 4689.20 | 1263.42 |
R2 | 0.161 | 0.128 | 0.077 | 0.125 | 0.106 | 0.104 | 0.168 |
Clogit | |||||||
PM2.5 | −0.092 *** (0.021) | −0.138 *** (0.016) | −0.066 *** (0.016) | −0.120 *** (0.014) | −0.076 *** (0.013) | −0.127 *** (0.014) | −0.115 *** (0.033) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Chi2 | 3398.08 | 3811.42 | 2128.63 | 4871.08 | 4292.64 | 4433.46 | 1248.21 |
R2 | 0.158 | 0.125 | 0.076 | 0.124 | 0.103 | 0.102 | 0.164 |
N | 432,006 | 642,669 | 558,030 | 804,738 | 827,967 | 1,374,249 | 258,456 |
Education Level | Household Origin | Family Level | ||||
---|---|---|---|---|---|---|
High School and Below | Junior College and Above | Same Province | Different Provinces | ≥5 | <5 | |
Clogit + IV | ||||||
PM2.5 | −0.184 *** (0.039) | −0.244 *** (0.021) | −0.146 *** (0.031) | −0.328 *** (0.041) | −0.234 *** (0.021) | −0.185 *** (0.033) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Chi2 | 7212.63 | 2449.54 | 2821.54 | 2638.30 | 3347.78 | 6321.56 |
R2 | 0.109 | 0.152 | 0.073 | 0.312 | 0.128 | 0.108 |
Clogit | ||||||
PM2.5 | −0.089 *** (0.009) | −0.118 *** (0.019) | −0.166 *** (0.014) | −0.211 *** (0.032) | −0.095 *** (0.012) | −0.097 *** (0.014) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Chi2 | 7104.09 | 2343.55 | 2627.53 | 2628.10 | 3176.38 | 5968.22 |
R2 | 0.106 | 0.151 | 0.073 | 0.308 | 0.129 | 0.107 |
N | 1,282,935 | 349,770 | 801,000 | 64,320 | 539,874 | 1,092,831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, F.; Wang, Q.; Zou, J.; Yan, H.; Wang, B. Air Pollution and Migration Decision of Migrants in Low-Carbon Society. Int. J. Environ. Res. Public Health 2023, 20, 870. https://doi.org/10.3390/ijerph20010870
Shen F, Wang Q, Zou J, Yan H, Wang B. Air Pollution and Migration Decision of Migrants in Low-Carbon Society. International Journal of Environmental Research and Public Health. 2023; 20(1):870. https://doi.org/10.3390/ijerph20010870
Chicago/Turabian StyleShen, Feiwei, Qiang Wang, Jing Zou, Huili Yan, and Baitao Wang. 2023. "Air Pollution and Migration Decision of Migrants in Low-Carbon Society" International Journal of Environmental Research and Public Health 20, no. 1: 870. https://doi.org/10.3390/ijerph20010870
APA StyleShen, F., Wang, Q., Zou, J., Yan, H., & Wang, B. (2023). Air Pollution and Migration Decision of Migrants in Low-Carbon Society. International Journal of Environmental Research and Public Health, 20(1), 870. https://doi.org/10.3390/ijerph20010870