The Effect of Commuting Time on Quality of Life: Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Data and Empirical Results
3.1. Descriptive Statistics
3.2. Transportation Methods and Commuting
3.3. Commuting Time and Happiness in Life
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Schwanen, T.; Dijst, M. Travel-time ratios for visits to the workplace: The relationship between commuting time and work duration. Transp. Res. Part A-Policy Pract. 2002, 36, 573–592. [Google Scholar] [CrossRef]
- Van Ommeren, J.; Rietveld, P. The commuting time paradox. J. Urban Econ. 2005, 58, 437–454. [Google Scholar] [CrossRef]
- Kim, C. Commuting time stability: A test of a co-location hypothesis. Transp. Res. Part A Policy Pract. 2008, 42, 524–544. [Google Scholar] [CrossRef]
- Turner, T.; Niemeier, D. Travel to work and household responsibility: New evidence. Transportation 1997, 24, 397–419. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use: Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Muth, R.F. Cities and Housing: The Spatial Pattern of Urban Residential Land Use, Third Series: Studies in Business and Society; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Mills, E.S. An Aggregative Model of Resource Allocation in a Metropolitan Area. Am. Econ. Rev. 1967, 57, 197–210. [Google Scholar]
- Stutzer, A.; Frey, B.S. Stress that doesn’t pay: The commuting paradox. Scand. J. Econ. 2008, 110, 339–366. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.; Chatterjee, K.; Martin, A.; Davis, A. How commuting affects subjective wellbeing. Transportation 2020, 47, 2777–2805. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.; Song, R.; He, S. The aggravation of urban air quality deterioration due to urbanization, transportation and economic development—Panel models with marginal effect analyses across China Author links open overlay panel. Sci. Total Environ. 2019, 651, 1114–1125. [Google Scholar] [CrossRef]
- Huang, J.; Levinson, D.; Wang, J.; Zhou, J.; Wang, Z.J. Tracking job and housing dynamics with smartcard data. Proc. Natl. Acad. Sci. USA 2018, 115, 12710–12715. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Nadal, J.I.; Molina, J.A. Daily feelings of US workers and commuting time. J. Transp. Health 2019, 12, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Christian, T.J. Trade-offs between commuting time and health-related activities. J Urban Health 2012, 89, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Kunn-Nelen, A. Does commuting affect health? Health Econ. 2016, 25, 984–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimenez-Nadal, J.I.; Molina, J.A.; Velilla, J. Commuting time and sickness absence of US workers. Empirica 2022, 49, 691–719. [Google Scholar] [CrossRef]
- Monte, F.; Redding, S.J.; Rossi-Hansberg, E. Commuting, migration, and local employment elasticities. Am. Econ. Rev. 2018, 108, 3855–3890. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yeh, A.G.O.; Yue, Y. Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data. J. Transp. Geogr. 2018, 68, 102–108. [Google Scholar] [CrossRef]
- McQuaid, R.W.; Chen, T. Commuting times—The role of gender, children and part-time work. Res. Transp. Econ. 2012, 34, 66–73. [Google Scholar] [CrossRef]
- Hu, Y.; Anae, S.; Dick, F.E. How does commuting influence time use and domain and life satisfaction? Evidence from dual-earner couples with school-age children in a small Chinese city. Cities 2022, 131, 104046. [Google Scholar] [CrossRef]
- Black, D.A.; Kolesnikova, N.; Taylor, L.J. Why do so few women work in New York (and so many in Minneapolis)? Labor supply of married women across US cities. J. Urban Econ. 2014, 79, 59–71. [Google Scholar] [CrossRef]
- Stanley, J.K.; Hensher, D.A.; Stanley, J.R.; Vella-Brodrick, D. Mobility, social exclusion and well-being: Exploring the links. Transp. Res. Part A Policy Pract. 2011, 45, 789–801. [Google Scholar] [CrossRef]
- Phan, M.T.; Wang, R.C. Urban bicycling and its contribution to transportation sustainability: Comparison between European and Chinese cities. Appl. Mech. Mater. 2014, 505–506, 863–866. [Google Scholar] [CrossRef]
- Carse, A. Assessment of transport quality of life as an alternative transport appraisal technique. J. Transp. Geogr. 2011, 19, 1037–1045. [Google Scholar] [CrossRef]
- Putra, K.E.; Sitanggang, J.M. The effect of public transport services on quality of life in Medan City. Procedia Soc. Behav. Sci. 2016, 234, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Musselwhite, C.; Holland, C.; Walker, I. The role of transport and mobility in the health of older people. J. Transp. Health 2015, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Hong, J. Does public transit improvement affect commuting behavior in Beijing, China? A spatial multilevel approach. Transp. Res. Part D Transp. Environ. 2017, 52, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Cao, X.; Yin, J.; Cao, X. Can metro transit reduce driving? Evidence from Xi’an, China. Transp. Policy 2019, 81, 350–359. [Google Scholar] [CrossRef]
- Rockwood, D.; Garmire, D. A new transportation system for efficient and sustainable cities: Development of a next generation variable speed moving walkway. Sustain. Cities Soc. 2015, 14, 209–214. [Google Scholar] [CrossRef]
- Hong, Z.; Chen, Y.; Mahmassani, H.S.; Xu, S. Commuter ride-sharing using topology-based vehicle trajectory clustering: Methodology, application and impact evaluation. Transp. Res. Part C Emerg. Technol. 2017, 85, 573–590. [Google Scholar] [CrossRef]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2013, 79, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Stiglic, M.; Agatz, N.; Savelsbergh, M.; Gradisar, M. The benefits of meeting points in ride-sharing systems. Transp. Res. Part B Methodol. 2015, 82, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Basagana, X.; Triguero-Mas, M.; Agis, D.; Perez, N.; Reche, C.; Alastuey, A.; Querol, X. Effect of public transport strikes on air pollution levels in Barcelona (Spain). Sci. Total Environ. 2018, 610–611, 1076–1082. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, B.; Linden, G.J.J. the effects of transport accessibility and jobs–housing balance on commuting time: Evidence from Beijing. Int. Plan. Stud. 2009, 14, 65–83. [Google Scholar] [CrossRef]
- Zhao, P.; Lü, B.; De Roo, G. Impact of the jobs-housing balance on urban commuting in Beijing in the transformation era. J. Transp. Geogr. 2011, 19, 59–69. [Google Scholar] [CrossRef]
- Yin, C.; Wang, X.; Shao, C.; Ma, J. Exploring the Relationship between Built Environment and Commuting Mode Choice: Longitudinal Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 14149. [Google Scholar] [CrossRef] [PubMed]
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Life Happy | Life Happy | Economic Happy | Economic Happy | |
Commuting | −0.00123 ** | −0.00128 ** | −0.00148 *** | −0.00165 *** |
(0.000577) | (0.000614) | (0.000566) | (0.000602) | |
Age | 0.00122 | 0.000329 | 0.000316 | −0.000369 |
(0.00245) | (0.00262) | (0.00240) | (0.00257) | |
Marriage | 0.277 *** | 0.241 *** | 0.0596 | 0.0395 |
(0.0587) | (0.0631) | (0.0577) | (0.0620) | |
Man | −0.135 *** | −0.137 *** | −0.0968 ** | −0.0999 ** |
(0.0446) | (0.0480) | (0.0437) | (0.0470) | |
Ln (income) | 0.112 *** | 0.139 *** | 0.191 *** | 0.219 *** |
(0.0281) | (0.0320) | (0.0278) | (0.0316) | |
Education | 0.0303 *** | 0.0262 ** | 0.0494 *** | 0.0498 *** |
(0.00976) | (0.0105) | (0.00959) | (0.0104) | |
Ln (per GDP) | 0.0342 | 0.145 ** | ||
(0.0704) | (0.0692) | |||
Ln (house price) | −0.214 *** | −0.276 *** | ||
(0.0712) | (0.0700) | |||
Ln (population) | 0.142 *** | 0.0617 * | ||
(0.0378) | (0.0370) | |||
Industry dummy Work location | Yes Yes | Yes Yes | Yes Yes | Yes Yes |
Observations | 2735 | 2395 | 2735 | 2395 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Personal level | |||||
Commuting | 2817 | 41.867 | 40.310 | 1 | 360 |
Age | 2817 | 39.924 | 10.360 | 17 | 64 |
Marriage | 2817 | 0.800 | 0.400 | 0 | 1 |
Man | 2817 | 0.539 | 0.498 | 0 | 1 |
Ln (income) | 2817 | 10.466 | 0.825 | 1.609 | 14.509 |
Education | 2816 | 5.654 | 2.680 | 1 | 11 |
Life happy | 2815 | 3.785 | 0.878 | 1 | 5 |
Economic happy | 2815 | 3.314 | 1.005 | 1 | 5 |
Health | 2812 | 2.09h4 | 0.805 | 1 | 5 |
Tired | 2812 | 1.713 | 0.955 | 1 | 5 |
Focus | 2812 | 1.516 | 0.746 | 1 | 4 |
City level | |||||
Ln (road) | 2817 | 3.654 | 1.020 | 1.176 | 5.658 |
Ln (car) | 2476 | 6.855 | 0.985 | 4.801 | 8.390 |
Ln (taxi) | 2817 | 2.044 | 1.019 | 0.315 | 4.238 |
Bus coverage | 2817 | 0.732 | 0.128 | 0.33 | 1 |
Subway length | 2817 | 2.428 | 2.475 | 0 | 6.451 |
Ln (per GDP) | 2817 | 11.155 | 0.542 | 9.840 | 11.999 |
Ln (house price) | 2470 | 8.953 | 0.587 | 7.898 | 10.432 |
Ln (population) | 2817 | 15.612 | 0.712 | 13.997 | 17.177 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Health | Health | Tired | Tired | Focus | Focus | |
Commuting | 0.00179 *** | 0.00153 ** | 0.00157 ** | 0.00192 *** | 0.00117 * | 0.00131 ** |
(0.000584) | (0.000621) | (0.000611) | (0.000648) | (0.000624) | (0.000664) | |
Age | 0.0228 *** | 0.0244 *** | 0.0138 *** | 0.0149 *** | −0.00126 | −0.000822 |
(0.00250) | (0.00268) | (0.00267) | (0.00284) | (0.00273) | (0.00291) | |
Marriage | 0.0121 | −0.00119 | −0.0652 | −0.101 | −0.0506 | −0.0586 |
(0.0600) | (0.0644) | (0.0642) | (0.0687) | (0.0653) | (0.0701) | |
Man | −0.0707 | −0.0623 | −0.122 ** | −0.155 *** | −0.0697 | −0.0761 |
(0.0451) | (0.0485) | (0.0482) | (0.0518) | (0.0491) | (0.0528) | |
Ln (income) | −0.0936 *** | −0.101 *** | −0.0370 | −0.0147 | 0.0271 | 0.0361 |
(0.0286) | (0.0325) | (0.0304) | (0.0348) | (0.0311) | (0.0356) | |
Education | 0.00639 | 0.00380 | 0.00895 | 0.00914 | −0.0137 | −0.0148 |
(0.00989) | (0.0107) | (0.0106) | (0.0114) | (0.0108) | (0.0117) | |
Ln (per GDP) | −0.0786 | −0.216 *** | −0.218 *** | |||
(0.0712) | (0.0758) | (0.0773) | ||||
Ln (house price) | 0.320 *** | 0.287 *** | 0.290 *** | |||
(0.0722) | (0.0773) | (0.0781) | ||||
Ln (population) | −0.184 *** | −0.141 *** | −0.117 *** | |||
(0.0383) | (0.0409) | (0.0417) | ||||
Industry dummy | Yes | Yes | Yes | Yes | Yes | Yes |
Work location | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 2732 | 2392 | 2732 | 2392 | 2732 | 2392 |
(1) | (2) | (3) | |
---|---|---|---|
Commuting | Commuting | Commuting | |
Age | 0.00795 *** | 0.00778 *** | 0.00666 ** |
(0.00230) | (0.00246) | (0.00261) | |
Marriage | −0.128 ** | −0.0706 | −0.0590 |
(0.0553) | (0.0595) | (0.0628) | |
Man | −0.129 *** | −0.0925 ** | −0.114 ** |
(0.0419) | (0.0451) | (0.0475) | |
Ln (income) | 0.0217 | −0.0589 * | −0.0422 |
(0.0265) | (0.0300) | (0.0316) | |
Education | 0.0567 *** | 0.0570 *** | 0.0563 *** |
(0.00918) | (0.00989) | (0.0106) | |
Ln (per GDP) | 0.169 ** | 0.391 *** | |
(0.0663) | (0.106) | ||
Ln (house price) | 0.00756 | −0.139 * | |
(0.0670) | (0.0795) | ||
Ln (population) | 0.106 *** | 0.140 | |
(0.0356) | (0.0930) | ||
Ln (road) | −0.0483 | ||
(0.0532) | |||
Ln (car) | −0.119 | ||
(0.0962) | |||
Ln (taxi) | 0.295 *** | ||
(0.0582) | |||
Bus coverage | −0.566 * | ||
(0.326) | |||
Subway length | −0.0377 * | ||
(0.0220) | |||
Industry dummy | Yes | Yes | Yes |
Work location | Yes | Yes | Yes |
Observations | 2737 | 2397 | 2168 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Commuting | Life Happy | Life Happy | Economic Happy | Economic Happy | |
Congestion index | 27.13 *** | −0.378 | −0.497 * | −0.937 *** | −1.011 *** |
(8.156) | (0.234) | (0.287) | (0.230) | (0.281) | |
Age | 0.350 *** | 0.00498 * | 0.00213 | 0.00250 | 0.000582 |
(0.0968) | (0.00277) | (0.00295) | (0.00272) | (0.00290) | |
Marriage | −6.573 *** | 0.254 *** | 0.240 *** | 0.0482 | 0.0301 |
(2.291) | (0.0653) | (0.0701) | (0.0643) | (0.0690) | |
Man | −2.548 | −0.121 ** | −0.129 ** | −0.0711 | −0.0991 * |
(1.743) | (0.0499) | (0.0531) | (0.0489) | (0.0521) | |
Ln (income) | 0.598 | 0.0756 ** | 0.109 *** | 0.179 *** | 0.213 *** |
(1.130) | (0.0323) | (0.0355) | (0.0319) | (0.0351) | |
Education | 1.702 *** | 0.0346 *** | 0.0285 ** | 0.0554 *** | 0.0512 *** |
(0.384) | (0.0110) | (0.0117) | (0.0108) | (0.0115) | |
Ln (per GDP) | −0.171 * | 0.0229 | |||
(0.0942) | (0.0924) | ||||
Ln (house price) | −0.111 | −0.237 *** | |||
(0.0818) | (0.0805) | ||||
Ln (population) | 0.179 *** | 0.178 *** | |||
(0.0476) | (0.0469) | ||||
Constant | −39.19 ** | ||||
(17.99) | |||||
Industry dummy | Yes | Yes | Yes | Yes | Yes |
Work location | Yes | Yes | Yes | Yes | Yes |
Observations | 2152 | 2150 | 1916 | 2150 | 1916 |
R-squared | 0.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Peng, C.; Xu, Z. The Effect of Commuting Time on Quality of Life: Evidence from China. Int. J. Environ. Res. Public Health 2023, 20, 573. https://doi.org/10.3390/ijerph20010573
Han L, Peng C, Xu Z. The Effect of Commuting Time on Quality of Life: Evidence from China. International Journal of Environmental Research and Public Health. 2023; 20(1):573. https://doi.org/10.3390/ijerph20010573
Chicago/Turabian StyleHan, Libin, Chong Peng, and Zhenyu Xu. 2023. "The Effect of Commuting Time on Quality of Life: Evidence from China" International Journal of Environmental Research and Public Health 20, no. 1: 573. https://doi.org/10.3390/ijerph20010573