Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification—The Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Hoeper, M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Aman, J.; Harbaum, L.; Ulrich, A.; Wharton, J.; Rhodes, C. Recent advances in pulmonary arterial hypertension. F1000Research 2018, 7, 1128. [Google Scholar] [CrossRef] [PubMed]
- Ghataorhe, P.; Rhodes, C.J.; Harbaum, L.; Attard, M.; Wharton, J.; Wilkins, M.R. Pulmonary arterial hypertension—Progress in understanding the disease and prioritizing strategies for drug development. J. Intern. Med. 2017, 282, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Wakasugi, T.; Shimizu, I.; Yoshida, Y.; Hayashi, Y.; Ikegami, R.; Suda, M.; Katsuumi, G.; Nakao, M.; Hoyano, M.; Kashimura, T.; et al. Role of smooth muscle cell op53 in pulmonary arterial hypertension. PLoS ONE 2019, 14, e0212889. [Google Scholar] [CrossRef]
- Kojima, H.; Tokunou, T.; Takahara, Y.; Sunagawa, K.; Hirooka, Y.; Ichiki, T.; Tsutsui, H. Hypoxia-inducible factor-1 α deletion in myeloid lineage attenuates hypoxia-induced pulmonary hypertension. Physiol. Rep. 2019, 7, e14025. [Google Scholar] [CrossRef]
- Shah, S.S.; Kraus, W.E.; Newgard, C.B. Metabolomic profiling for identification of novel biomarkers and mechanism related to common cardiovascular diseases: Form and function. Circulation 2012, 126, 1110–1120. [Google Scholar] [CrossRef]
- Lewis, G.D. The emerging role of metabolomics in the development of biomarkers for pulmonary hypertension and other car-diovascular diseases. Pulm. Circ. 2014, 4, 417–423. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Chu, L.; Lin, K.; Granton, E.; Yin, L.; Peng, J.; de Perrot, M. A biochemical approach to understand the pathogenesis of advanced pulmonary arterial hypertension: Metabolomic profiles of arginine, shingosine-1-phosphate, and heme of human lung. PLoS ONE 2015, 10, e0134958. [Google Scholar] [CrossRef]
- Sutendra, G.; Michelakis, E.D. The Metabolic Basis of Pulmonary Arterial Hypertension. Cell Metab. 2014, 19, 558–573. [Google Scholar] [CrossRef]
- Cottrill, K.A.; Chan, S.Y. Metabolic dysfunction in pulmonary hypertension: The expanding relevance of the Warburg effect. Eur. J. Clin. Investig. 2013, 43, 855–865. [Google Scholar] [CrossRef]
- Rattray, N.J.; Hamrang, Z.; Trivedi, D.K.; Goodacre, R.; Fowler, S.J. Taking your breath away: Metabolomics breathes life in to personalized medicine. Trends Biotechnol. 2014, 32, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Swinarew, A.; Kusz, B.; Paluch, J.; Mizia-Stec, K. Fast breath analysis by the use of GC/MS and UHPLC supported with novel porous polymeric materials for diagnostics of pulmonary arterial hypertension. Eur. Heart J. 2017, 38 (Suppl. S1), 553. [Google Scholar] [CrossRef]
- Swinarew, A.; Kusz, B.; Mizia-Stec, K. Fast screening breath analysis for diagnostics of pulmonary hypertension. Eur. Heart J. 2018, 39 (Suppl. S1), 630–631. [Google Scholar] [CrossRef]
- Kopeć, G.; Kurzyna, M.; Mroczek, E.; Chrzanowski, Ł.; Mularek-Kubzdela, T.; Skoczylas, I.; Kuśmierczyk, B.; Pruszczyk, P.; Błaszczak, P.; Lewicka, E. Database of Pulmonary Hypertension in the Polish Population (BNP-PL): Design of the registry. Kardiol. Pol. 2019, 77, 972–974. [Google Scholar] [CrossRef]
- Kopeć, G.; Kurzyna, M.; Mroczek, E.; Chrzanowski, Ł.; Mularek-Kubzdela, T.; Skoczylas, I.; Kuśmierczyk, B.; Pruszczyk, P.; Błaszczak, P.; Lewicka, E. Characterization of Patients with Pulmonary Arterial Hypertension: Data from the Polish Registry of Pulmonary Hypertension (BNP-PL). J. Clin. Med. 2020, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J. Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer. J. Thorac. Oncol. 2008, 3, 774–780. [Google Scholar] [CrossRef]
- Vetrivel, S.; Rizwan, B.; Shrinivas, D. Spectral Cluster Analysis for Efficient Mining of Overlapped Multi-Dimensional Data. Comput. Sci. 2017, 44677448. [Google Scholar]
- Sukul, P.; Schubert, J.K.; Zanaty, K.; Trefz, P.; Sinha, A.; Kamysek, S.; Miekisch, W. Exhaled breath compositions under varying respiratory rhythms reflects ventilatory variations: Translating breathomics towards respiratory medicine. Sci. Rep. 2020, 10, 14109. [Google Scholar] [CrossRef]
- Gatzoulis, M.A.; Beghetti, M.; Landzberg, M.J.; Galie, N. Pulmonary arterial hypertension associated with congenital heart disease: Recent advances and future directions. Int. J. Cardiol. 2014, 177, 340–347. [Google Scholar] [CrossRef]
- Mura, M.; Anraku, M.; Yun, Z.; McRae, K.; Liu, M.; Waddell, T.K.; Singer, L.G.; Granton, J.T.; Keshavjee, S.; de Perrot, M. Gene Expression Profiling in the Lungs of Patients with Pulmonary Hypertension Associated with Pulmonary Fibrosis. Chest 2012, 141, 661–673. [Google Scholar] [CrossRef]
- Bikov, A.; Hernadi, M.; Korosi, B.Z.; Kunos, L.; Zsamboki, G.; Sutto, Z.; Tarnoki, A.D.; Tarnoki, D.L.; Losonczy, G.; Horvath, I. Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer. BMC Pulm. Med. 2014, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Dweik, R.A. The great challenge for exhaled breath analysis: Embracing complexity, delivering simplicity. J. Breath Res. 2011, 5, 030201. [Google Scholar] [CrossRef] [PubMed]
- Lärstad, M.A.E.; Torén, K.; Bake, B.; Olin, A.C. Determination of ethane, pentane and isoprene in exhaled air—Effects of breath-holding, flow rate and purified air. Acta Physiol. 2007, 189, 87–98. [Google Scholar] [CrossRef] [PubMed]
Cluster 1 |
Methanone |
Thymol blue |
Peracetyl-[1R-(1.alpha.,4a.beta.,10a.alpha.)]-1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1’-methylethyl)-1-phenanthrenem |
(E)-4,5-diphenyl-2-methyl-3-pentenoic |
2,3,5-Trichloro-4,6-di(p-tolyl)thiopyridine |
1,2,3,4-Tetrahydroisoquinoline-N-phosphorodiamide, N,N,N’,N’-tetramethyl, 1-(2,2-dimethyl-1-hydroxypropyl)- |
Diethyl Phthalate |
1-Undecene, 4-methyl- |
1-Bromo-4-bromomethyldecane |
Sulfurous acid, dodecyl 2-propyl ester |
1,2-Benzenedicarboxylic acid, dibutyl ester |
Hexahydropyridine, 1-methyl-4-[4,5-dihydroxyphenyl]- |
ilane, trimethyl[5-methyl-2-(1-methylethyl)phenoxy]- |
4-Acetamido-N-tert-butyl-3-nitrobenzamide |
3,9-Epoxypregn-16-ene-14,20-diol, 7,11,18-triacetoxy-3-methoxy- |
dimethyl cis-8,8-dimethyl-5-oxobicyclo[5.1.0]oct-3-ene-1,7-dicarboxylate |
Tris(2-pyridinecarboxylato-N(1),o(2))chromium(iii) |
Olean-12-en-28-oic acid, 3.beta.-hydroxy-21-oxo-, methyl ester |
3-Hydroxy-dl-kynurenine |
tannane, trimethyl(p-neopentylphenyl)- |
6-Nitro-1H-quinazoline-2,4-dione |
Cluster 2 |
TRISTRIMETHYLSILYL ETHER DERIVATIVE OF 1,25-DIHYDROXYVITAMIN D2 |
3,5,6-TRIMETHOXY-2-METHYLCHROMONE |
3-(2-Hydroxy-6-methylphenyl)-4(3H)-quinazolinone |
6-Dimethyl(chloromethyl)silyloxytridecane |
1-Benzenesulfonyl-1H-pyrrole |
Cyclotrisiloxane, hexamethyl- |
Arabinitol, pentaacetate |
1,1,1,3,5,7,9,9,9-Nonamethylpentasiloxane |
Cyclopentasiloxane, decamethyl- |
9,10 DIDEUTERO OCTADECANAL |
3-Butoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane |
1-Tetradecanol |
QUERCETIN 7,3’,4’-TRIMETHOXY |
Phthalic acid, bis(7-methyloctyl) ester |
Cyclopropanetetradecanoic acid, 2-octyl-, methyl ester |
ISOCHIAPIN B |
Acetic acid, 17-(4-hydroxy-5-methoxy-1,5-dimethylhexyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradec |
Dotriacontane |
Tetrapentacontane, 1,54-dibromo- |
Phthalic acid, butyl undecyl ester |
cis-1-Chloro-9-octadecene |
Silicone oil |
03027205002 FLAVONE 4’-OH,5-OH,7-DI-O-GLUCOSIDE |
Dibutyl phthalate |
2,4,6(1H,3H,5H)-Pyrimidinetrione, 5-(1-cyclohexen-1-yl)-5-ethyl- |
9,9-Dimethoxybicyclo[3.3.1]nona-2,4-dione |
Heptasiloxane, hexadecamethyl |
Octadecanal, 2-bromo- |
1,2-Bis(trimethylsilyl)benzene |
1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester |
Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- |
Cyclobuta[1,2:3,4]dicyclooctene, hexadecahydro-, (6a.alpha.,6b.alpha.,12a.alpha.,12b.alpha.)- |
Cluster 3 |
1H,1H,2H,2H-Perfluorooctyl iodide |
Benzenesulfonic acid, N’-[2-(hydroxyimino)-1-methylpropylidene]hydrazide |
Me-t-BDMS of LTB4 |
Quinovic Acid |
1,2-Thiagermolane, 2,2-dibutyl- |
2-Chloro-3-(4-chloro-2-phenyloxazol-5-yl)-indol-1-carboxylic acid, 2,2,2-trichloroethyl ester |
2-Dodecyl-3-methoxy-5-(2-methylpropyl) phenylester of 17-(4-Methoxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaenoic acid |
1’H-Cholest-2-eno[3,2-b]indol-6-one, 1’-(phenylmethyl)-, oxime, (5.alpha.)- |
Rhodium, bis(trimethylphosphine)-chloro-.eta.2-1,2-(2,4-di-t-butyl-1,3-diphosphacyclobutadiene)- |
butyl decanoate |
1,3,4-Tribromo-2,5-dichlorobenzene |
3-Methyl-2-(phenylselenyl)butyric acid, ethyl ester |
Pentanoic acid, 4-nitro-, methyl ester |
T-2 TOXIN TRIMETHYLSILYL ETHER |
Podocarpan-14.beta.-ol |
Benzene, 4,6-difluoro-1,2,3,5-tetrakis(phenylthio)- |
Cluster 4 |
1,4-Diethylpiperazine |
Chloroform |
11-Methoxymacusine a |
Acenaphthylene |
Octasiloxane |
methyl [G-(14)-C] palmitate |
Butanoic acid, trimethylsilyl ester |
Phthalic acid, di-(1-hexen-5-yl) ester |
PROPYL 2-PHENYLSULPHONYLAMIDOACETATE |
2-Acetylphenoxathin thiosemicarbazone |
N-(Benzoylcarbonyl)-6-cyano-6-undecyl-2-methylpiperidine |
Clomipramine |
Phosphoric acid, 2,3-bis(trimethylsiloxy)propyl dimethyl ester |
Stannane, tetrapropyl- |
1,4-Naphthalenedione, 2,3-dichloro- |
Acetamide, 2,2-dichloro-N-(2-chloro-3-pyridyl)- |
6-Norlysergic acid diethylamide |
5,5-Dimethyl-4-methylene-3-[2-(2-methyl-7-trifluoromethyl-1H-indol-3-yl)-ethyl]-oxazolidin-2-one |
(2,4-DICHLORO-6-NITROPHENOXY)ACETIC ACID |
1-Methyl-1-(3-methylbutyl)oxy-1-silacyclopentane |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | |
---|---|---|---|---|
Number | 10 | 8 | 11 | 8 |
Female | 7 | 8 | 7 | 7 |
Age, years | 54.3 ± 12.7 | 54.8 ± 13.2 | 46.5 ± 13.9 | 59.9 ± 16.6 |
PAH-type ● iPAH ● CTD-PAH ● CHD-PAH/ES | 6 0 4/3 | 6 1 1/1 | 6 1 4/1 | 5 0 3/0 |
WHO functional class: 1/2/3/4 | 1/5/4/0 | 0/4/3/1 | 1/5/4/1 | 0/5/2/1 |
NT-proBNP (pg/ml) | 1289.1 ± 850 Range: 116–5965 Median: 501 | 1079.6 ± 901 Range: 95–2369 Median: 2118 | 2226.7 ± 4266 Range: 62–14,585 Median: 468 | 2061.1 ± 2281 Range: 44–5450 Median:1393 |
6MWT (m) | 360.2 ± 77.1 | 338.3 ± 151 | 460 ± 137 (n = 10) | 345.9 ± 134 |
Comorbidities and risk factors: ● Hypertension ● Diabetes Mellitus ● Current smoker ● Previous smoker COPD/IL | 5 2 2 3 1/0 | 3 2 0 0 0/0 | 3 1 0 2 0/0 | 5 3 0 3 1/1 |
Hemodynamics: ● RAP (mmHg) ● mPAP (mmHg) ● CO (L/min) ● PVR (WU.) | 5.0 ± 0.7 49.7 ± 15.6 4.67 ± 1.7 9.81 ± 6.9 | 11.8 ± 6.8 54.5 ± 14.5 4.89 ± 2.1 8.68 ± 4.6 | 5.9 ± 3.6 44.8 ± 11.7 4.72 ± 1.7 7.91 ± 5.0 | 5.6 ± 4.2 45.8 ± 10.1 5.30 ± 1.7 7.39 ± 3.8 |
PAH therapy ● PDE5i ● ERA ● Prostacyclin class agents | 10 6 4 (ILO-3, TREP-1) | 7 7 3 (ILO-1, EPO-2) | 11 6 7 (TREP-5, EPO-2) | 6 5 3 (TREP-2, EPO-1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swinarew, A.S.; Gabor, J.; Kusz, B.; Skoczyński, S.; Raif, P.; Skoczylas, I.; Jonas, K.; Grabka, M.; Mizia-Szubryt, M.; Bula, K.; et al. Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification—The Preliminary Study. Int. J. Environ. Res. Public Health 2023, 20, 503. https://doi.org/10.3390/ijerph20010503
Swinarew AS, Gabor J, Kusz B, Skoczyński S, Raif P, Skoczylas I, Jonas K, Grabka M, Mizia-Szubryt M, Bula K, et al. Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification—The Preliminary Study. International Journal of Environmental Research and Public Health. 2023; 20(1):503. https://doi.org/10.3390/ijerph20010503
Chicago/Turabian StyleSwinarew, Andrzej S., Jadwiga Gabor, Błażej Kusz, Szymon Skoczyński, Paweł Raif, Ilona Skoczylas, Kamil Jonas, Marek Grabka, Magdalena Mizia-Szubryt, Karolina Bula, and et al. 2023. "Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification—The Preliminary Study" International Journal of Environmental Research and Public Health 20, no. 1: 503. https://doi.org/10.3390/ijerph20010503
APA StyleSwinarew, A. S., Gabor, J., Kusz, B., Skoczyński, S., Raif, P., Skoczylas, I., Jonas, K., Grabka, M., Mizia-Szubryt, M., Bula, K., Stanula, A., Mika, B., Tkacz, E., Paluch, J., Gąsior, M., Kopeć, G., & Mizia-Stec, K. (2023). Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification—The Preliminary Study. International Journal of Environmental Research and Public Health, 20(1), 503. https://doi.org/10.3390/ijerph20010503