The Benefits of Utilizing Total Body Composition as a Predictor of Cardiorespiratory Fitness Based on Age: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Procedure
2.3. Total Body Composition Assessment
2.4. Baseline Assessment
2.5. Exercise Testing
2.6. Statistical Analyses
3. Results
3.1. Participants
3.2. Correlations between VO2max and Total Body Composition Variables
3.3. Multiple Linear Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santtila, M.; Häkkinen, K.; Pihlainen, K.; Kyröläinen, H. Comparison Between Direct and Predicted Maximal Oxygen Uptake Measurement During Cycling. Mil. Med. 2013, 178, 234–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. J. Sports Med. 2016, 2016, e3968393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, D.J. V’o2max: The Gold Standard? Chest 1995, 108, 602–603. [Google Scholar] [CrossRef] [PubMed]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Myers, J. Exercise and Cardiovascular Health. Circulation 2003, 107, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. Defining and Setting National Goals for Cardiovascular Health Promotion and Disease Reduction: The American Heart Association’s Strategic Impact Goal Through 2020 and Beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P.T.; Church, T.S.; Phd, I.J.; Phd, R.R.; Blair, S.N. Metabolic syndrome, obesity, and mortality: Impact of cardiorespiratory fitness. Diabetes Care 2005, 28, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; I Leng, X.; Kritchevsky, S.B. Body Composition and Physical Function in Older Adults with Various Comorbidities. Innov. Aging 2017, 1, igx008. [Google Scholar] [CrossRef] [Green Version]
- Wellens, R.I.; Roche, A.F.; Khamis, H.J.; Jackson, A.S.; Pollock, M.L.; Siervogel, R.M. Relationships Between the Body Mass Index and Body Composition. Obes. Res. 1996, 4, 35–44. [Google Scholar] [CrossRef]
- Ranasinghe, C.; Gamage, P.; Katulanda, P.; Andraweera, N.; Thilakarathne, S.; Tharanga, P. Relationship between Body mass index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: A cross sectional study. BMC Public Health 2013, 13, 797. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, G.M.; Forsse, J.S.; Morales, E.; Grandjean, P.W. Dual-energy X-ray absorptiometry visceral adipose tissue estimates: Reproducibility and impact of pre-assessment diet. Eur. J. Clin. Nutr. 2017, 72, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Gligoroska, J.P.; Manchevska, S.; Efremova, L.; Todorovska, L.; Nikolic, S. Body composition and maximal oxygen consumption in adult soccer players in the Republic of Macedonia. J. Health Sci. 2015, 5, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Więcek, M.; Szymura, J.; Szyguła, Z.; Wiecha, S.; Cempla, J. The Influence of Increased Body Fat or Lean Body Mass on Aerobic Performance. PLoS ONE 2014, 9, e95797. [Google Scholar] [CrossRef]
- El Hage, R.; Zakhem, E.; Theunynck, D.; Zunquin, G.; Bedran, F.; Sebaaly, A.; Bachour, F.; Maalouf, G. Maximal oxygen consumption and bone mineral density in a group of young Lebanese adults. J. Clin. Densitom. 2014, 17, 320–324. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, C.; Pinti, A.; Lespessailles, E.; Maalouf, G.; Watelain, E.; El Khoury, G.; Berro, A.J.; Ayoub, M.L.; Toumi, H.; El Hage, R. Physical Performance Variables and Bone Mineral Density in a Group of Young Overweight and Obese Men. J. Clin. Densitom. 2018, 21, 41–47. [Google Scholar] [CrossRef]
- Bates, D.W.; Black, D.M.; Cummings, S.R. Clinical Use of Bone Densitometry: Clinical Applications. JAMA 2002, 288, 1898. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical Activity and Public Health: Updated Recommendation for Adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, Z.; Forsse, J.S.; Peterson, M.N. Acute partial sleep deprivation and high-intensity interval exercise effects on postprandial endothelial function. Eur. J. Appl. Physiol. 2020, 120, 2431–2444. [Google Scholar] [CrossRef]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JafariNasabian, P.; E Inglis, J.; Reilly, W.; Kelly, O.; Ilich, J.Z. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakola, L.; Komulainen, P.; Hassinen, M.; Savonen, K.; Litmanen, H.; Lakka, T.A.; Rauramaa, R. Cardiorespiratory fitness in aging men and women: The DR’s EXTRA study. Scand. J. Med. Sci. Sports 2010, 21, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Jyväkorpi, S.K.; Urtamo, A.; Kivimäki, M.; Salomaa, V.; E Strandberg, T. Association of midlife body composition with old-age health-related quality of life, mortality, and reaching 90 years of age: A 32-year follow-up of a male cohort. Am. J. Clin. Nutr. 2020, 112, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Hwang, A.C.; Lee, W.J.; Peng, L.N.; Liu, L.K.; Lin, M.H.; Loh, C.H.; Chen, L.K. Unfavorable body composition and quality of life among community-dwelling middle-aged and older adults: What really matters? Maturitas 2020, 140, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2020. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.-P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Melton, L.J.; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Epidemiology of sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630. [Google Scholar] [CrossRef]
- Holloszy, J.O. The biology of aging. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2000; Volume 75, pp. S3–S9. [Google Scholar]
- Hutfless, S.; Maruthur, N.M.; Wilson, R.F.; Gudzune, K.A.; Brown, R.; Lau, B.; Fawole, O.A.; Chaudhry, Z.W.; Anderson, C.A.; Segal, J.B. Strategies to Prevent Weight Gain Among Adults. Rockville (MD): Agency for Healthcare Research and Quality (US). 2013. Available online: http://www.ncbi.nlm.nih.gov/books/NBK133218 (accessed on 20 July 2021).
- Fonseca, H.; Gonçalves, D.; Coriolano, H.-J.A.; Duarte, J.A. Bone Quality: The Determinants of Bone Strength and Fragility. Sports Med. 2013, 44, 37–53. [Google Scholar] [CrossRef]
- Watson, S.; Weeks, B.K.; Weis, L.J.; Harding, A.; A Horan, S.; Beck, B.R. High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women with Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial. J. Bone Miner. Res. 2017, 33, 211–220. [Google Scholar] [CrossRef]
- Lohman, T.; Going, S.; Hall, M.; Ritenbaugh, C.; Bare, L.; Hill, A.; Houtkooper, L.; Aickin, M.; Boyden, T.; Pamenter, R. Effects of resistance training on regional and total bone mineral density in premenopausal women: A randomized prospective study. J. Bone Miner. Res. 2009, 10, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Di Brezzo, R.; Fort, I.L. The effects of power and strength training on bone mineral density in premenopausal women. J. Sports Med. Phys. Fit. 2013, 53, 428–436. [Google Scholar]
AG1 (≤35) | AG2 (>35) | p-Value | |
---|---|---|---|
Sample Size (M/F) | 35 (29/6) | 25 (16/9) | --- |
Age | 27.7 (4.2) | 46.9 (7.2) | --- |
Weight (kg) | 78.5 (15.4) | 75.0 (13.1) | 0.353 |
Height (m) | 1.8 (0.1) | 1.7 (0.1) | 0.398 |
BMI (kg/m2) | 25.1 (3.8) | 25.2 (3.7) | 0.975 |
Resting Heart Rate (bpm) | 73.2 (10.2) | 64.8 (9.8) | 0.005 |
VO2max (mL/kg/min) | 45.4 (7.3) | 41.5 (8.0) | 0.053 |
≤35 (n = 35) | >35 (n = 25) | p-Value | |
---|---|---|---|
Weight (kg) | 78.5 (15.4) | 75.0 (13.1) | 0.353 |
FM (kg) | 14.7 (6.4) | 16.2 (5.7) | 0.345 |
BF (%) | 19.2 (5.7) | 21.4 (7.0) | 0.171 |
LBM (kg) | 61.2 (12.2) | 55.8 (10.7) | 0.078 |
BMC (kg) | 2.7 (0.3) | 2.6 (5.4) | 0.416 |
VAT (kg) | 0.3 (0.1) | 0.3 (0.1) | 0.834 |
VO2max (mL/kg/min) | ||||
---|---|---|---|---|
β | SE | t-Value | p | |
%BF | −0.748 | 0.189 | −3.961 | 0.001 |
VAT | 0.014 | 0.012 | 1.196 | 0.246 |
BMC | 0.014 | 0.004 | 3.635 | 0.002 |
LBM | 0.000 | 0.000 | −1.985 | 0.061 |
TBC | 44.72 | 9.020 | 4.958 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heileson, J.L.; Papadakis, Z.; Ismaeel, A.; Richardson, K.A.; Torres, R.; Funderburk, L.; Gallucci, A.; Koutakis, P.; Forsse, J.S. The Benefits of Utilizing Total Body Composition as a Predictor of Cardiorespiratory Fitness Based on Age: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 5758. https://doi.org/10.3390/ijerph19095758
Heileson JL, Papadakis Z, Ismaeel A, Richardson KA, Torres R, Funderburk L, Gallucci A, Koutakis P, Forsse JS. The Benefits of Utilizing Total Body Composition as a Predictor of Cardiorespiratory Fitness Based on Age: A Pilot Study. International Journal of Environmental Research and Public Health. 2022; 19(9):5758. https://doi.org/10.3390/ijerph19095758
Chicago/Turabian StyleHeileson, Jeffery L., Zacharias Papadakis, Ahmed Ismaeel, Kathleen A. Richardson, Ricardo Torres, LesLee Funderburk, Andrew Gallucci, Panagiotis Koutakis, and Jeffrey S. Forsse. 2022. "The Benefits of Utilizing Total Body Composition as a Predictor of Cardiorespiratory Fitness Based on Age: A Pilot Study" International Journal of Environmental Research and Public Health 19, no. 9: 5758. https://doi.org/10.3390/ijerph19095758