Emotional Self-Regulation in Primary Education: A Heart Rate-Variability Biofeedback Intervention Programme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Design
2.3. Instruments and Materials
2.4. Procedure
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Difficulties, Limitations, and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvers, J.S.; Insel, C.; Powers, A.; Franz, P.; Helion, C.; Martin, R.; Weber, J.; Mischel, W.; Casey, B.J.; Ochsner, J.N. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev. Cogn. Neurosci. 2017, 25, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datu, J.A.D.; King, R.B. Subjective well-being is reciprocally associated with academic engagement: A two-wave longitudinal study. J. Sch. Psychol. 2018, 69, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Goldin, P.R.; Moodie, C.A.; Gross, J.J. Acceptance versus reappraisal: Behavioral, autonomic, and neural effects. Cogn. Affect. Behav. Neurosci. 2019, 19, 927–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.C.; APrON Study Team; Letourneau, N.; Campbell, T.S.; Tomfohr-Madsen, L.; Giesbrecht, G.F. Developmental origins of infant emotion regulation: Mediation by temperamental negativity and moderation by maternal sensitivity. Dev. Psychol. 2017, 53, 611–628. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A. Biofeedback as an Intervention to Increase Self-Regulation in School-Aged Children in an Urban Charter School. Doctoral Dissertation, Widener University, Chester, PA, USA, 2019. Available online: https://search.proquest.com/docview/2284756111/fulltextPDF/20682CE768684BC1PQ/1?accountid=17248 (accessed on 12 December 2021).
- Schwartz, M.S.; Andrasik, F. Definitions of Biofeedback and Applied Psychophysiology Biofeedback: A Practitioner’s Guide; Guilford Press: New York, NY, USA, 2003. [Google Scholar]
- Kiselev, A.R.; Karavaev, A.S.; Gridnev, V.; Prokhorov, M.D.; Ponomarenko, V.; Borovkova, E.I.; Shvartz, V.; Ishbulatov, Y.; Posnenkova, O.M.; Bezruchko, B.P. Method of estimation of synchronization strength between low-frequency oscillations in heart rate variability and photoplethysmographic waveform variability. Russ. Open Med J. 2016, 5, e0101. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, P.; Eddie, D. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions. Appl. Psychophysiol. Biofeedback 2013, 38, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.-M.; Wang, S.-Y.; Fan, S.-Y.; Peper, E.; Chen, S.-P.; Huang, C.-Y. A Single Session of Heart Rate Variability Biofeedback Produced Greater Increases in Heart Rate Variability Than Autogenic Training. Appl. Psychophysiol. Biofeedback 2020, 45, 343–350. [Google Scholar] [CrossRef]
- Karavaev, A.S.; Kiselev, A.; Gridnev, V.; Borovkova, E.I.; Prokhorov, M.D.; Posnenkova, O.M.; Ponomarenko, V.; Bezruchko, B.P.; Shvartz, V. Phase and frequency locking of 0.1-Hz oscillations in heart rate and baroreflex control of blood pressure by breathing of linearly varying frequency as determined in healthy subjects. Hum. Physiol. 2013, 39, 416–425. [Google Scholar] [CrossRef]
- Eisenberg, N.; Spinrad, T.L.; Eggum, N.D. Emotion-Related Self-Regulation and Its Relation to Children’s Maladjustment. Annu. Rev. Clin. Psychol. 2010, 6, 495–525. [Google Scholar] [CrossRef] [Green Version]
- Gentzler, A.L.; Santucci, A.K.; Kovacs, M.; Fox, N.A. Respiratory sinus arrhythmia reactivity predicts emotion regulation and depressive symptoms in at-risk and control children. Biol. Psychol. 2009, 82, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimie-Salleh, N.; Malarvili, M.B.; Whittaker, A.C. Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience. Med. Biol. Eng. Comput. 2019, 57, 1229–1245. [Google Scholar] [CrossRef]
- Calkins, S.D. The emergence of self- regulation: Biological and behavioral control mechanisms supporting toddler compe-tencies. In Socioemotional Development in the Toddler Years: Transitions and Transformations; Brownell, C.A., Kopp, C.B., Eds.; Guilford Press: New York, NY, USA, 2007; pp. 261–284. [Google Scholar]
- Porges, S.W. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology 1995, 32, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Sachis, P.N.; Armstrong, D.L.; Becker, L.E.; Bryan, A.C. Myelination of the Human Vagus Nerve from 24 Weeks Postconceptional Age to Adolescence. J. Neuropathol. Exp. Neurol. 1982, 41, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, A.; Monk, C.; Hane, A. Fetal and infant neurobehavioral development: Basic processes and environmental influences. In Oxford library of Psychology. The Oxford Handbook of Perinatal Psychology; Wenzel, A., Ed.; Oxford University Press: Oxford, UK, 2016; pp. 53–86. [Google Scholar]
- Porges, S.W. Emotion: An evolutionary by-product of the neural regulation of the autonomic nervous system. Ann. New York Acad. Sci. 1997, 807, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal theory: Phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 2001, 42, 123–146. [Google Scholar] [CrossRef]
- Hirsch, J.A.; Bishop, B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. Circ. Physiol. 1981, 241, H620–H629. [Google Scholar] [CrossRef] [Green Version]
- McCraty, R.; Atkinson, M.; Tomasino, D.; Bradley, R.T. The coherent heart: Heart brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integral Rev. 2009, 5, 10–115. [Google Scholar]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Balzarotti, S.; Biassoni, F.; Colombo, B.; Ciceri, M.R. Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biol. Psychol. 2017, 130, 54–66. [Google Scholar] [CrossRef]
- Graziano, P.; Derefinko, K. Cardiac vagal control and children’s adaptive functioning: A meta-analysis. Biol. Psychol. 2013, 94, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Park, G.; Thayer, J.F. From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front. Psychol. 2014, 5, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart—brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-C.; Chiu, F.-C.; Kuo, Y.S.; Wu, K.-J. The Investigation of Visual Attention and Workload by Experts and Novices in the Cockpit. In Engineering Psychology and Cognitive Ergonomics. Applications and Services; Harris, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 167–176. [Google Scholar] [CrossRef]
- Park, G.; Vasey, M.; Van Bavel, J.J.; Thayer, J.F. When tonic cardiac vagal tone predicts changes in phasic vagal tone: The role of fear and perceptual load. Psychophysiology 2014, 51, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Fabes, R.A.; Eisenberg, N.; Eisenbud, L. Behavioral and physiological correlates of children’s reactions to others in distress. Dev. Psychol. 1993, 29, 655–663. [Google Scholar] [CrossRef]
- Liew, J.; Eisenberg, N.; Spinrad, T.L.; Eggum, N.D.; Haugen, R.G.; Kupfer, A.; Reiser, M.R.; Smith, C.L.; Lemery-Chalfant, K.; Baham, M.E. Physiological Regulation and Fearfulness as Predictors of Young Children’s Empathy-related Reactions. Soc. Dev. 2011, 20, 111–134. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, N.; Spinrad, T.L.; Valiente, C. Emotion-related self-regulation, and children’s social, psychological, and academic functioning. In Child Psychology: A Handbook of Contemporary Issues; Balter, L., Tamis-LeMonda, C., Eds.; Taylor and Francis Inc: London, UK, 2016; pp. 219–244. [Google Scholar]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.A.; Quintana, D.S.; Abbott, M.J.-A.; Kemp, A.H. Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Front. Psychiatry 2014, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- McCraty, R. New Frontiers in Heart Rate Variability and Social Coherence Research: Techniques, Technologies, and Implications for Improving Group Dynamics and Outcomes. Front. Public Health. 2017, 5, 267. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, L.K.; McCall, C.; Engen, H.G.; Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 2016, 53, 880–890. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-regulation, Adaptation, and Health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.G.; Cribbet, M.R.; Tinajero, R.; Rau, H.K.; Thayer, J.F.; Suchy, Y. The association between individual differences in executive functioning and resting high-frequency heart rate variability. Biol. Psychol. 2019, 148, 107772. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, V.; Izad, Y.; Jayaraj, J.; Husain, R.; Mat, K.C.M.; Aung, M.M.T. Emotional maturity among medical students and its impact on their academic performance. Trans. Sci. Technol. 2017, 4, 48–54. [Google Scholar]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porges, S.W. The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self-Regulation; W.W. Norton & Co: New York, NY, USA, 2011. [Google Scholar]
- Walker, L.S.; Stone, A.L.; Smith, C.A.; Bruehl, S.; Garber, J.; Puzanovova, M.; Diedrich, A. Interacting influences of gender and chronic pain status on parasympathetically mediated heart rate variability in adolescents and young adults. Pain 2017, 158, 1509–1516. [Google Scholar] [CrossRef]
- Blum, J.; Rockstroh, C.; Göritz, A.S. Heart Rate Variability Biofeedback Based on Slow-Paced Breathing with Immersive Virtual Reality Nature Scenery. Front. Psychol. 2019, 10, 2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.S.; Croarkin, P.E.; Lee, P.F. Heart Rate Variability of Various Video-Aided Mindful Deep Breathing Durations and Its Impact on Depression, Anxiety, and Stress Symptom Severity. Mindfulness 2019, 10, 2082–2094. [Google Scholar] [CrossRef]
- Aritzeta, A.; Soroa, G.; Balluerka, N.; Muela, A.; Gorostiaga, A.; Aliri, J. Reducing Anxiety and Improving Academic Performance Through a Biofeedback Relaxation Training Program. Appl. Psychophysiol. Biofeedback 2017, 42, 193–202. [Google Scholar] [CrossRef]
- Goessl, V.C.; Curtiss, J.E.; Hofmann, S.G. The effect of heart rate variability biofeedback training on stress and anxiety: A meta-analysis. Psychol. Med. 2017, 47, 2578–2586. [Google Scholar] [CrossRef]
- Henriques, G.; Keffer, S.; Abrahamson, C.; Horst, S.J. Exploring the Effectiveness of a Computer-Based Heart Rate Variability Biofeedback Program in Reducing Anxiety in College Students. Appl. Psychophysiol. Biofeedback 2011, 36, 101–112. [Google Scholar] [CrossRef]
- Lantyer, A.D.S.; Viana, M.D.B.; Padovani, R.D.C. Biofeedback in the treatment of stress and anxiety-related disorders: A critical review. Psico-USF 2013, 18, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Prato, C.A.; Yucha, C.B. Biofeedback-Assisted Relaxation Training to Decrease Test Anxiety in Nursing Students. Nurs. Educ. Perspect. 2013, 34, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Rush, K.S.; Golden, M.E.; Mortenson, B.P.; Albohn, D.; Horger, M. The Effects of a Mindfulness and Biofeedback Program on the On- and Off-Task Behaviors of Students with Emotional Behavioral Disorders. Contemp. Sch. Psychol. 2017, 21, 347–357. [Google Scholar] [CrossRef]
- Jones, A.M.; West, K.B.; Suveg, C. Anxiety in the School Setting: A Framework for Evidence-Based Practice. Sch. Ment. Health 2017, 11, 4–14. [Google Scholar] [CrossRef]
- van der Zwan, J.E.; Huizink, A.C.; Lehrer, P.M.; Koot, H.M.; de Vente, W. The Effect of Heart Rate Variability Biofeedback Training on Mental Health of Pregnant and Non-Pregnant Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschodt-Arsac, V.; Lalanne, R.; Spiluttini, B.; Bertin, C.; Arsac, L.M. Effects of heart rate variability biofeedback training in athletes exposed to stress of university examinations. PLoS ONE 2018, 13, e0201388. [Google Scholar] [CrossRef] [PubMed]
- Poskotinova, L.; Krivonogova, O.; Zaborsky, O. Effectiveness of Short-Term Heart Rate Variability Biofeedback Training and the Risk of Internet Addiction in Adolescents 15-16 Years of Age. Int. J. Biomed. 2020, 10, 153–156. [Google Scholar] [CrossRef]
- Bothe, D.A.; Grignon, J.B.; Olness, K.N. The Effects of a Stress Management Intervention in Elementary School Children. J. Dev. Behav. Pediatr. 2014, 35, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Hill, L.K.; Hu, D.D.; Koenig, J.; Sollers, J.J.; Kapuku, G.; Wang, X.; Snieder, H.; Thayer, J.F. Ethnic Differences in Resting Heart Rate Variability: A systematic review and meta-analysis. Psychosom. Med. 2015, 77, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Brunetto, A.F.; Roseguini, B.T.; Silva, B.M.; Hirai, D.M.; Guedes, D.P. Effects of Gender and Aerobic Fitness on Cardiac Autonomic Responses to Head-Up Tilt in Healthy Adolescents. Pediatr. Cardiol. 2005, 26, 418–424. [Google Scholar] [CrossRef]
- Aziz, W.; Schlindwein, F.S.; Wailoo, M.; Biala, T.; Rocha, F.C. Heart rate variability analysis of normal and growth restricted children. Clin. Auton. Res. 2011, 22, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of HeartMath. EmWave Desktop©; HeartMath: Boulder Creek, CA, USA, 2012. [Google Scholar]
- Kelley, K.; Preacher, K.J. On effect size. Psychol. Methods 2012, 17, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J. Emotion regulation: Taking stock and moving forward. Emotion 2013, 13, 359–365. [Google Scholar] [CrossRef]
- Morrison, F.J.; Ponitz, C.C.; McClelland, M.M. Self-regulation and academic achievement in the transition to school. In Human Brain Development. Child Development at the Intersection of Emotion and Cognition; Calkins, S.D., Bell, M.A., Eds.; American Psychological Association: Washington, DC, USA, 2010; pp. 203–224. [Google Scholar] [CrossRef] [Green Version]
- Kuppusamy, M.; Kamaldeen, D.; Pitani, R.; Amaldas, J.; Ramasamy, P.; Shanmugam, P.; Vijayakumar, V. Effects of yoga breathing practice on heart rate variability in healthy adolescents: A randomized controlled trial. Integr. Med. Res. 2020, 9, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Field, L.H.; Edwards, S.D.; Edwards, D.J.; Dean, S.E. Influence of HeartMath Training Programme on Physiological and Psychological Variables. Glob. J. Health Sci. 2018, 10, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Etkin, A.; Büchel, C.; Gross, J.J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 2015, 16, 693–700. [Google Scholar] [CrossRef]
- Michalska, K.J.; Kinzler, K.D.; Decety, J. Age-related sex differences in explicit measures of empathy do not predict brain responses across childhood and adolescence. Dev. Cogn. Neurosci. 2013, 3, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Michalska, K.J.; Davis, E.L. The psychobiology of emotional development: The case for examining sociocultural processes. Dev. Psychobiol. 2019, 61, 416–429. [Google Scholar] [CrossRef]
- Berry, M.E.; Chapple, I.T.; Ginsberg, J.P.; Gleichauf, K.J.; Meyer, J.A.; Nagpal, M.L. Non-pharmacological Intervention for Chronic Pain in Veterans: A Pilot Study of Heart Rate Variability Biofeedback. Glob. Adv. HealthMed. 2014, 3, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Thurber, M.R.; Bodenhamer-Davis, E.; Johnson, M.; Chesky, K.; Chandler, C.K. Effects of Heart Rate Variability Coherence Biofeedback Training and Emotional Management Techniques to Decrease Music Performance Anxiety. Biofeedback 2010, 38, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. Norton series on Interpersonal Neurobiology. In The Pocket Guide to the Polyvagal Theory: The Transformative Power of Feeling Safe; W.W. Norton & Co: New York, NY, USA, 2017. [Google Scholar]
- Porges, S.W. Vagal Mediation of Respiratory Sinus Arrhythmia: Implications for drug delivery. In Temporal Control of Drug Delivery; Hrushesky, J.M., Langer, R., Theeuwes, F., Eds.; New York Academy of Sciences: New York, NY, USA, 1991; pp. 57–66. [Google Scholar] [CrossRef]
- Porges, S.W. Vagal tone: An autonomic mediator of affect. In Cambridge Studies in Social and Emotional Development. The Development of Emotion Regulation and Dysregulation; Garber, J., Dodge, K.A., Eds.; Cambridge University Press (CUP): Cambridge, UK, 1991; pp. 111–128. [Google Scholar] [CrossRef]
- Fox, N.A.; Calkins, S.D. The Development of Self-Control of Emotion: Intrinsic and Extrinsic Influences. Motiv. Emot. 2003, 27, 7–26. [Google Scholar] [CrossRef]
- Hastings, P.D.; Nuselovici, J.N.; Utendale, W.T.; Coutya, J.; McShane, K.E.; Sullivan, C. Applying the polyvagal theory to children’s emotion regulation: Social context, socialization, and adjustment. Biol. Psychol. 2008, 79, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.S.; Womack, W.M. Stress Management Techniques in Childhood and Adolescence: Relaxation training, meditation, hypnosis, and biofeedback. Appropriate clinical applications. Clin. Pediatr. 1987, 26, 581–585. [Google Scholar] [CrossRef]
- Graziano, P.A.; Reavis, R.D.; Keane, S.P.; Calkins, S.D. The role of emotion regulation in children’s early academic success. J. Sch. Psychol. 2007, 45, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Kahle, S.; Utendale, W.T.; Widaman, K.F.; Hastings, P.D. Parasympathetic Regulation and Inhibitory Control Predict the Development of Externalizing Problems in Early Childhood. J. Abnorm. Child Psychol. 2018, 46, 237–249. [Google Scholar] [CrossRef]
- Marcovitch, S.; Leigh, J.; Calkins, S.D.; Leerks, E.M.; O’Brien, M.; Blankson, A.N. Moderate vagal withdrawal in 3.5-year-old children is associated with optimal performance on executive function tasks. Dev. Psychobiol. 2010, 52, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Pirskanen, H.; Jokinen, K.; Karhinen-Soppi, A.; Notko, M.; Lämsä, T.; Otani, M.; Meil, G.; Romero-Balsas, P.; Rogero-García, J. Children’s Emotions in Educational Settings: Teacher Perceptions from Australia, China, Finland, Japan and Spain. Early Child. Educ. J. 2019, 47, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Bassett, S.M.; Takahashi, L.; Voisin, D.R. What does self-esteem have to do with behavioral health among low-income youth in Chicago? J. Youth Stud. 2018, 21, 999–1010. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, Y.; Wang, Z. Causal Interactions in Human Amygdala Cortical Networks across the Lifespan. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Dougherty, L.R.; Blankenship, S.L.; Spechler, P.A.; Padmala, S.; Pessoa, L. An fMRI Pilot Study of Cognitive Reappraisal in Children: Divergent Effects on Brain and Behavior. J. Psychopathol. Behav. Assess. 2015, 37, 634–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, K.; Gross, J.J.; Weber, J.; Robertson, E.R.; Sokol-Hessner, P.; Ray, R.D.; Gabrieli, J.D.; Ochsner, K.N. The development of emotion regulation: An fMRI study of cognitive reappraisal in children, adolescents and young adults. Soc. Cogn. Affect. Neurosci. 2012, 7, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Silvers, J.A.; McRae, K.; Gabrieli, J.D.E.; Gross, J.J.; Remy, K.A.; Ochsner, K.N. Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion 2012, 12, 1235–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babkirk, S.; Rios, V.; Dennis, T.A. The late positive potential predicts emotion regulation strategy use in school-aged children concurrently and two years later. Dev. Sci. 2014, 18, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.M.; Doolittle, E.J. Social and Emotional Learning: Introducing the Issue. Futur. Child. 2017, 27, 3–11. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Y.; Weng, J.; Chen, F.; Liu, H. Modular segregation of task-dependent brain networks contributes to the development of executive function in children. NeuroImage 2020, 206, 116334. [Google Scholar] [CrossRef]
- Darling, N.; Steinberg, L. Parenting style as context: An integrative model. Psychol. Bull. 1993, 113, 487–496. [Google Scholar] [CrossRef]
- Keppens, G.A.; Spruyt, B. The School as a Socialization Context: Understanding the influence of school bonding and an author-itative school climate on class skipping. Youth Soc. 2017, 51, 1145–1166. [Google Scholar] [CrossRef]
- Fernández-Ballesteros, R. Introducción a la Evaluación Psicológica [Introduction to Psychological Evaluation]; Pirámide: Madrid, Spain, 2005. [Google Scholar]
Groups | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Intervention | HRV- Base line | Breath Training + HRV-Balloon Game Connexion | Breath Training + HRV-Balloon Game Connexion | HRV-Balloon Game Connexion | HRV-Balloon Game Connexion |
Control | HRV- Base line 1 | No training | No training | No training | HRV-Base line 2 |
Pre-Test | Post-Test | Student’s t | Cohen’s d | ||||
---|---|---|---|---|---|---|---|
N | M | SD | M | SD | p | d | |
Total | 300 | 23.26 | 29.56 | 79.52 | 60.47 | 0.000 | −1.250 |
Cycle 1 | 87 | 26.61 | 31.93 | 49.77 | 51.10 | 0.000 | −0.558 |
Cycle 2 | 175 | 23.78 | 29.75 | 94.99 | 60.56 | 0.000 | −1.577 |
Cycle 3 | 38 | 13.16 | 19.88 | 76.39 | 54.84 | 0.000 | −1.692 |
Pre-Test | Post-Test | Student’s t | Cohen’s d | ||||
---|---|---|---|---|---|---|---|
N | M | SD | M | SD | p | d | |
Total | 299 | 62.63 | 30.78 | 32 | 30.07 | 0.000 | −1.007 |
Cycle 1 | 87 | 62.16 | 33.09 | 31.45 | 37.23 | 0.000 | −0.506 |
Cycle 2 | 174 | 61.39 | 31.01 | 25.32 | 27.26 | 0.000 | −1.238 |
Cycle 3 | 38 | 69.37 | 23.18 | 30.95 | 29.12 | 0.000 | −1.469 |
Average | SD | F | |||||||
---|---|---|---|---|---|---|---|---|---|
HRV | N | Girls | N | Boys | Girls | Boys | F | p | Cohen’s d |
Low HRV S1 | 138 | 61.80 | 163 | 63.21 | 31.35 | 30.18 | 0.16 | 0.69 | −0.046 |
Low HRV S5 | 138 | 33.82 | 163 | 30.45 | 31.26 | 29.12 | 0.93 | 0.34 | 0.112 |
Medium HRV S1 | 138 | 14.04 | 163 | 14.93 | 9.10 | 10.13 | 0.63 | 0.43 | −0.093 |
Medium HRV S5 | 138 | 23.32 | 163 | 22.96 | 23.03 | 19.74 | 0.02 | 0.88 | 0.017 |
High HRV S1 | 138 | 24.14 | 163 | 22.35 | 30.09 | 29.10 | 0.28 | 0.60 | 0.061 |
High HRV S5 | 138 | 80.22 | 163 | 78.45 | 63.11 | 58.01 | 0.06 | 0.80 | 0.029 |
Predictor | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Session 1 high HVR | 4616.81 | 2 | 2308.41 | 2.70 | 0.06 |
Session 2 high HVR | 24578.54 | 2 | 12289.27 | 11.09 | 0.001 |
Session 3 high HVR | 102411.57 | 2 | 51205.78 | 24.52 | 0.001 |
Session 4 high HVR | 79778.77 | 2 | 39889.38 | 15.61 | 0.001 |
Session 5 high HVR | 119275.36 | 2 | 59637.69 | 18.18 | 0.001 |
Predictor | Estimation | SE | df | t | p | IC95% [LL, UL] |
---|---|---|---|---|---|---|
Session 1 high HVR | 26.00 | 4.04 | 291.64 | 6.43 | 0.001 | [18.04, 33.95] |
Session 2 high HVR | 42.66 | 4.04 | 291.64 | 10.56 | 0.001 | [34.71, 50.61] |
Session 3 high HVR | 36.43 | 4.04 | 291.64 | 9.01 | 0.001 | [28.48, 44.38] |
Session 4 high HVR | 45.80 | 4.15 | 291.64 | 11.02 | 0.001 | [18.04, 33.95] |
Session 5 high HVR | 49.77 | 4.04 | 291.64 | 12.31 | 0.001 | [18.04, 33.95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aritzeta, A.; Aranberri-Ruiz, A.; Soroa, G.; Mindeguia, R.; Olarza, A. Emotional Self-Regulation in Primary Education: A Heart Rate-Variability Biofeedback Intervention Programme. Int. J. Environ. Res. Public Health 2022, 19, 5475. https://doi.org/10.3390/ijerph19095475
Aritzeta A, Aranberri-Ruiz A, Soroa G, Mindeguia R, Olarza A. Emotional Self-Regulation in Primary Education: A Heart Rate-Variability Biofeedback Intervention Programme. International Journal of Environmental Research and Public Health. 2022; 19(9):5475. https://doi.org/10.3390/ijerph19095475
Chicago/Turabian StyleAritzeta, Aitor, Ainara Aranberri-Ruiz, Goretti Soroa, Rosa Mindeguia, and Amaiur Olarza. 2022. "Emotional Self-Regulation in Primary Education: A Heart Rate-Variability Biofeedback Intervention Programme" International Journal of Environmental Research and Public Health 19, no. 9: 5475. https://doi.org/10.3390/ijerph19095475