The Role of Anti-PLA2R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice
Abstract
:1. Introduction
2. Pathogenesis
2.1. Primary and Secondary Membranous Nephropathy
2.2. Anti-THSD7A Antibodies
2.3. Anti-PLA2R Antibodies
3. Diagnosis
4. Monitoring the Course of Disease and Treatment Efficacy
Kidney Transplantation
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ponticelli, C.; Glassock, R.J. Glomerular diseases: Membranous nephropathy—A modern view. Clin. J. Am. Soc. Nephrol. 2014, 9, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, P.; Debiec, H. Molecular Pathogenesis of Membranous Nephropathy. Annu. Rev. Pathol. 2020, 15, 287–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couser, W.G. Primary Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Karkosza, H.; Więcek, A.; Perkowska-Ptasińska, A. Pierwotna nefropatia błoniasta. Patofizjologia, morfologia oraz zalecenia dotyczące diagnostyki i leczenia. Nefrol. Dial. Pol. 2016, 20, 62–70. [Google Scholar]
- Toth-Manikowski, S.; Beck, L.H., Jr. PLA2R- and THSD7A-Associated Primary Membranous Nephropathy. In Glomerulonephritis; Trachtman, H., Herlitz, L., Lerma, E., Hogan, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 301–331. [Google Scholar]
- Lai, W.L.; Yeh, T.H.; Chen, P.M.; Chan, C.K.; Chiang, W.C.; Chen, Y.M.; Wu, K.D.; Tsai, T.J. Membranous nephropathy: A review on the pathogenesis, diagnosis, and treatment. J. Formos. Med. Assoc. 2015, 114, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Glassock, R.J. Secondary membranous glomerulonephritis. Nephrol. Dial. Transplant. 1992, 7 (Suppl. 1), 64–71. [Google Scholar]
- Beck, L.H., Jr.; Salant, D.J. Membranous nephropathy: From models to man. J. Clin. Investig. 2014, 124, 2307–2314. [Google Scholar] [CrossRef] [Green Version]
- Tomas, N.M.; Hoxha, E.; Reinicke, A.T.; Fester, L.; Helmchen, U.; Gerth, J.; Bachmann, F.; Budde, K.; Koch-Nolte, F.; Zahner, G.; et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J. Clin. Investig. 2016, 126, 2519–2532. [Google Scholar] [CrossRef] [Green Version]
- Pozdzik, A.; Brochériou, I.; David, C.; Touzani, F.; Goujon, J.M.; Wissing, K.M. Membranous Nephropathy and Anti-Podocytes Antibodies: Implications for the Diagnostic Workup and Disease Management. BioMed Res. Int. 2018, 2018, 6281054. [Google Scholar] [CrossRef]
- Ronco, P.; Debiec, H. Molecular pathomechanisms of membranous nephropathy: From heymann nephritis to alloimmunization. J. Am. Soc. Nephrol. 2005, 16, 1205–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borza, D.B. Alternative Pathway Dysregulation and the Conundrum of Complement Activation by IgG4 Immune Complexes in Membranous Nephropathy. Front. Immunol. 2016, 7, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Sandor, D.G.; Beck, L.H., Jr. The role of complement in membranous nephropathy. Semin. Nephrol. 2013, 33, 531–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhotta, K.; Würzner, R.; König, P. Glomerular deposition of mannose-binding lectin in human glomerulonephritis. Nephrol. Dial. Transplant. 1999, 14, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, N.; Okada, K.; Matsui, Y.; Fujimoto, K.; Adachi, H.; Yamaya, H.; Matsushita, M.; Yokoyama, H. Glomerular mannose-binding lectin deposition in intrinsic antigen-related membranous nephropathy. Nephrol. Dial. Transplant. 2018, 33, 832–840. [Google Scholar] [CrossRef]
- Haddad, G.; Lorenzen, J.M.; Ma, H.; de Haan, N.; Seeger, H.; Zaghrini, C.; Brandt, S.; Kölling, M.; Wegmann, U.; Kiss, B.; et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Investig. 2021, 131, e140453. [Google Scholar] [CrossRef]
- Malhotra, R.; Wormald, M.R.; Rudd, P.M.; Fischer, P.B.; Dwek, R.A.; Sim, R.B. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1995, 1, 237–243. [Google Scholar] [CrossRef]
- Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y.H.; Franz, S.; Delfgaauw, J.; Chang, J.M.; Choi, H.Y.; Campbell, K.N.; Kim, K.; et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.J.; Li, Y.; Rush, B.M.; Cerqueira, D.M.; Zhou, D.; Fu, H.; Ho, J.; Beer Stolz, D.; Liu, Y. Tubular injury triggers podocyte dysfunction by β-catenin-driven release of MMP-7. JCI Insight 2019, 4, e122399. [Google Scholar] [CrossRef] [Green Version]
- Yaddanapudi, S.; Altintas, M.M.; Kistler, A.D.; Fernandez, I.; Möller, C.C.; Wei, C.; Peev, V.; Flesche, J.B.; Forst, A.L.; Li, J.; et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J. Clin. Investig. 2011, 121, 3965–3980. [Google Scholar] [CrossRef] [Green Version]
- Sever, S.; Altintas, M.M.; Nankoe, S.R.; Möller, C.C.; Ko, D.; Wei, C.; Henderson, J.; del Re, E.C.; Hsing, L.; Erickson, A.; et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Investig. 2007, 117, 2095–2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.M.; Nissaisorakarn, P.; Husain, I.; Jim, B. Proteinuric Kidney Diseases: A Podocyte’s Slit Diaphragm and Cytoskeleton Approach. Front. Med. 2018, 5, 221. [Google Scholar] [CrossRef] [PubMed]
- Van de Logt, A.E.; Fresquet, M.; Wetzels, J.F.; Brenchley, P. The anti-PLA2R antibody in membranous nephropathy: What we know and what remains a decade after its discovery. Kidney Int. 2019, 96, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Fresquet, M.; Rhoden, S.J.; Jowitt, T.A.; McKenzie, E.A.; Roberts, I.; Lennon, R.; Brenchley, P.E. Autoantigens PLA2R and THSD7A in membranous nephropathy share a common epitope motif in the N-terminal domain. J. Autoimmun. 2020, 106, 102308. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, E.; Kneißler, U.; Stege, G.; Zahner, G.; Thiele, I.; Panzer, U.; Harendza, S.; Helmchen, U.M.; Stahl, R.A. Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy. Kidney Int. 2012, 82, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Radice, A.; Pieruzzi, F.; Trezzi, B.; Ghiggeri, G.; Napodano, P.; D’Amico, M.; Stellato, T.; Brugnano, R.; Ravera, F.; Rolla, D.; et al. Diagnostic specificity of autoantibodies to M-type phospholipase A2 receptor (PLA2R) in differentiating idiopathic membranous nephropathy (IMN) from secondary forms and other glomerular diseases. J. Nephrol. 2018, 31, 271–278. [Google Scholar] [CrossRef]
- Hari Krishna Reddy, M.; Kumar, A.C.; Sangeetha, B.; Ram, R.; Siva Kumar, V. Anti-PLA2R antibody in a secondary cause of membranous nephropathy. Nephrology 2018, 23, 94–95. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, G.; Li, J.; Wu, L.H.; Tan, Y.; Zheng, X.; Ao, J.; Zhao, M.H. Absence of glomerular IgG4 deposition in patients with membranous nephropathy may indicate malignancy. Nephrol. Dial. Transplant. 2012, 27, 1931–1937. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.F.; Cui, Z.; Zhang, Y.M.; Qu, Z.; Wang, X.; Wang, F.; Meng, L.Q.; Cheng, X.Y.; Liu, G.; Zhao, M.H. Clinical and prognostic significance of glomerular C1q deposits in primary MN. Clin. Chim. Acta 2018, 485, 152–157. [Google Scholar] [CrossRef]
- Ryan, M.S.; Satoskar, A.A.; Nadasdy, G.M.; Brodsky, S.V.; Hemminger, J.A.; Nadasdy, T. Phospholipase A2 receptor staining is absent in many kidney biopsies with early-stage membranous glomerulonephritis. Kidney Int. 2016, 89, 1402–1403. [Google Scholar] [CrossRef]
- KDIGO Clinical Practice Guideline for Glomerulonephritis. Chapter 7: Idiopathic membranous nephropathy. Kidney Int. Suppl. 2012, 2, 186–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vriese, A.S.; Glassock, R.J.; Nath, K.A.; Sethi, S.; Fervenza, F.C. A Proposal for a Serology-Based Approach to Membranous Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Zaghrini, C.; Seitz-Polski, B.; Justino, J.; Dolla, G.; Payré, C.; Jourde-Chiche, N.; Van de Logt, A.E.; Booth, C.; Rigby, E.; Lonnbro-Widgren, J.; et al. Novel ELISA for thrombospondin type 1 domain-containing 7A autoantibodies in membranous nephropathy. Kidney Int. 2019, 95, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Herwig, J.; Skuza, S.; Sachs, W.; Sachs, M.; Failla, A.V.; Rune, G.; Meyer, T.N.; Fester, L.; Meyer-Schwesinger, C. Thrombospondin Type 1 Domain-Containing 7A Localizes to the Slit Diaphragm and Stabilizes Membrane Dynamics of Fully Differentiated Podocytes. J. Am. Soc. Nephrol. 2019, 30, 824–839. [Google Scholar] [CrossRef]
- Hoxha, E.; Beck, L.H.; Wiech, T.; Tomas, N.M.; Probst, C.; Mindorf, S.; Meyer-Schwesinger, C.; Zahner, G.; Stahl, P.R.; Schöpper, R.; et al. An Indirect Immunofluorescence Method Facilitates Detection of Thrombospondin Type 1 Domain-Containing 7A-Specific Antibodies in Membranous Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Hoxha, E.; Wiech, T.; Stahl, P.R.; Zahner, G.; Tomas, N.M.; Meyer-Schwesinger, C.; Wenzel, U.; Janneck, M.; Steinmetz, O.M.; Panzer, U.; et al. A Mechanism for Cancer-Associated Membranous Nephropathy. N. Engl. J. Med. 2016, 374, 1995–1996. [Google Scholar] [CrossRef]
- Taguchi, S.; Koshikawa, Y.; Ohyama, S.; Miyachi, H.; Ozawa, H.; Asada, H. Thrombospondin type-1 domain-containing 7A-associated membranous nephropathy after resection of rectal cancer: A case report. BMC Nephrol. 2019, 20, 43. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Matsui, I.; Namba, T.; Sakaguchi, Y.; Mizuno, H.; Shirayama, Y.; Shimada, K.; Hashimoto, N.; Doi, Y.; Yamaguchi, S.; et al. VEGF-A Links Angiolymphoid Hyperplasia with Eosinophilia (ALHE) to THSD7A Membranous Nephropathy: A Report of 2 Cases. Am. J. Kidney Dis. 2019, 73, 880–885. [Google Scholar] [CrossRef]
- Ito, S.; Oda, T.; Matsuo, A.; Takechi, H.; Uchida, T.; Watanabe, A.; Kono, T.; Shimazaki, H.; Tamai, S.; Oshima, N.; et al. Observation of Angiolymphoid Hyperplasia with Eosinophilia (ALHE) at Three Arterial Sites and Its Association with Membranous Nephropathy. Intern. Med. 2015, 54, 1933–1939. [Google Scholar] [CrossRef] [Green Version]
- Xian, L.; Dong, D.; Luo, J.; Zhuo, L.; Li, K.; Zhang, P.; Wang, W.; Xu, Y.; Xu, G.; Wang, L.; et al. Expression of THSD7A in neoplasm tissues and its relationship with proteinuria. BMC Nephrol. 2019, 20, 332. [Google Scholar] [CrossRef] [Green Version]
- Hara, S.; Tsuji, T.; Fukasawa, Y.; Hisano, S.; Morito, S.; Hyodo, T.; Goto, S.; Nishi, S.; Yoshimoto, A.; Itoh, T. Clinicopathological characteristics of thrombospondin type 1 domain-containing 7A-associated membranous nephropathy. Virchows Arch. 2019, 474, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Zhang, Y.; Liu, M.; Kang, X.; Kang, L.; Zhang, H. THSD7A as a marker for paraneoplastic membranous nephropathy. Int. Urol. Nephrol. 2019, 51, 371–373. [Google Scholar] [CrossRef]
- Iwakura, T.; Ohashi, N.; Kato, A.; Baba, S.; Yasuda, H. Prevalence of Enhanced Granular Expression of Thrombospondin Type-1 Domain-Containing 7A in the Glomeruli of Japanese Patients with Idiopathic Membranous Nephropathy. PLoS ONE 2015, 10, e0138841. [Google Scholar] [CrossRef] [Green Version]
- Berchtold, L.; Zanetta, G.; Dahan, K.; Mihout, F.; Peltier, J.; Guerrot, D.; Brochériou, I.; Ronco, P.; Debiec, H. Efficacy and Safety of Rituximab in Hepatitis B Virus-Associated PLA2R-Positive Membranous Nephropathy. Kidney Int. Rep. 2017, 3, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, C.P.; Cossey, L.N.; Beck, L.H. THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Mod. Pathol. 2016, 29, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cui, Z.; Lu, J.; Probst, C.; Zhang, Y.M.; Wang, X.; Qu, Z.; Wang, F.; Meng, L.Q.; Cheng, X.Y.; et al. Circulating Antibodies against Thrombospondin Type-I Domain-Containing 7A in Chinese Patients with Idiopathic Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; Seitz-Polski, B.; Ma, H.; Zahner, G.; Dolla, G.; Hoxha, E.; Helmchen, U.; Dabert-Gay, A.S.; et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 2014, 371, 2277–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozioł, M.; Sikora, A.; Kozioł-Montewka, M.; Smarz-Widelska, I.; Orłowska-Kowalik, G.; Pyszna, W.; Załuska, W.; Książek, A. Preliminary results of research on a new marker of idiopathic membranous nephropathy: Anti-PLA2R. Pol. Med. J. 2014, 36, 171–174. (In Polish) [Google Scholar]
- Maifata, S.M.; Hod, R.; Zakaria, F.; Abd Ghani, F. Primary Membranous Glomerulonephritis: The Role of Serum and Urine Biomarkers in Patient Management. Biomedicines 2019, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Liu, J.; Gilbert, A.; Cao, Y.; An, C.; Lv, Z.; Wang, C.; Nie, R.; Zhang, J.; Liu, Y.; et al. Serum phospholipase A2 receptor antibodies and immunoglobulin G subtypes in adult idiopathic membranous nephropathy: Clinical value assessment. Clin. Chim. Acta 2019, 490, 135–141. [Google Scholar] [CrossRef]
- Qin, W.; Beck, L.H.; Zeng, C.; Chen, Z.; Li, S.; Zuo, K.; Salant, D.J.; Liu, Z. Anti-Phospholipase A2 Receptor Antibody in Membranous Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, Y.; Zhang, L.; Liu, D.; Wang, C.; Quan, S.; Ma, S.; Xiao, J.; Cheng, G.; Liu, Z.; Zhao, Z. The accuracy of the anti-phospholipase A2 receptor antibody in the diagnosis of idiopathic membranous nephropathy: A comparison of different cutoff values as measured by the ELISA method. Int. Urol. Nephrol. 2016, 48, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Ma, C.; Wang, P.; Liu, J.; Su, H.; Zhuo, H.; Kong, X.; Xu, D.; Xu, D. Serum anti-PLA2R antibody as a diagnostic biomarker of idiopathic membranous nephropathy: The optimal cut-off value for Chinese patients. Clin. Chim. Acta 2018, 476, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Tampoia, M.; Migliucci, F.; Villani, C.; Abbracciavento, L.; Rossini, M.; Fumarulo, R.; Gesualdo, L.; Montinaro, V. Definition of a new cut-off for the anti-phospholipase A2 receptor (PLA2R) autoantibody immunoassay in patients affected by idiopathic membranous nephropathy. J. Nephrol. 2018, 31, 899–905. [Google Scholar] [CrossRef]
- Glassock, R.J. Antiphospholipase A2 receptor autoantibody guided diagnosis and treatment of membranous nephropathy: A new personalized medical approach. Clin. J. Am. Soc. Nephrol. 2014, 9, 1341–1343. [Google Scholar] [CrossRef] [Green Version]
- Bomback, A.S.; Fervenza, F.C. Membranous Nephropathy: Approaches to Treatment. Am. J. Nephrol. 2018, 47, 30–42. [Google Scholar] [CrossRef]
- Hoxha, E.; Thiele, I.; Zahner, G.; Panzer, U.; Harendza, S.; Stahl, R.A. Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy. J. Am. Soc. Nephrol. 2014, 25, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Song, E.J.; Jeong, K.H.; Yang, Y.A.; Lim, J.H.; Jung, H.Y.; Choi, J.Y.; Cho, J.H.; Kim, C.D.; Kim, Y.L.; Park, S.H. Anti-phospholipase A2 receptor antibody as a prognostic marker in patients with primary membranous nephropathy. Kidney Res. Clin. Pract. 2018, 37, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Debiec, H.; Ronco, P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy. N. Engl. J. Med. 2011, 364, 689–690. [Google Scholar] [CrossRef]
- Svobodova, B.; Honsova, E.; Ronco, P.; Tesar, V.; Debiec, H. Kidney biopsy is a sensitive tool for retrospective diagnosis of PLA2R-related membranous nephropathy. Nephrol. Dial. Transplant. 2013, 28, 1839–1844. [Google Scholar] [CrossRef] [Green Version]
- Pourcine, F.; Dahan, K.; Mihout, F.; Cachanado, M.; Brocheriou, I.; Debiec, H.; Ronco, P. Prognostic value of PLA2R autoimmunity detected by measurement of anti-PLA2R antibodies combined with detection of PLA2R antigen in membranous nephropathy: A single-centre study over 14 years. PLoS ONE 2017, 12, e0173201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.; Li, L.; Liu, T.; Qu, X.; Qiu, Y. Circulating antibodies against M-type phospholipase A2 receptor and thrombospondin type-1 domain-containing 7A in Chinese patients with membranous nephropathy. Int. Urol. Nephrol. 2019, 51, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, L.; Guo, Y.; Yang, L. Clinical value of a serum anti-PLA2R antibody in the diagnosis and monitoring of primary membranous nephropathy in adults. Int. J. Nephrol. Renovasc. Dis. 2018, 11, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.W.; Tang, L.J.; Kong, X.L.; Yang, H.; Xu, D.M. Clinical significance of autoantibodies in the assessment and treatment of idiopathic membranous nephropathy. Exp. Ther. Med. 2019, 17, 1825–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bech, A.P.; Hofstra, J.M.; Brenchley, P.E.; Wetzels, J.F. Association of Anti-PLA2R Antibodies with Outcomes after Immunosuppressive Therapy in Idiopathic Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2014, 9, 1386–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radice, A.; Trezzi, B.; Maggiore, U.; Pregnolato, F.; Stellato, T.; Napodano, P.; Rolla, D.; Pesce, G.; D’Amico, M.; Santoro, D.; et al. Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun. Rev. 2016, 15, 146–154. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, M.; Cui, Z.; Wang, J.; Wang, M.; Zhang, Y.; Wang, F.; Wang, X.; Meng, L.; Cheng, X.; et al. Antibodies against M-Type Phospholipase A2 Receptor May Predict Treatment Response and Outcome in Membranous Nephropathy. Am. J. Nephrol. 2018, 48, 438–446. [Google Scholar] [CrossRef]
- Cattran, D.C.; Brenchley, P.E. Membranous nephropathy: Integrating basic science into improved clinical management. Kidney Int. 2017, 91, 566–574. [Google Scholar] [CrossRef]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, 753–779. [Google Scholar] [CrossRef]
- Remuzzi, G.; Chiurchiu, C.; Abbate, M.; Brusegan, V.; Bontempelli, M.; Ruggenenti, P. Rituximab for idiopathic membranous nephropathy. Lancet 2002, 360, 923–924. [Google Scholar] [CrossRef] [Green Version]
- Fervenza, F.C.; Cosio, F.G.; Erickson, S.B.; Specks, U.; Herzenberg, A.M.; Dillon, J.J.; Leung, N.; Cohen, I.M.; Wochos, D.N.; Bergstralh, E.; et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 2008, 73, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggenenti, P.; Fervenza, F.C.; Remuzzi, G. Treatment of membranous nephropathy: Time for a paradigm shift. Nat. Rev. Nephrol. 2017, 13, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Barbari, A.; Chehadi, R.; Kfoury Assouf, H.; Kamel, G.; Jaafar, M.; Abdallah, A.; Rizk, S.; Masri, M. Bortezomib as a Novel Approach to Early Recurrent Membranous Glomerulonephritis after Kidney Transplant Refractory to Combined Conventional Rituximab Therapy. Exp. Clin. Transplant. 2017, 15, 350–354. [Google Scholar] [CrossRef]
- Grupper, A.; Cornell, L.D.; Fervenza, F.C.; Beck, L.H.; Lorenz, E.; Cosio, F.G. Recurrent Membranous Nephropathy after Kidney Transplantation: Treatment and Long-Term Implications. Transplantation 2016, 100, 2710–2716. [Google Scholar] [CrossRef]
- Sprangers, B.; Kuypers, D.R. Recurrence of glomerulonephritis after renal transplantation. Transplant. Rev. 2013, 27, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Quintana, L.F.; Blasco, M.; Seras, M.; Pérez, N.S.; López-Hoyos, M.; Villarroel, P.; Rodrigo, E.; Viñas, O.; Ercilla, G.; Diekmann, F.; et al. Antiphospholipase A2 Receptor Antibody Levels Predict the Risk of Posttransplantation Recurrence of Membranous Nephropathy. Transplantation 2015, 99, 1709–1714. [Google Scholar] [CrossRef]
- Darji, P.I.; Patel, H.A.; Darji, B.P.; Sharma, A.; Halawa, A. Is de novo membranous nephropathy suggestive of alloimmunity in renal transplantation? A case report. World J. Transplant. 2022, 12, 15–20. [Google Scholar] [CrossRef]
- Passerini, P.; Malvica, S.; Tripodi, F.; Cerutti, R.; Messa, P. Membranous Nephropathy (MN) Recurrence after Renal Transplantation. Front. Immunol. 2019, 10, 1326. [Google Scholar] [CrossRef] [Green Version]
- Cosio, F.G.; Cattran, D.C. Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation. Kidney Int. 2017, 91, 304–314. [Google Scholar] [CrossRef]
- Blosser, C.D.; Ayalon, R.; Nair, R.; Thomas, C.; Beck, L.H., Jr. Very early recurrence of anti-Phospholipase A2 receptor-positive membranous nephropathy after transplantation. Am. J. Transplant. 2012, 12, 1637–1642. [Google Scholar] [CrossRef] [Green Version]
- Dahan, K.; Debiec, H.; Plaisier, E.; Cachanado, M.; Rousseau, A.; Wakselman, L.; Michel, P.A.; Mihout, F.; Dussol, B.; Matignon, M.; et al. Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. J. Am. Soc. Nephrol. 2017, 28, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debiec, H.; Martin, L.; Jouanneau, C.; Dautin, G.; Mesnard, L.; Rondeau, E.; Mousson, C.; Ronco, P. Autoantibodies specific for the phospholipase A2 receptor in recurrent and de novo membranous nephropathy. Am. J. Transplant. 2011, 11, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Primary MN | Secondary MN |
---|---|---|
rate of total MN cases | 70–80% | 20–30% |
cause of disease | autoimmune disease | underlying diseases and drug or poison exposure |
directed treatment | immunosuppressive therapy | treatment focused on the underlying disease |
dominant antibody subclass detected in deposits of immune complexes | IgG4 | IgG1, IgG2, IgG3 |
detectability of C1q in deposits of immune complexes | very rare | present |
the role of the classical pathway of complement activation in disease pathogenesis | less probable | more probable |
hypotheses about the formation of immune complexes | penetration of autoantibodies against podocyte through the glomerular membrane |
|
Characteristic | Anti-PLA2R | Anti-THSD7A |
---|---|---|
podocyte autoantigen | M-type phospholipase A2 receptor (PLA2R)—185 kDa | thrombospondin, type I, domain containing 7A (THSD7A)—250 kDa |
frequency detection in patients with PMN | ~70% | ~2.5–5% |
year of discovery | 2009 | 2014 |
role of serology in the diagnosis | high role (better described) | lower role (less described) |
link to neoplastic processes | low | strong |
laboratory methods | IIFT, ELISA, Western blot | IIFT, ELISA, Western blot |
dominant antibodies subclass | IgG4 | IgG4 |
Risk Category | eGFR | Proteinuria | Anti-PLA2R Titer * |
---|---|---|---|
low | normal/stable | <3.5 g/day | serial measurements persistently low |
moderate | normal/stable | >3.5 g/day and no reduction (>50%) after 6 months of antiproteinuric therapy | medium levels of serial measuarements |
high | <60 mL/min/L, 73 m2 | >8 g/day | high levels of serial measuarements |
>60 mL/min/L, 73 m2 | >3.5 g/day and serum albumin < 25 g/L | ||
very high | rapid deterioration of kidney failure | nephrotic syndrome |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smarz-Widelska, I.; Chojęta, D.; Kozioł, M.M. The Role of Anti-PLA2R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice. Int. J. Environ. Res. Public Health 2022, 19, 5301. https://doi.org/10.3390/ijerph19095301
Smarz-Widelska I, Chojęta D, Kozioł MM. The Role of Anti-PLA2R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice. International Journal of Environmental Research and Public Health. 2022; 19(9):5301. https://doi.org/10.3390/ijerph19095301
Chicago/Turabian StyleSmarz-Widelska, Iwona, Dariusz Chojęta, and Małgorzata M. Kozioł. 2022. "The Role of Anti-PLA2R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice" International Journal of Environmental Research and Public Health 19, no. 9: 5301. https://doi.org/10.3390/ijerph19095301
APA StyleSmarz-Widelska, I., Chojęta, D., & Kozioł, M. M. (2022). The Role of Anti-PLA2R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice. International Journal of Environmental Research and Public Health, 19(9), 5301. https://doi.org/10.3390/ijerph19095301