Polychlorinated Biphenyls and Pulmonary Hypertension
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Study Design
2.3. Selection of PCBs
2.4. Sample Weights and Limits of Detection
2.5. Statistical Analysis
2.6. Non-Identifying Individual-Level Health Data including Demographics, Nutrition, and Other Factors
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marek, R.F.; Thorne, P.S.; Herkert, N.J.; Awad, A.M.; Hornbuckle, K.C. Airborne PCBs and OH-PCBs Inside and Outside Urban and Rural U.S. Schools. Environ. Sci. Technol. 2017, 51, 7853–7860. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Adamcakova-Dodd, A.; Flor, S.; Gosse, L.; Klenov, V.E.; Stolwijk, J.M.; Lehmler, H.J.; Hornbuckle, K.C.; Ludewig, G.; Robertson, L.W.; et al. Comprehensive Subchronic Inhalation Toxicity Assessment of an Indoor School Air Mixture of PCBs. Environ. Sci. Technol. 2020, 54, 15976–15985. [Google Scholar] [CrossRef] [PubMed]
- Das, J.K.; Felty, Q. PCB153-Induced Overexpression of ID3 Contributes to the Development of Microvascular Lesions. PLoS ONE 2014, 9, e104159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, S.; Dantzker, D.R.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Koerner, S.K.; et al. Primary pulmonary hypertension. A national prospective study. Ann. Intern. Med. 1987, 107, 216–223. [Google Scholar] [CrossRef]
- D’Alonzo, G.E.; Barst, R.J.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Kernis, J.T.; et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 1991, 115, 343–349. [Google Scholar] [CrossRef]
- Benza, R.L.; Miller, D.P.; Gomberg-Maitland, M.; Frantz, R.P.; Foreman, A.J.; Coffey, C.S.; Frost, A.; Barst, R.J.; Badesch, D.B.; Elliott, C.G.; et al. Predicting survival in pulmonary arterial hypertension: Insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010, 122, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Sitbon, O.; Yaïci, A.; Montani, D.; O’Callaghan, D.S.; Jaïs, X.; Parent, F.; Savale, L.; Natali, D.; Günther, S.; et al. French Pulmonary Arterial Hypertension Network. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur. Respir. J. 2010, 36, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Sitbon, O.; Chaouat, A.; Bertocchi, M.; Habib, G.; Gressin, V.; Yaici, A.; Weitzenblum, E.; Cordier, J.F.; Chabot, F.; et al. Pulmonary arterial hypertension in France: Results from a national registry. Am. J. Respir. Crit. Care Med. 2006, 173, 1023–1030. [Google Scholar] [CrossRef] [Green Version]
- Badesch, D.B.; Raskob, G.E.; Elliott, C.G.; Krichman, A.M.; Farber, H.W.; Frost, A.E.; Barst, R.J.; Benza, R.L.; Liou, T.G.; Turner, T.M.; et al. Pulmonary arterial hypertension: Baseline characteristics from the REVEAL Registry. Chest 2010, 137, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, E.D.; Cogan, J.D.; West, J.D.; Hedges, L.K.; Hamid, R.; Dawson, E.P.; Wheeler, L.A.; Parl, F.F.; Loyd, J.E.; Phillips, J.A., 3rd. Alterations in oestrogen metabolism: Implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur. Respir. J. 2009, 34, 1093–1099. [Google Scholar] [CrossRef] [Green Version]
- Irey, N.S.; Norris, H.J. Intimal vascular lesions associated with female reproductive steroids. Arch. Pathol. 1973, 96, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Taraseviciute, A.; Voelkel, N.F. Severe pulmonary hypertension in postmenopausal obese women. Eur. J. Med. Res. 2006, 11, 198–202. [Google Scholar]
- Evans, J.D.; Girerd, B.; Montani, D.; Wang, X.J.; Galiè, N.; Austin, E.D.; Elliott, G.; Asano, K.; Grünig, E.; Yan, Y.; et al. BMPR2 mutations and survival in pulmonary arterial hypertension: An individual participant data meta-analysis. Lancet Respir. Med. 2016, 4, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Girerd, B.; Montani, D.; Coulet, F.; Sztrymf, B.; Yaici, A.; Jaïs, X.; Tregouet, D.; Reis, A.; Drouin-Garraud, V.; Fraisse, A.; et al. Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am. J. Respir. Crit. Care Med. 2010, 181, 851–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.E.; Flanagan, J.A.; Sankelo, M.; Abdalla, S.A.; Rowell, J.; Machado, R.D.; Elliott, C.G.; Robbins, I.M.; Olschewski, H.; McLaughlin, V.; et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J. Med. Genet. 2003, 40, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintani, M.; Yagi, H.; Nakayama, T.; Saji, T.; Matsuoka, R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J. Med. Genet. 2009, 46, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Austin, E.D.; Ma, L.; LeDuc, C.; Berman Rosenzweig, E.; Borczuk, A.; Phillips, J.A.; Palomero, T.; Sumazin, P.; Kim, H.R.; Talati, M.H.; et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ. Cardiovasc. Genet. 2012, 5, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Roman-Campos, D.; Austin, E.D.; Eyries, M.; Sampson, K.S.; Soubrier, F.; Germain, M.; Trégouët, D.A.; Borczuk, A.; Rosenzweig, E.B.; et al. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 2013, 369, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Kumar, R.; Lee, M.H.; Mickael, C.; Graham, B.B. Common genetic variants in pulmonary arterial hypertension. Lancet Respir. Med. 2019, 7, 190–191. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; He, Y.Y.; Jiang, X.; Wang, Y.; Chen, J.W.; Zhao, J.H.; Ye, J.; Lian, T.Y.; Zhang, X.; Zhang, R.J.; et al. DNA methyltransferase 3B deficiency unveils a new pathological mechanism of pulmonary hypertension. Sci. Adv. 2020, 6, eaba2470. [Google Scholar] [CrossRef]
- Humbert, M.; Monti, G.; Brenot, F.; Sitbon, O.; Portier, A.; Grangeot-Keros, L.; Duroux, P.; Galanaud, P.; Simonneau, G.; Emilie, D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1995, 151, 1628–1631. [Google Scholar] [CrossRef] [PubMed]
- Soon, E.; Holmes, A.M.; Treacy, C.M.; Doughty, N.J.; Southgate, L.; Machado, R.D.; Trembath, R.C.; Jennings, S.; Barker, L.; Nicklin, P.; et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010, 122, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijalkowska, I.; Xu, W.; Comhair, S.A.; Janocha, A.J.; Mavrakis, L.A.; Krishnamachary, B.; Zhen, L.; Mao, T.; Richter, A.; Erzurum, S.C.; et al. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am. J. Pathol. 2010, 176, 1130–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.C.; Wedes, S.H.; Hsu, J.W.; Bohren, K.M.; Comhair, S.A.; Jahoor, F.; Erzurum, S.C. Arginine metabolic endotypes in pulmonary arterial hypertension. Pulm. Circ. 2015, 5, 124–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ussavarungsi, K.; Thomas, C.S.; Burger, C.D. Prevalence of metabolic syndrome in patients with pulmonary hypertension. Clin. Respir. J. 2017, 11, 721–726. [Google Scholar] [CrossRef]
- Zamanian, R.T.; Hansmann, G.; Snook, S.; Lilienfeld, D.; Rappaport, K.M.; Reaven, G.M.; Doyle, R.L. Insulin resistance in pulmonary arterial hypertension. Eur. Respir. J. 2009, 33, 318–324. [Google Scholar] [CrossRef]
- Burger, C.D.; Foreman, A.J.; Miller, D.P.; Safford, R.E.; McGoon, M.D.; Badesch, D.B. Comparison of Body Habitus in Patients with Pulmonary Arterial Hypertension Enrolled in the Registry to Evaluate Early and Long-term PAH Disease Management with Normative Values From the National Health and Nutrition Examination Survey. Mayo Clin. Proc. 2011, 86, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-Y.; Ma, L.-L.; Wang, L.-X. Relationship between serum uric acid levels and ventricular function in patients with idiopathic pulmonary hypertension. Exp. Clin. Cardiol. 2013, 18, e37–e39. [Google Scholar]
- Schachna, L.; Wigley, F.M.; Chang, B.; White, B.; Wise, R.A.; Gelber, A.C. Age and risk of pulmonary arterial hypertension in scleroderma. Chest 2003, 124, 2098–2104. [Google Scholar] [CrossRef]
- Li, J.H.; Safford, R.E.; Aduen, J.F.; Heckman, M.G.; Crook, J.E.; Burger, C.D. Pulmonary hypertension and thyroid disease. Chest 2007, 132, 793–797. [Google Scholar] [CrossRef]
- Nundlall, N.; Playford, D.; Strange, G.; Davis, T.; Davis, W.A. Prevalence, Incidence and Associates of Pulmonary Hypertension Complicating Type 2 Diabetes: Insights from the Fremantle Diabetes Study Phase 2 and National Echocardiographic Database of Australia. J. Clin. Med. 2021, 10, 4503. [Google Scholar] [CrossRef]
- CDC, Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals. 2013. Available online: http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Sep2013.pdf (accessed on 7 April 2022).
- Chen, H.A.; Hsu, T.C.; Yang, S.C.; Weng, C.T.; Wu, C.H.; Sun, C.Y.; Lin, C.Y. Incidence and survival impact of pulmonary arterial hypertension among patients with systemic lupus erythematosus: A nationwide cohort study. Arthritis Res. Ther. 2019, 21, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC, Centers for Disease Control and Prevention. CDC (Centers for Disease Control and Prevention). National Health and Nutrition Examination Survey Questionnaires, Datasets, and Related Documentation. 2012. Available online: https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm (accessed on 7 April 2022).
- CDC, Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: Analytic Guidelines, 1999-2010. Vital Health Stat 2(161). 2013. Available online: http://www.cdc.gov/nchs/data/series/sr_02/sr02_161.pdf (accessed on 7 April 2022).
- Ghosh, S.; Murinova, L.; Trnovec, T.; Loffredo, C.A.; Washington, K.; Mitra, P.S.; Dutta, S.K. Biomarkers linking PCB exposure and obesity. Curr. Pharm. Biotechnol. 2014, 15, 1058–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, S.; Strøm, M.; Olsen, S.F.; Dahl, R.; Hoffmann, H.J.; Granström, C.; Rytter, D.; Bech, B.H.; Linneberg, A.; Maslova, E.; et al. Prenatal exposure to persistent organic pollutants and offspring allergic sensitization and lung function at 20 years of age. Clin. Exp. Allergy 2016, 46, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Kreiss, K.; Zack, M.M.; Kimbrough, R.D.; Needham, L.L.; Smrek, A.L.; Jones, B.T. Association of blood pressure and polychlorinated biphenyl levels. Jama 1981, 245, 2505–2509. [Google Scholar] [CrossRef]
- Montani, D.; Lau, E.M.; Descatha, A.; Jais, X.; Savale, L.; Andujar, P.; Bensefa-Colas, L.; Girerd, B.; Zendah, I.; Le, P.J.; et al. Occupational exposure to organic solvents: A risk factor for pulmonary veno-occlusive disease. Eur. Respir. J. 2015, 46, 1721–1731. [Google Scholar] [CrossRef] [Green Version]
- Rallis, G.N.; Boumba, V.A.; Sakkas, V.A.; Fragkouli, K.; Siozios, G.; Albanis, T.A.; Vougiouklakis, T. Residues of selected polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) in postmortem lungs from Epirus, northwestern Greece. J. Toxicol. Environ. Health Part A 2014, 77, 767–775. [Google Scholar] [CrossRef]
- Carpenter, D.O. Exposure to and health effects of volatile PCBs. Rev. Environ. Health 2015, 30, 81–92. [Google Scholar] [CrossRef]
- Gustavsson, P.; Hogstedt, C. A cohort study of Swedish capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs). Am. J. Ind. Med. 1997, 32, 234–239. [Google Scholar] [CrossRef]
- Goncharov, A.; Haase, R.F.; Santiago-Rivera, A.; Morse, G.; McCaffrey, R.J.; Rej, R.; Carpenter, D.O.; Akwesasne Task Force on the Environment. High serum PCBs are associated with elevation of serum lipids and cardiovascular disease in a Native American population. Environ. Res. 2008, 106, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, S.; Kataoka, K. A longitudinal analysis on the association of serum lipids and lipoproteins concentrations with blood polychlorinated biphenyls level in chronic Yusho patients. Fukuoka Igaku Zasshi 2003, 94, 110–117. [Google Scholar] [PubMed]
- Sergeev, A.V.; Carpenter, D.O. Hospitalization rates for coronary heart disease in relation to residence near areas contaminated with persistent organic pollutants and other pollutants. Environ. Health Perspect. 2005, 113, 756–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, C.J.; Mainous, A.G.; Frithsen, I.L.; Player, M.S.; Matheson, E.M. Association of polychlorinated biphenyls with hypertension in the 1999–2002 National Health and Nutrition Examination Survey. Environ. Res. 2008, 108, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.-H.; Lee, D.-H.; Jacobs, D.R. Association between serum concentrations of persistent organic pollutants and self-reported cardiovascular disease prevalence: Results from the National Health and Nutrition Examination Survey, 1999–2002. Environ. Health Perspect. 2007, 115, 1204–1209. [Google Scholar] [CrossRef]
- Das, J.K.; Felty, Q. Microvascular Lesions by Estrogen-Induced ID3: Its Implications in Cerebral and Cardiorenal Vascular Disease. J. Mol. Neurosci. 2015, 55, 618–631. [Google Scholar] [CrossRef] [Green Version]
- Fukai, K.; Nakamura, A.; Hoshino, A.; Nakanishi, N.; Okawa, Y.; Ariyoshi, M.; Kaimoto, S.; Uchihashi, M.; Ono, K.; Tateishi, S.; et al. Pyk2 aggravates hypoxia-induced pulmonary hypertension by activating HIF-1α. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H951–H959. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Lee, I.K.; Porta, M.; Steffes, M.; Jacobs, D.R. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: Results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 2007, 50, 1841–1851. [Google Scholar] [CrossRef] [Green Version]
Risk Factors | NHANES Questionaire | Subjects with Risk Factors for PAH ** | Subjects with no Risk Factors for PAH |
---|---|---|---|
Systemic Hypertension | Yes/No | Yes = 1 | No = 0 (Zero) |
Diabetes | Yes/No | Yes = 1 | No = 0 (Zero) |
Thyroid Problems | Yes/No | Yes = 1 | No = 0 (Zero) |
Uric Acid Level | |||
Male | Normal (<419 mmol/L) Abnormal (>420 mmol/L) | Abnormal = 1 | Normal = 0 |
Female | Normal (<359 mmol/L) Abnormal (>360 mmol/L) | Abnormal = 1 | Normal = 0 |
Insulin Status * | Normal (<1.99, Insulin Sensitive (IS)) Abnormal (>2.00, Insulin Resistance (IR)) | IR = 1 | IS = 0 |
Female Hormone (Only for Female Participants). | Yes/No | Yes = 1 | No = 0 (Zero) |
Variable | Subjects with Combined Risk Factors for PAH n (%) | Subjects with No Risk Factors for PAH n (%) |
---|---|---|
Total Population (n,%) | 284 (5.08%) | 4210 (94.92%) |
Gender | ||
Male | 187 (3.16%) | 1930 (45.02%) |
Female | 97 (1.92%) | 2280 (49.9%) |
Race | ||
Non-Hispanic White | 161 (4.07%) | 2133 (67.78%) |
Other | 123 (1.01%) | 2077 (27.14%) |
Age (years) | ||
20–59 | 48 (2.38%) | 2851 (75.17%) |
60–74 | 130 (1.79%) | 854 (13.17%) |
≥75 | 70 (0.91%) | 505 (6.58%) |
BMI (kg/m2) | ||
Normal Weight | 36 (0.71%) | 1062 (34.88%) |
Overweight | 91 (1.99%) | 1112 (32.76%) |
Obese | 140 (3.78%) | 913 (25.89%) |
Income (yearly family income) | ||
USD 0–24,999 | 140 (1.91%) | 1633 (28.49%) |
USD 25,000–54,999 | 73 (1.53%) | 1216 (28.30%) |
USD 55,000–74,999 | 15 (0.53%) | 385 (10.96%) |
≥75,000 | 56 (1.11%) | 976 (27.16%) |
Education | ||
<12th Grade | 112 (1.42%) | 1342 (18.97%) |
12th Grade | 72 (1.54%) | 963 (23.59%) |
≥12th Grade | 100 (2.12%) | 1898 (52.34%) |
Smoking | ||
Yes | 47 (2.15%) | 693 (46.02%) |
No | 139 (6.45%) | 824 (45.38%) |
Alcohol use | ||
Yes | 0 | 20 (0.77%) |
No | 282 (6.59%) | 3140 (92.63%) |
Geometric Mean 2 (ng/g) (GSE) | |||||
---|---|---|---|---|---|
Analyte 1 | Controls/Subjects with Combined Risk Factors for PAH (n) | Control Unadjusted Levels (ng/g) of PCBs | Unadjusted Levels of PCBs in Subjects with Risk Factors for PAH | Control Age-Adjusted Levels (ng/g) of PCBs 3 | Age-Adjusted Levels of PCBs in Subjects with Risk Factors for PAH 3 |
PCB74 | 2904/272 | 7.49 (0.25) | 12.76 (0.70) a | 6.08 (0.20) | 8.62 (0.72) a |
PCB99 | 2874/267 | 6.03 (0.15) | 8.43 (0.33) a | 5.29 (0.14) | 6.35 (0.37) a |
PCB118 | 2904/272 | 8.85 (0.26) | 15.43 (0.84) a | 7.25 (0.20) | 10.11 (0.85) a |
PCB138 | 2908/272 | 22.54 (0.50) | 34.35 (1.59) a | 19.13 (0.44) | 23.56 (1.65) a |
PCB153 | 2908/273 | 32.64 (0.73) | 51.13 (2.42) a | 27.39 (0.63) | 35.48 (2.55) a |
PCB180 | 2905/273 | 16.79 (0.59) | 33.86 (2.39) a | 12.75 (0.49) | 19.45 (2.22) a |
Geometric Mean 2 (ng/g) (GSE, n) | ||||||
---|---|---|---|---|---|---|
Age: 20–59 Years | Age: 60–74 Years | Age: >75 Years | ||||
Analyte 1 | Control Levels (ng/g) of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH | Control Levels (ng/g) of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH | Control Levels (ng/g) of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH |
PCB74 | 6.08 (0.20, 2031) | 8.62 (0.72, 80) a | 15.15 (0.80, 572) | 15.32 (1.19, 125) | 22.65 (1.24, 301) | 24.75 (2.01, 67) |
PCB99 | 5.29 (0.13, 2011) | 6.35 (0.38, 76) a | 9.43 (0.45, 564) | 9.55 (0.78, 123) | 11.68 (0.64, 299) | 13.15 (1.14, 68) |
PCB118 | 7.25 (0.20, 2035) | 10.11 (0.85, 80) a | 17.51 (1.04, 569) | 19.11 (1.93, 125) | 24.71 (1.62, 300) | 30.54 (2.66, 67) |
PCB138 | 19.13 (0.44, 2033) | 23.56 (1.65, 80) a | 40.17 (1.64, 574) | 43.87 (2.42, 124) | 50.31 (2.83, 301) | 56.73 (3.57, 68) |
PCB153 | 27.39 (0.63, 2032) | 35.47 (2.55, 80) a | 60.88 (2.08, 574) | 64.06 (3.49, 125) | 76.17 (3.62, 302) | 84.56 (5.28, 68) |
PCB180 | 12.75 (0.49, 2036) | 19.45 (2.22, 79) a | 47.01 (1.39, 571) | 51.16 (3.22, 126) | 59.19 (3.34, 298) | 61.65 (5.31, 68) |
Geometric Mean 2 (ng/g) (GSE, n) | ||||
---|---|---|---|---|
Control Levels of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH | |||
Analyte 1 | Non-Hispanic White | Other | Non-Hispanic White | Other |
PCB74 | 8.13 (0.33, 1438) | 6.17 (0.17, 1466) | 12.86 (0.82, 155) a | 12.39 (1.08, 115) |
PCB99 | 6.11 (0.19, 1425) | 5.81 (0.17, 1449) | 7.97 (0.35, 152) | 10.46 (1.04, 115) b |
PCB118 | 9.11 (0.30, 1438) | 8.25 (0.28, 1466) | 15.07 (0.95, 154) | 16.86 (1.66, 118) |
PCB138 | 23.14 (0.59, 1445) | 21.14 (0.75, 1463) | 32.63 (1.55, 154) a | 41.59 (3.56, 118) b |
PCB153 | 34.03 (0.85, 1444) | 29.52 (1.03, 1464) | 49.02 (2.49, 155) a | 59.89 (4.89, 118) b |
PCB180 | 18.87 (0.79, 1437) | 12.69 (0.63, 1468) | 33.45 (2.78, 154) a | 35.41 (3.53, 119) b |
Mean (ng/g) 1 (95% CI) | |||
---|---|---|---|
Variable | Controls/Subjects with Combined Risk Factors for PAH (n) | Control Levels of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH |
Dioxin-like PCBs 2 | 2915/274 | 2.81 (2.75–2.87) | 3.36 (3.25–3.46) a |
Dioxin-like PCBs_50 3 | |||
<LOD to 50% | 362/22 | 2.59 (2.57–2.61) | 2.62 (2.56–2.68) |
≥50% | 1379/218 | 3.52 (3.49–3.56) | 3.73 (3.65–3.82) |
Gender | |||
Male | 1304/182 | 2.64 (2.56–2.70) | 3.16 (3.02–3.29) a |
Female | 1611/92 | 2.96 (2.89–3.03) | 3.69 (3.55–3.84) a |
Race | |||
Non-Hispanic White | 1446/155 | 2.86 (2.79–2.93) | 3.35 (3.23–3.48) |
Other | 1469/119 | 2.68 (2.62–2.75) | 3.38 (3.19–3.57) |
Age | |||
20–59 | 2039/80 | 2.61 (2.55–2.66) | 2.95 (2.79–3.11) |
60–74 | 574/126 | 3.49 (3.39–3.61) | 3.55 (3.37–3.73) |
≥75 | 302/68 | 3.87 (3.76–3.99) | 4.01 (3.86–4.17) |
BMI | |||
Normal Weight | 985/33 | 2.78 (2.69–2.86) | 3.44 (3.18–3.70) a |
Overweight | 1031/85 | 2.79 (2.71–2.86) | 3.36 (3.13–3.59) a |
Obese | 838/139 | 2.87 (2.79–2.95) | 3.29 (3.16–3.42) a |
Income | |||
USD 0–24,999 | 1094/136 | 2.84 (2.77–2.92) | 3.41 (3.23–3.56) a |
USD 25,000–54,999 | 838/69 | 2.77 (2.69–2.83) | 3.33 (3.08–3.57) a |
USD 55,000–74,999 | 275/14 | 2.72 (2.59–2.84) | 3.12 (2.77–3.47) |
≥75,000 | 708/55 | 2.86 (2.78–2.93) | 3.41 (3.15–3.66) a |
Education Level | |||
<12th Grade | 945/109 | 2.85 (2.75–2.96) | 3.49 (3.27–3.71) a |
12th Grade | 628/71 | 2.81 (2.72–2.90) | 3.13 (2.92–3.33) |
≥12th Grade | 1336/94 | 2.79 (2.72–2.86) | 3.44 (3.26–3.62) a |
Smoking | |||
Yes | 643/44 | 2.56 (2.49–2.63) | 3.08 (2.79–3.36) a |
No | 746/135 | 2.96 (2.86–3.07) | 3.37 (3.20–3.53) a |
Alcohol use | |||
Yes | 20/0 | 2.62 (2.27–2.97) | |
No | 2892/272 | 2.81 (2.75–2.87) | 3.36 (3.25–3.46) a |
Mean (ng/g) 1 (95% CI) | |||
---|---|---|---|
Variable | Controls/Subjects with Combined Risk Factors for PAH (n) | Control Levels of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH |
Non-Dioxin-like PCBs 2 | 2916/275 | 4.40 (4.36–4.45) | 4.88 (4.78–4.98) a |
Non-Dioxin-Like-PCBs 50 3 | |||
<LOD to 50% | 416/33 | 4.26 (4.24–4.28) | 4.29 (4.21–4.36) |
≥50% | 1404/217 | 5.12 (5.08–5.15) | 5.23 (5.16–5.29) |
Gender | |||
Male | 1304/183 | 4.41 (4.35–4.47) | 4.83 (4.69–4.97) a |
Female | 1612/92 | 4.39 (4.35–4.45) | 4.96 (4.84–5.07) a |
Race | |||
Non-Hispanic White | 1446/155 | 4.46 (4.40–4.51) | 4.84 (4.73–4.95) a |
Other | 1470/120 | 4.27 (4.19–4.35) | 5.00 (4.85–5.16) a |
Age | |||
20–59 | 2040/80 | 4.21 (4.16–4.26) | 4.48 (4.33–4.62) |
60–74 | 574/127 | 5.09 (5.02–5.15) | 5.14 (5.02–5.25) |
≥75 | 302/68 | 5.31 (5.22–5.40) | 5.41 (5.28–5.53) |
BMI | |||
Normal Weight | 985/34 | 4.43 (4.36–4.51) | 4.83 (4.58–5.08) a |
Overweight | 1032/85 | 4.41 (4.36–4.46) | 5.06 (4.89–5.23) a |
Obese | 838/139 | 4.34 (4.26–4.42) | 4.74 (4.61–4.86) a |
Income | |||
USD 0–24,999 | 1095/136 | 4.36 (4.29–4.42) | 4.94 (4.78–5.09) a |
USD 25,000–54,999 | 838/69 | 4.37 (4.29–4.44) | 4.86 (4.67–5.05) a |
USD 55,000–74,999 | 275/14 | 4.37 (4.28–4.46) | 4.60 (4.27–4.94) |
≥75,000 | 708/56 | 4.49 (4.44–4.56) | 4.92 (4.76–5.09) a |
Education Level | |||
<12th Grade | 945/109 | 4.49 (4.39–4.59) | 5.08 (4.89–5.27) a |
12th Grade | 629/71 | 4.38 (4.29–4.47) | 4.69 (4.49–4.90) |
≥12th Grade | 1336/95 | 4.38 (4.33–4.43) | 4.88 (4.71–5.04) a |
Smoking | |||
Yes | 643/45 | 4.31 (4.25–4.38) | 4.77 (4.50–5.04) a |
No | 746/135 | 4.63 (4.55–4.70) | 4.93 (4.78–5.09) |
Alcohol use | |||
Yes | 20/0 | 4.24 (3.83–4.64) | |
No | 2893/273 | 4.40 (4.36–4.45) | 4.88 (4.78–4.98) a |
Geometric Mean 2 (ng/g) (95% CI) | ||||
---|---|---|---|---|
Analyte 1 | Controls (n) | Subjects with Combined Risk Factors for PAH (n) | Control Levels of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH |
PCB74 | ||||
≥LOD | 1865 | 245 | 11.48 (10.84–12.16) | 15.91 (14.45–17.53) a |
PCB99 | ||||
≥LOD | 1958 | 226 | 8.36 (8.02–8.72) | 10.99 (9.96–12.14) a |
PCB118 | ||||
≥LOD | 1709 | 234 | 15.29 (14.65–15.95) | 21.47 (19.13–24.11) a |
PCB138 | ||||
≥LOD | 1900 | 240 | 33.58 (32.34–34.87) | 42.17 (38.56–46.13) a |
PCB153 | ||||
≥LOD | 1999 | 252 | 46.79 (44.96–48.69) | 58.30 (53.75–63.24) a |
PCB180 | ||||
≥LOD | 1822 | 248 | 37.90 (36.56–39.31) | 45.49 (41.36–50.02) a |
Geometric Mean 2 (ng/g) (95% CI) | ||||
---|---|---|---|---|
Analyte 1 | Controls (n) | Subjects with Combined Risk Factors for PAH (n) | Control Levels of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH |
PCB074 | ||||
<LOD to 50% | 499 | 22 | 5.83 (5.74–5.92) | 6.27 (5.89–6.68) |
≥50% | 1366 | 223 | 15.17 (14.48–15.89) | 17.73 (16.17–19.44) |
PCB099 | ||||
<LOD to 50% | 497 | 26 | 4.64 (4.59–4.69) | 4.68 (4.52–4.84) |
≥50% | 1461 | 200 | 10.53 (10.08–11.00) | 12.59 (11.56–13.71) |
PCB118 | ||||
<LOD to 50% | 328 | 23 | 7.23 (7.12–7.35) | 7.43 (7.10–7.78) |
≥50% | 1381 | 211 | 19.01 (18.24–19.82) | 24.21 (21.96–26.69) |
PCB138 | ||||
<LOD to 50% | 502 | 26 | 18.05 (17.79–18.31) | 18.89 (17.98–19.83) |
≥50% | 1398 | 214 | 43.59 (41.98–45.27) | 48.84 (44.69–53.36) |
PCB153 | ||||
<LOD to 50% | 586 | 33 | 25.43 (25.02–25.84) | 27.06 (25.53–29.23) |
≥50% | 1413 | 219 | 63.33 (61.34–65.38) | 69.33 (64.66–74.33) |
PCB180 | ||||
<LOD to 50% | 451 | 30 | 19.99 (19.69–20.29) | 20.13 (18.38–22.05) |
≥50% | 1371 | 218 | 49.33 (47.68–51.04) | 53.89 (49.86–58.23) |
Geometric Mean 2 (ng/g) (95% CI) | ||||
---|---|---|---|---|
Analyte 1 | Controls (n) | Subjects with Combined Risk Factors for PAH (n) | Control Levels of PCBs | Levels of PCBs in Subjects with Risk Factors for PAH |
PCB074 | ||||
<LOD to 50% | 499 | 22 | 5.83 (5.74–5.92) | 6.27 (5.89–6.82) |
50−75% | 708 | 92 | 10.48 (10.27–10.69) | 10.93 (10.21–11.69) |
≥75% | 658 | 131 | 25.57 (24.65–26.53) | 27.01 (24.96–29.62) a |
PCB099 | ||||
<LOD to 50% | 497 | 26 | 4.64 (4.59–4.68) | 4.67 (4.52–5.84) |
50−75% | 758 | 73 | 7.07 (6.95–7.19) | 7.48 (7.22–7.75) |
≥75% | 703 | 127 | 17.45 (16.57–18.37) | 18.43 (16.85–20.15) |
PCB118 | ||||
<LOD to 50% | 340 | 11 | 7.23 (7.11–7.35) | 7.43 (7.10–7.78) |
50−75% | 758 | 44 | 12.52 (12.26–12.79) | 13.72 (12.95–14.54) a |
≥75% | 700 | 90 | 34.14 (32.62–35.73) | 36.02 (32.43–39.99) a |
PCB138 | ||||
<LOD to 50% | 502 | 26 | 18.05 (17.79–18.31) | 18.89 (17.99–19.83) |
50−75% | 712 | 82 | 30.28 (29.75–30.82) | 30.99 (29.39–32.68) |
≥75% | 686 | 132 | 70.46 (67.69–73.34) | 72.14 (66.12–78.71) a |
PCB153 | ||||
<LOD to 50% | 586 | 33 | 25.43 (25.02–25.84) | 27.06 (25.05–29.23) |
50–75% | 713 | 88 | 45.42 (44.55–46.30) | 47.09 (45.28–48.98) |
≥75% | 700 | 131 | 99.09 (95.46–102.86) | 104.39 (96.94–112.41) a |
PCB180 | ||||
<LOD to 50% | 451 | 30 | 19.99 (19.69–20.29) | 20.13 (18.38–22.05) |
50–75% | 690 | 90 | 36.37 (35.58–37.19) | 36.73 (34.75–38.82) |
≥75% | 681 | 128 | 75.99 (73.65–78.40) | 81.67 (77.15–86.44) a |
Analyte 1 | Controls (n) | Subjects with Combined Risk Factors for PAH (n) | Unadjusted OR (95% CI) | Adjusted OR 2 (95% CI) | Adjusted OR 3 (95% CI) | Adjusted OR 4 (95% CI) |
---|---|---|---|---|---|---|
PCB74 | ||||||
≥50% | 1406 | 223 | 3.38 (3.37–3.40) | 4.00 (3.98–4.01) | 1.95 (1.94–1.96) | 2.31 (2.30–2.32) a |
PCB99 | ||||||
≥50% | 1845 | 200 | 2.32 (2.31–2.32) | 2.38 (2.37–2.39) | 1.44 (1.43–1.44) | 1.50 (1.49–1.50) a |
PCB118 | ||||||
≥50% | 1411 | 211 | 2.54 (2.53–2.55) | 2.83 (2.82–2.84) | 1.51 (1.50–1.51) | 1.67 (1.66–1.68) a |
PCB138 | ||||||
≥50% | 1837 | 214 | 2.19 (2.18–2.20) | 2.22 (2.22–2.23) | 1.27 (1.27–1.28) | 1.28 (1.27–1.28) a |
PCB153 | ||||||
≥50% | 1835 | 219 | 2.20 (2.19–2.21) | 2.18 (2.17–2.19) | 1.38 (1.380–1.389) | 1.37 (1.36–1.37) a |
PCB180 | ||||||
≥50% | 1832 | 218 | 1.98 (1.97–1.99) | 1.95 (1.95–1.96) | 1.37 (1.37–1.38) | 1.30 (1.29–1.30) a |
Analyte 1 | Controls (n) | Subjects with Combined Risk Factors for PAH (n) | Unadjusted OR (95% CI) | Adjusted OR 2 (95% CI) | Adjusted OR 3 (95% CI) | Adjusted OR 4 (95% CI) |
---|---|---|---|---|---|---|
PCB074 | ||||||
50−75% | 725 | 92 | 2.70 (2.69–2.71) | 3.02 (3.01–3.04) | 1.94 (1.93–1.95) | 2.18 (2.17–2.19) a |
≥75% | 681 | 131 | 4.32 (4.31–4.34) | 5.82 (5.79–5.84) | 1.98 (1.78–1.99) | 2.65 (2.63–2.66) a |
PCB099 | ||||||
50−75% | 953 | 73 | 1.77 (1.76–1.77) | 1.78 (1.77–1.78) | 1.38 (1.37–1.38) | 1.40 (1.40–1.41) a |
≥75% | 892 | 127 | 3.00 (2.99–3.01) | 3.18 (3.17–3.19) | 1.52 (1.51–1.52) | 1.62 (1.61–1.63) a |
PCB118 | ||||||
50−75% | 737 | 76 | 1.81 (1.80–1.82) | 1.93 (1.92–1.94) | 1.34 (1.34–1.36) | 1.43 (1.42–1.44) a |
≥75% | 674 | 135 | 3.55 (3.53–3.57) | 4.37 (4.35–4.39) | 2.55 (2.54–2.56) | 2.20 (2.56–2.59) a |
PCB138 | ||||||
50−75% | 941 | 82 | 1.82 (1.81–1.83) | 1.84 (1.83–1.85) | 1.21 (1.21–1.22) | 1.22 (1.21–1.23) a |
≥75% | 896 | 132 | 2.67 (2.66–2.68) | 2.74 (2.73–2.75) | 1.37 (1.37–1.38) | 1.37 (1.36–1.38) a |
PCB153 | ||||||
50−75% | 938 | 88 | 1.98 (1.97–1.99) | 1.99 (1.99–2.00) | 1.42 (1.41–1.43) | 1.43 (1.42–1.44) a |
≥75% | 897 | 131 | 2.46 (2.45–2.47) | 2.49 (2.48–2.50) | 1.30 (1.30–1.31) | 1.26 (1.25–1.27) a |
PCB180 | ||||||
50−75% | 935 | 90 | 1.75 (1.75–1.76) | 1.75 (1.74–1.76) | 1.31 (1.31–1.32) | 1.29 (1.28–1.29) a |
≥75% | 897 | 128 | 2.32 (2.31–2.33) | 2.26 (2.25–2.27) | 1.51 (1.50–1.52) | 1.33 (1.32–1.34) a |
Controls (n) | Subjects with Combined Risk Factors for PAH (n) | Unadjusted OR (95% CI) | Adjusted OR 1 (95% CI) | Adjusted OR 2 (95% CI) | Adjusted OR 3 (95% CI) | |
---|---|---|---|---|---|---|
Dioxin_Like_PCBs_50 5,6 | ||||||
≥50% | 1415 | 218 | 2.64 (2.63–2.66) | 2.95 (2.93–2.96) | 1.53 (1.52–1.54) | 1.73 (1.72–1.74) a |
Dioxin_Like_PCBs_LOD_to75 4,7 | ||||||
≥75% | 1112 | 101 | 2.51 (2.51–2.52) | 2.95 (2.95–2.97) | 1.51 (1.51–1.52) | 1.75 (1.75–1.76) a |
Non_Dioxin_Like_PCBs_50 5,6 | ||||||
≥50% | 1841 | 217 | 1.58 (1.79–1.59) | 1.59 (1.58–1.60) | 1.00 (1.00–1.01) | 0.99 (0.99–0.99) |
Non_Dioxin_Like_PCBs_LOD_to75 5,7 | ||||||
≥75% | 1487 | 118 | 1.51 (1.50–1.51) | 1.52 (1.52–1.53) | 1.00 (0.99–1.00) | 0.51 (0.95–0.96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaggaf, H.; Yoo, C.; Lucchini, R.G.; Black, S.M.; Hamed, M.; Minshawi, F.; Felty, Q. Polychlorinated Biphenyls and Pulmonary Hypertension. Int. J. Environ. Res. Public Health 2022, 19, 4705. https://doi.org/10.3390/ijerph19084705
Assaggaf H, Yoo C, Lucchini RG, Black SM, Hamed M, Minshawi F, Felty Q. Polychlorinated Biphenyls and Pulmonary Hypertension. International Journal of Environmental Research and Public Health. 2022; 19(8):4705. https://doi.org/10.3390/ijerph19084705
Chicago/Turabian StyleAssaggaf, Hamza, Changwon Yoo, Roberto G. Lucchini, Steven M. Black, Munerah Hamed, Faisal Minshawi, and Quentin Felty. 2022. "Polychlorinated Biphenyls and Pulmonary Hypertension" International Journal of Environmental Research and Public Health 19, no. 8: 4705. https://doi.org/10.3390/ijerph19084705
APA StyleAssaggaf, H., Yoo, C., Lucchini, R. G., Black, S. M., Hamed, M., Minshawi, F., & Felty, Q. (2022). Polychlorinated Biphenyls and Pulmonary Hypertension. International Journal of Environmental Research and Public Health, 19(8), 4705. https://doi.org/10.3390/ijerph19084705