Rostering in Air Traffic Control: A Narrative Review
Abstract
:1. Introduction
1.1. Task Characteristics
1.2. Physiological Needs
1.3. Organization of Rest Periods
2. Methods
3. Results
3.1. Shift Patterns Used by Leading Air Nation Service Providers
3.2. Shift Duration
3.3. Rest Period between Consecutive Shifts Cycles
3.4. Rest Period between Consecutive Shifts Cycles including Night Hours
3.5. Minimum Rest Periods following a Day Shift
3.6. Minimum Rest Periods after a Period of Service That Includes Night Hours
3.7. Breaks during the Shift: How Long to Work without a Break
3.8. Organization of Breaks during the Service Period
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Botella, J.; Contreras, M.J.; Shih, P.C.; Rubio, V. Two short tests fail to detect vigilance decrements. Eur. J. Psychol. Assess. 2001, 17, 48–55. [Google Scholar] [CrossRef]
- Eysenck, M.W. Attention and Arousal. In Cognition and Performance; Springer: Berlin, Germany, 1982. [Google Scholar]
- Mackworth, N.H. The breakdown of vigilance during prolonged visual search. Q. J. Exp. Psychol. 1948, 1, 6–21. [Google Scholar] [CrossRef]
- Åkerstedt, T. Shift work and disturbed sleep/wakefulness. Sleep Med. Rev. 1998, 2, 117–128. [Google Scholar] [CrossRef]
- Lavie, P.; Chillag, N.; Epstein, R.; Tzischinsky, O.; Givon, R.; Fuchs, S.; Shahal, B. Sleep disturbances in shift workers: A marker for maladaptation syndrome. Work Stress 1989, 3, 33–40. [Google Scholar] [CrossRef]
- Wedderburn, A.A.I. Social factors in satisfaction with swiftly rotating shifts. Occup. Psychol. 1967, 41, 85–107. [Google Scholar]
- Chang, Y.H.; Yang, H.H.; Hsu, W.J. Effects of work shifts on fatigue levels of air traffic controllers. J. Air Transp. Manag. 2019, 76, 1–9. [Google Scholar] [CrossRef]
- Folkard, S.; Robertson, K.A.; Spencer, M.B. A Fatigue/Risk index to assess work schedules. Somnol.-Schlafforschung Schlafmed. 2007, 11, 177–185. [Google Scholar] [CrossRef]
- Nealley, M.A.; Gawron, V.J. The effect of fatigue on air traffic controllers. Int. J. Aviat. Psychol. 2015, 25, 14–47. [Google Scholar] [CrossRef]
- Helton, W.S.; Dember, W.N.; Warm, J.S.; Matthews, G. Optimism, pessimism, and false failure feedback: Effects on vigilance performance. Curr. Psychol. 2000, 18, 311–325. [Google Scholar] [CrossRef]
- Helton, W.S.; Hollander, T.D.; Warm, J.S.; Tripp, L.D.; Parsons, K.; Matthews, G.; Dember, W.N.; Parasuraman, R.; Hancock, P.A. The abbreviated vigilance task and cerebral hemodynamics. J. Clin. Exp. Neuropsychol. 2007, 29, 545–552. [Google Scholar] [CrossRef]
- Davies, D.R.; Parasuraman, R. The Psychology of Vigilance; Academic Press: London, UK, 1982. [Google Scholar]
- Parasuraman, R. Vigilance, monitoring and search. In Handbook of Human Perception and Performance: Vol. II. Cognitive Processes and Performance; Boff, K.R., Kaufman, L., Thomas, J.P., Eds.; Wiley: New York, NY, USA, 1986; Volume 2, pp. 43.1–43.39. [Google Scholar]
- Warm, J.S. An introduction to vigilance. In Sustained Attention in Human Performance; John Wiley & Sons: Hoboken, NJ, USA, 1984; pp. 1–14. [Google Scholar]
- Warm, J.S. Vigilance and target detection. In Workload Transition: Implications for Individual and Team Performance; Huey, B.M., Wickens, C., Eds.; The National Academies Press: Washington, DC, USA, 1993; Volume 1, pp. 139–170. [Google Scholar]
- Gander, P.H.; Graeber, R.C.; Foushee, H.C.; Lauber, J.K.; Connell, L.J. Crew factors in flight operations 2: Psychophysiological responses to short-haul air transport operations. In NASA Technical Memorandum 108856; NASA Ames Research Center: Mountain View, CA, USA, 1994. [Google Scholar]
- Rosa, R.R.; Bonnet, M.H.; Cole, L.L. Work schedule and task factors in upper-extremity fatigue. Hum. Factors 1998, 40, 150–158. [Google Scholar] [CrossRef]
- Margison, G. Fatigue Management Guide for Air Traffic Service Providers; ICAO: Montreal, ON, Canada, 2016; Available online: https://www.unitingaviation.com/publications/FM-Guide-Air-Traffic-SP/#page=1 (accessed on 11 February 2022).
- Bongo, M.; Seva, R. Effect of Fatigue in Air Traffic Controllers’ Workload, Situation Awareness, and Control Strategy. Int. J. Aerosp. Psychol. 2021, 32, 1–24. [Google Scholar] [CrossRef]
- Li, W.C.; Kearney, P.; Zhang, J.; Hsu, Y.L.; Braithwaite, G. The analysis of occurrences associated with air traffic volume and air traffic controllers’ alertness for fatigue risk management. Risk Anal. 2021, 41, 1004–1018. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Kecklund, G.; Gillberg, M.; Lowden, A.; Axelsson, J. Sleepiness and days of recovery. Transport. Res. F Traffic 2000, 3, 251–261. [Google Scholar] [CrossRef]
- Buser, D.; Sterchi, Y.; Schwaninger, A. Effects of Time on Task, Breaks, and Target Prevalence on Screener Performance in an X-ray Image Inspection Task. In Proceedings of the International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019. [Google Scholar] [CrossRef]
- Costa, G.; Anelli, M.M.; Castellini, G.; Fustinoni, S.; Neri, L. Stress and sleep in nurses employed in “3 × 8” and “2 × 12” fast rotating shift schedules. Chronobiol. Int. 2014, 31, 1169–1178. [Google Scholar] [CrossRef]
- Eldevik, M.F.; Flo, E.; Moen, B.E.; Pallesen, S.; Bjorvatn, B. Insomnia, excessive sleepiness, excessive fatigue, anxiety, depression and shift work disorder in nurses having less than 11 hours in-between shifts. PLoS ONE 2013, 8, e70882. [Google Scholar] [CrossRef]
- Baker, K.; Olson, J.; Morisseau, D. Work practices, fatigue, and nuclear power plant safety performance. Hum. Factors 1994, 36, 244–257. [Google Scholar] [CrossRef]
- Duchon, J.C.; Keran, C.M.; Smith, T.J. Extended workdays in an underground mine: A work performance analysis. Hum. Factors 1994, 36, 258–268. [Google Scholar] [CrossRef]
- Dababneh, A.J.; Swanson, N.; Shell, R.L. Impact of added rest breaks on the productivity and well being of workers. Ergonomics 2001, 44, 164–174. [Google Scholar] [CrossRef]
- Signal, T.L.; Gander, P.H.; Anderson, H.; Brash, S. Scheduled napping as a countermeasure to sleepiness in air traffic controllers. J. Sleep Res. 2009, 18, 11–19. [Google Scholar] [CrossRef]
- Totterdell, P.; Spelten, E.; Smith, L.; Barton, J.; Folkard, S. Recovery from work shifts: How long does it take? J. Appl. Psychol. 1995, 80, 43. [Google Scholar] [CrossRef]
- Bendak, S. 12-h workdays: Current knowledge and future directions. Work Stress 2003, 17, 321–336. [Google Scholar] [CrossRef]
- Johnson, M.D.; Sharit, J. Impact of a change from an 8-h to a 12-h shift schedule on workers and occupational injury rates. Int. J. Ind. Ergon. 2001, 27, 303–319. [Google Scholar] [CrossRef]
- Rosa, R.R. Extended workshifts and excessive fatigue. J. Sleep Res. 1995, 4, 51–56. [Google Scholar] [CrossRef]
- Cruz, C.E.; Della Rocco, P.S. Sleep Patterns in Air Traffic Controllers Working Rapidly Rotating Shifts: A Field Study (No. DOT/FAA/AM-95/12); Federal Aviation Administration Washington DC Office of Aviation Medicine: Washington, DC, USA, 1995.
- Tucker, P.; Smith, L.; Macdonald, I.; Folkard, S. Distribution of rest days in 12 hour shift systems: Impacts on health, wellbeing, and on shift alertness. Occup. Environ. Med. 1999, 56, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, R.T.; Edwards, R.S.; Haines, E. Performance following a night of reduced sleep. Psychon. Sci. 1966, 5, 471–472. [Google Scholar] [CrossRef] [Green Version]
- Heimdal, J.O.; Strand, S.; Skraaning, G.; Mellett, Ú.; Vogt, J.D. Shiftwork Practices Study—ATM and Related Industries; Eurocontrol: Brussels, Belgium, 2006. [Google Scholar]
- Colligan, M.J.; Tepas, D.I. The stress of hours of work. Am. Ind. Hyg. Assoc. J. 1986, 47, 686–695. [Google Scholar] [CrossRef]
- Latack, J.C.; Foster, L.W. Implementation of compressed work schedules: Participation and job redesign as critical factors for employee acceptance. Pers. Psychol. 1985, 38, 75–92. [Google Scholar] [CrossRef]
- Rosa, R.R.; Colligan, M.J. Long workdays versus restdays: Assessing fatigue and alertness with a portable performance battery. Hum. Factors 1988, 30, 305–317. [Google Scholar] [CrossRef]
- Williamson, A.M.; Gower, C.G.I.; Clarke, B.C. Changing the hours of shiftwork: A comparison of 8-and 12-hour shift rosters in a group of computer operators. Ergonomics 1994, 37, 287–298. [Google Scholar] [CrossRef]
- Rosa, R.R. Performance, alertness, and sleep after 3–5 years of 12 h shifts: A follow-up study. Work Stress 1991, 5, 107–116. [Google Scholar] [CrossRef]
- Rosa, R.R.; Bonnet, M.H. Performance and alertness on 8 h and 12 h rotating shifts at a natural gas utility. Ergonomics 1993, 36, 1177–1193. [Google Scholar] [CrossRef]
- Rosa, R.R.; Colligan, M.J.; Lewis, P. Extended workdays: Effects of 8-hour and 12-hour rotating shift schedules on performance, subjective alertness, sleep patterns, and psychosocial variables. Work Stress 1989, 3, 21–32. [Google Scholar] [CrossRef]
- Rosa, R.R.; Colligan, M. Shift schedule, hours worked, and circadian rhythm influences on performance/alertness. Sleep Res. 1987, 16, 811. [Google Scholar]
- Akerstedt, T. Work injuries and time of day-national data. Shiftw. Int. Newsl. 1995, 2, 12. [Google Scholar]
- Folkard, S. Black times: Temporal determinants of transport safety. Accid. Anal. Prev. 1997, 29, 417–430. [Google Scholar] [CrossRef]
- Folkard, S.; Åkerstedt, T.; Macdonald, I.; Tucker, P.; Spencer, M. Refinement of the three-process model of alertness to account for trends in accident risk. In Shiftwork in the 21st Century: Challenge for Research and Practice; Hornberger, S., Knauth, P., Costa, G., Folkard, S., Eds.; Peter Lang: Frankfurt am Main, Germany, 2000; Volume 21, pp. 49–54. [Google Scholar]
- Nachreiner, F.; Akkermann, S.; Haenecke, K. Fatal accident risk as a function of hours of work. In Shiftwork in the 21st Century: Challenges for Research and Practice; Hornberger, S., Knauth, P., Costa, G., Folkard, S., Eds.; Peter Lang Publishing: Frankfurt am Main, Germany, 2000; pp. 19–24. [Google Scholar]
- Goode, J.H. Are pilots at risk of accidents due to fatigue? J. Saf. Res. 2003, 34, 309–313. [Google Scholar] [CrossRef]
- Macdonald, W.; Bendak, S. Effects of workload level and 8-versus 12-h workday duration on test battery performance. Int. J. Ind. Ergon. 2000, 26, 399–416. [Google Scholar] [CrossRef]
- Schroeder, D.J.; Rosa, R.R.; Witt, L.A. Some effects of 8-vs. 10-hour work schedules on the test performance/alertness of air traffic control specialists. Int. J. Ind. Ergon. 1998, 21, 307–321. [Google Scholar] [CrossRef]
- Fischer, D.; Lombardi, D.A.; Folkard, S.; Willetts, J.; Christiani, D.C. Updating the “Risk Index”: A systematic review and meta-analysis of occupational injuries and work schedule characteristics. Chronobiol. Int. 2017, 34, 1423–1438. [Google Scholar] [CrossRef]
- Spencer, M.B.; Robertson, K.A.; Folkard, S. The Development of a Fatigue/Risk Index for Shiftworkers; Research Report 446; Health and Safety Executive: Norwich, UK, 2006.
- Folkard, S.; Tucker, P. Shift work, safety and productivity. Occup. Med. C 2003, 53, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Knauth, P.; Rutenfranz, J.; Herrmann, G.; Poeppl, S.J. Re-entrainment of body temperature in experimental shift-work studies. Ergonomics 1978, 21, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Kecklund, G.; Åkerstedt, T. Effects of timing of shifts on sleepiness and sleep duration. J. Sleep Res. 1995, 4, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Kecklund, G.; Åkerstedt, T.; Göranson, B.; Söderberg, K. Omläggning av skiftschema: Konsekvenser för välbefinnande, hälsa, sömn/vakenhet och arbetstrivsel. In Resultatrapport 2: Frågeformulär, Dagbok och Hälsoundersökning; Stress Research Reports; Karolinska Institute: Stockholm, Sweden, 1994. [Google Scholar]
- Saldivar, J.; Hoffman, S.; Melton, C. Sleep in Air Traffic Controllers; Techical Report No. DOT/FAA/AM-77-5; Federal Aviation Administration, Office of Aviation Medicine: Washington, DC, USA, 1977.
- Härmä, M.; Karhula, K.; Ropponen, A.; Puttonen, S.; Koskinen, A.; Ojajärvi, A.; Hakola, T.; Pentti, J.; Oksanen, T.; Vahtera, J.; et al. Association of changes in work shifts and shift intensity with change in fatigue and disturbed sleep: A within-subject study. Scand. J. Work Environ. Health 2018, 44, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Folkard, S.; Condon, R. Night shift paralysis in air traffic control officers. Ergonomics 1987, 30, 1353–1363. [Google Scholar] [CrossRef]
- Ferrara, M.; De Gennaro, L. How much sleep do we need? Sleep Med. Rev. 2001, 5, 155–180. [Google Scholar] [CrossRef]
- Hudson, A.N.; Van Dongen, H.P.A.; Honn, K.A. Sleep deprivation, vigilant attention, and brain function: A review. Neuropsychopharmacology 2020, 45, 21–30. [Google Scholar] [CrossRef]
- Van Dongen, H.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Vedaa, Ø.; Harris, A.; Bjorvatn, B.; Waage, S.; Sivertsen, B.; Tucker, P.; Pallesen, S. Systematic review of the relationship between quick returns in rotating shift work and health-related outcomes. Ergonomics 2016, 59, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, J.; Åkerstedt, T.; Kecklund, G.; Lowden, A. Tolerance to shift work-how does it relate to sleep and wakefulness? Int. Arch. Occup. Environ. Health. 2004, 77, 121–129. [Google Scholar] [CrossRef]
- Karhula, K.; Härmä, M.; Sallinenac, M.; Hublina, C.; Virkkalaa, J.; Kivimäki, M.; Vahteraaef, J.; Puttonen, S. Association of job strain with working hours, shift-dependent perceived workload, sleepiness and recovery. Ergonomics 2013, 56, 1640–1651. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.; Folkard, S. Advancing versus delaying shift systems. Ergonomics 1993, 36, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Lowden, A.; Kecklund, G.; Axelsson, J.; Åkerstedt, T. Change from an 8-hour shift to a 12-hour shift, attitudes, sleep, sleepiness and performance. Scand. J. Work Environ. Health 1998, 24, 69–75. [Google Scholar] [PubMed]
- Hakola, T.; Paukkonen, M.; Pohjonen, T. Less quick returns—greater well-being. Ind. Health 2010, 48, 390–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandolin, I.; Huida, O. Individual flexibility: An essential prerequisite in arranging shift schedules for midwives. J. Nurs. Manag. 1996, 4, 213–217. [Google Scholar] [CrossRef]
- Roach, G.D.; Reid, K.J.; Dawson, D. The amount of sleep obtained by locomotive engineers: Effects of break duration and time of break onset. Occup. Environ. Med. 2003, 60, 17. [Google Scholar] [CrossRef]
- ATM Shift Management in Organisation & Human Performance; SKYbrary, Eurocontrol: Brussels, Belgium, 2006.
- Rupp, T.L.; Wesensten, N.J.; Bliese, P.D.; Balkin, T.J. Banking sleep: Realization of benefits during subsequent sleep restriction and recovery. Sleep 2009, 32, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Dinges, D.F.; Graeber, R.C.; Rosekind, M.R.; Samel, A.; Wegmann, H.M. Principles and guidelines for duty and rest scheduling in commercial aviation. In NASA Technical Memorandum 11040; NASA Ames Research Center: Mountain View, CA, USA, 1996. [Google Scholar]
- Tucker, P. The impact of rest breaks upon accident risk, fatigue and performance: A review. Work Stress 2003, 17, 123–137. [Google Scholar] [CrossRef]
- Folkard, S.; Lombardi, D.A. Toward a “risk index” to assess work schedules. Chronobiol. Int. 2004, 21, 1063–1072. [Google Scholar] [CrossRef]
- Chavaillaz, A.; Schwaninger, A.; Michel, S.; Sauer, J. Work design for airport security officers: Effects of rest break schedules and adaptable automation. Appl. Ergon. 2019, 79, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, V.D. Situational awareness in air traffic control. In Situational Awareness in Complex Systems, Proceedings of a CAHFA conference, Orlando, FL, USA, 1–3 February 1993; Gilson, R.D., Garland, D.J., Koonce, J.M., Eds.; Embry-Riddle Aeronautical University Press: Daytona Beach, FL, USA, 1994; pp. 171–178. [Google Scholar]
- Roske-Hofstrand, R. Raising awareness for fatigue among air traffic controllers. In Proceeding of the Eighth International Symposium on Aviation Psychology, Columbus, OH, USA, 24–27 April 1995; Rakovan, J., Ed.; Ohio State University: Columbus, OH, USA, 1995; pp. 985–991. [Google Scholar]
- Tucker, P.; Folkard, S.; Macdonald, I. Rest breaks and accident risk. Lancet 2003, 361, 680. [Google Scholar] [CrossRef]
- Tucker, P.; Lombardi, D.; Smith, L.; Folkard, S. The impact of rest breaks on temporal trends in injury risk. Chronobiol. Int. 2006, 23, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Della Rocco, P.S.; Comperatore, C.; Caldwell, L.; Cruz, C.E. The Effects of Napping on Night Shift Performance; No. DOT/FAA/AM-00/10; Civil Aeromedical Institute: Oklahoma City, OK, USA, 2000.
- Caldwell, J.; Caldwell, J. Fatigue in Aviation: A Guide to Staying Awake at the Stick (Studies in Aviation Psychology and Human Factors); Ashgate Publishing: Aldershot, UK, 2003; pp. 127–128. [Google Scholar]
- Dinges, D.F.; Orne, M.T.; Orne, E.C. Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Trougakos, J.P.; Beal, D.J.; Green, S.G.; Weiss, H.M. Making the break count: An episodic examination of recovery activities, emotional experiences, and positive affective displays. Acad. Manag. J. 2008, 51, 131–146. [Google Scholar] [CrossRef]
- Hagemann, T. Belastung, Beanspruchung und Vigilanz in den Flugsicherungsdiensten–unter Besonderer Berücksichtigung der Towerlotsentätigkeiten. Ph.D. Thesis, Universität Dortmund, Dortmund, Germany, 2000. [Google Scholar]
- Della Rocco, P.S.; Cruz, C.E.; Schroeder, D.J. Fatigue and performance in the air traffic control environment. Neurological Limitations of Aircraft Operations: Human Performance Implications. In Proceedings of the Aerospace Medical Panel Symposium of the Advisory Group for Aerospace Research and Development (AGARD), Holn, Germany, 9–12 October 1995. [Google Scholar]
- Della Rocco, P.S.; Cruz, C.E. Shift Work, Age, and Performance: Investigation of the 2-2-1 Shift Schedule Used in Air Traffic Control Facilities 1; The Sleep/Wake Cycle (No. DOT/FAA/AM-95/19); Federal Aviation Administration Washington DC Office of Aviation Medicine: Washington, DC, USA, 1995.
- Rhodes, W.; Heslegrave, R.; Ujimoto, K.V.; Hahn, K.; Zanon, S.; Marino, A.; Coté, K.; Szlapetis, I.; Pearl, S. Impact of shiftwork and overtime on air traffic controllers. In Phase II: Analysis of Shift Schedule Effects on Sleep, Performance, Physiology and Social Activities; Techical Report No. TP 12816E; Transportation Development Centre: Montreal, ON, Canada, 1996. [Google Scholar]
- Rhodes, W.; Szlapetis, I.; Hahn, K.; Heslegrave, R.; Ujimoto, K.V. A Study of the Impact of Shift Work and Overtime on Air Traffic Controllers. In Phase 1: Determining Appropriate Research Tools and Issues; Techical Report No. TP 12257E; Transportation Development Centre: Montreal, ON, Canada, 1996. [Google Scholar]
- Benson, A.J. Technical evaluation. Rest and Activity Cycles for the Maintenance of Efficiency of Personnel Concerned with Military Flight Operations. In Proceedings of the AGARD Conference No. 74, Oslo, Norway, 13–15 May 1970; pp. 11.1–11.4. [Google Scholar]
- Costa, G. Evaluation of workload in air traffic controllers. Ergonomics 1993, 36, 1111–1120. [Google Scholar] [CrossRef]
- Costa, G. Fatigue and biological rhythms. In Handbook of Aviation Human Factors; Garland, D.J., Wise, J.A., Hopkin, V.D., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1999; pp. 235–255. [Google Scholar]
- Grandjean, E.P.; Wotzka, G.; Schaad, R.; Gilgen, A. Fatigue and stress in air traffic controllers. Ergonomics 1971, 14, 159–165. [Google Scholar] [CrossRef]
- Luna, T.D.; French, J.; Mitcha, J.L. A study of USAF air traffic controller shiftwork: Sleep, fatigue, activity, and mood analyses. Aviat. Space Environ. Med. 1997, 68, 18–23. [Google Scholar]
- Wickens, C.D.; Mavor, A.S.; McGee, J.P. Flight to the Future: Human Factors in Air Traffic Control; The National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
Shift | Work Hours | Break Time | Total Break Time |
---|---|---|---|
DS 1 | 07:30–18:30 | 13:00–14:00 | 1 h |
DS 2 | 07:30–18:30 | 13:00–14:00 | 1 h |
DS 3 | 07:30–18:30 | 13:30–14:30 | 1 h |
DS 4 | 07:30–17:30 | 12:00–13:00 | 1 h |
DS 5 | 08:00–18:00 | 12:30–13:30 | 1 h |
DS 6 | 08:00–17:00 | 14:00–15:00 | 1 h |
NS 1 | 19:00–08:00 | 23:30–04:30 | 5 h |
NS 2 | 18:00–06:00 | 23:00–02:00, 04:30–06:00 | 4.5 h |
NS 3 | 18:00–08:00 | 03:00–08:00 | 5 h |
NS 4 | 18:30–08:30 | 02:00–07:00 | 5 h |
NS 5 | 18:00–08:00 | 22:00–03:00 | 5 h |
Rest Period between Consecutive Shifts | Reference |
---|---|
2 days off after 6 days of service | Fischer and colleagues (2017) |
7 working days and 2 days off between 2 shift cycles | Folkard and Tucker (2003) |
2 days off after periods involving a sequence of long working hours | Åkerstedt and colleagues (2000) |
2 days off after 3 days of service | Totterdell and colleagues (1995) |
2 days of rest after a 60 h working week | Rosa and Colligan (1988) |
Rostering Features | |
---|---|
Shift duration | 8 ÷ 12 h |
Rest period between consecutive shifts | 2 days off after 3/7 days of service |
Rest period between consecutive shifts including night hours | 2 days off after 2 consecutive periods of service including night hours 4 days off after an extended period of service including night hours |
Minimum rest periods following a day shift | 11 ÷ 12 h [65,72] |
Minimum rest periods after a period of service that includes night hours | 24 ÷ 36 h [73,75] |
Breaks during the shift: How long to work without a break | Day shift 4 ÷ 4.5 h [7,54] Night shift 4 h [7] |
Organization of breaks during the service period | 2 ÷ 3 h [84,87] |
Minimum rest periods after a period of service that includes night hours | 24 ÷ 36 h [73,75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terenzi, M.; Ricciardi, O.; Di Nocera, F. Rostering in Air Traffic Control: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 4625. https://doi.org/10.3390/ijerph19084625
Terenzi M, Ricciardi O, Di Nocera F. Rostering in Air Traffic Control: A Narrative Review. International Journal of Environmental Research and Public Health. 2022; 19(8):4625. https://doi.org/10.3390/ijerph19084625
Chicago/Turabian StyleTerenzi, Michela, Orlando Ricciardi, and Francesco Di Nocera. 2022. "Rostering in Air Traffic Control: A Narrative Review" International Journal of Environmental Research and Public Health 19, no. 8: 4625. https://doi.org/10.3390/ijerph19084625
APA StyleTerenzi, M., Ricciardi, O., & Di Nocera, F. (2022). Rostering in Air Traffic Control: A Narrative Review. International Journal of Environmental Research and Public Health, 19(8), 4625. https://doi.org/10.3390/ijerph19084625