Interaction between Single Nucleotide Polymorphisms (SNP) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Plasma Arsenic and the Effect on Estimated Glomerular Filtration Rate (eGFR)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Arsenic with Addendum to the Profile; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2016.
 - Peters, B.A.; Liu, X.; Hall, M.N.; Ilievski, V.; Slavkovich, V.; Siddique, A.B.; Alam, S.; Islam, T.; Graziano, J.H.; Gamble, M.V. Arsenic exposure, inflammation, and renal function in Bangladeshi adults: Effect modification by plasma glutathione redox potential. Free Radic. Biol. Med. 2015, 85, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 - Lash, L.H. Environmental and Genetic Factors Influencing Kidney Toxicity. Semin. Nephrol. 2019, 39, 132–140. [Google Scholar] [CrossRef] [PubMed]
 - Peters, B.A.; Hall, M.N.; Liu, X.; Slavkovich, V.; Ilievski, V.; Alam, S.; Siddique, A.B.; Islam, T.; Graziano, J.H.; Gamble, M.V. Renal function is associated with indicators of arsenic methylation capacity in Bangladeshi adults. Environ. Res. 2015, 143, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 - Moody, E.C.; Coca, S.G.; Sanders, A.P. Toxic Metals and Chronic Kidney Disease: A Systematic Review of Recent Literature. Curr. Environ. Health Rep. 2018, 5, 453–463. [Google Scholar] [CrossRef]
 - Chen, T.H.; Huang, J.J.; Lee, H.Y.; Kung, W.S.; Luo, K.H.; Lu, J.Y.; Chuang, H.Y. The Association of Renal Function and Plasma Metals Modified by EGFR and TNF-α Gene Polymorphisms in Metal Industrial Workers and General Population. Int. J. Environ. Res. Public Health 2021, 18, 8965. [Google Scholar] [CrossRef]
 - Choudhury, T.R.; Zaman, S.Z.; Chowdhury, T.I.; Begum, B.A.; Islam, M.A.; Rahman, M.M. Status of metals in serum and urine samples of chronic kidney disease patients in a rural area of Bangladesh: An observational study. Heliyon 2021, 7, e08382. [Google Scholar] [CrossRef]
 - Balakumar, P.; Kaur, J. Arsenic exposure and cardiovascular disorders: An overview. Cardiovasc. Toxicol. 2009, 9, 169–176. [Google Scholar] [CrossRef]
 - Tumolo, M.R.; Panico, A.; De Donno, A.; Mincarone, P.; Leo, C.G.; Guarino, R.; Bagordo, F.; Serio, F.; Idolo, A.; Grassi, T.; et al. The expression of microRNAs and exposure to environmental contaminants related to human health: A review. Int. J. Environ. Health Res. 2022, 32, 332–354. [Google Scholar] [CrossRef]
 - National Center for Biotechnology Information (NCBI). TNF Tumor Necrosis Factor [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/7124?report=full_report (accessed on 27 January 2022).
 - Jalili, C.; Kazemi, M.; Cheng, H.; Mohammadi, H.; Babaei, A.; Taheri, E.; Moradi, S. Associations between exposure to heavy metals and the risk of chronic kidney disease: A systematic review and meta-analysis. Crit. Rev. Toxicol. 2021, 51, 165–182. [Google Scholar] [CrossRef]
 - Farkhondeh, T.; Naseri, K.; Esform, A.; Aramjoo, H.; Naghizadeh, A. Drinking water heavy metal toxicity and chronic kidney diseases: A systematic review. Rev. Environ. Health 2021, 36, 359–366. [Google Scholar] [CrossRef]
 - Pober, J.S. Effects of tumour necrosis factor and related cytokines on vascular endothelial cells. In Proceedings of the Ciba Found Symposium, London, UK, 15–17 April 1986; pp. 170–184. [Google Scholar]
 - Huang, Y.C.; Chang, W.C.; Shan, Y.H.; Lin, C.Y.; Wang, C.L.; Dai, C.Y.; Ho, C.K.; Wu, M.T.; Chuang, H.Y. Toxic Metals Increase Serum Tumor Necrosis Factor-alpha Levels, Modified by Essential Elements and Different Types of Tumor Necrosis Factor-alpha Promoter Single-nucleotide Polymorphisms. Epidemiology 2017, 28, S113–S120. [Google Scholar] [CrossRef] [PubMed]
 - Mehaffey, E.; Majid, D.S.A. Tumor necrosis factor-alpha, kidney function, and hypertension. Am. J. Physiol. Renal Physiol. 2017, 313, F1005–F1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 - Wu, C.C.; Huang, Y.K.; Chung, C.J.; Huang, C.Y.; Pu, Y.S.; Shiue, H.S.; Lai, L.A.; Lin, Y.C.; Su, C.T.; Hsueh, Y.M. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol. Appl. Pharmacol. 2013, 272, 30–36. [Google Scholar] [CrossRef] [PubMed]
 - Umapathy, D.; Krishnamoorthy, E.; Mariappanadar, V.; Viswanathan, V.; Ramkumar, K.M. Increased levels of circulating (TNF-alpha) is associated with (-308G/A) promoter polymorphism of TNF-alpha gene in Diabetic Nephropathy. Int. J. Biol. Macromol. 2018, 107, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
 - Zubor, P.; Dokus, K.; Zigo, I.; Skerenova, M.; Pullmann, R.; Danko, J. TNF alpha G308A gene polymorphism has an impact on renal function, microvascular permeability, organ involvement and severity of preeclampsia. Gynecol. Obstet. Investig. 2014, 78, 150–161. [Google Scholar] [CrossRef] [PubMed]
 - Susantitaphong, P.; Perianayagam, M.C.; Tighiouart, H.; Liangos, O.; Bonventre, J.V.; Jaber, B.L. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron Clin. Pract. 2013, 123, 67–73. [Google Scholar] [CrossRef] [Green Version]
 - Taal, M.W. Chronic kidney disease: Towards a risk-based approach. Clin. Med. 2016, 16, s117–s120. [Google Scholar] [CrossRef] [Green Version]
 - Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
 - Radhakrishna Rao, C.; Shalabh; Toutenburg, H.; Heumann, C. (Eds.) The Generalized Linear Regression Model. In Linear Models and Generalizations: Least Squares and Alternatives; Springer: Berlin/Heidelberg, Germany, 2008; pp. 143–221. [Google Scholar]
 - Banerjee, N.; Nandy, S.; Kearns, J.K.; Bandyopadhyay, A.K.; Das, J.K.; Majumder, P.; Basu, S.; Banerjee, S.; Sau, T.J.; States, J.C.; et al. Polymorphisms in the TNF-alpha and IL10 gene promoters and risk of arsenic-induced skin lesions and other nondermatological health effects. Toxicol. Sci. 2011, 121, 132–139. [Google Scholar] [CrossRef] [Green Version]
 - Chang, C.F.; Lu, T.M.; Yang, W.C.; Lin, S.J.; Lin, C.C.; Chung, M.Y. Gene polymorphisms of interleukin-10 and tumor necrosis factor-alpha are associated with contrast-induced nephropathy. Am. J. Nephrol. 2013, 37, 110–117. [Google Scholar] [CrossRef]
 - Ellingjord-Dale, M.; Lee, E.; Couto, E.; Ozhand, A.; Qureshi, S.; Hofvind, S.; Van Den Berg, D.J.; Akslen, L.A.; Grotmol, T.; Ursin, G. Polymorphisms in hormone metabolism and growth factor genes and mammographic density in Norwegian postmenopausal hormone therapy users and non-users. Breast Cancer Res. 2012, 14, R135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 - Rothman, K.J.; Lash, T.L.; VanderWeele, T.J.; Haneuse, S. Modern Epidemiology, 4th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021. [Google Scholar]
 - Health Promotion Administration (HPA); Ministry of Health and Welfare. Health Education and Tobacco Control. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1718&pid=9913 (accessed on 27 January 2022).
 

| Factors | Mean (±SD)/n (%) | Median | IQR | 
|---|---|---|---|
| Sex | |||
| Male | 275 (55.78%) | - | - | 
| Female | 218 (44.33%) | - | - | 
| Age | 48.27 (±10.91) | 47 | 14 | 
| BMI | 24.43 (±3.46) | 24.15 | 4.21 | 
| Blood pressure | |||
| Systolic BP | 115.24 (±17.51) | 112 | 22 | 
| Diastolic BP | 71.73 (±11.31) | 70 | 16 | 
| Smoking | |||
| Non-smoking | 361 (73.23%) | - | - | 
| Smoking | 132 (26.77%) | - | - | 
| Chronic disease | |||
| Diabetes | 28 (5.68%) | - | - | 
| Hyperlipidemia | 69 (14.00%) | - | - | 
| Hypertension | 56 (11.36%) | - | - | 
| Kidney stones | 36 (7.30%) | - | - | 
| Blood test | |||
| BUN a (mg/dL) | 13.05 (±3.48) | 12.6 | 4.5 | 
| Creatinine (mg/dL) | 0.78 (±0.19) | 0.79 | 0.29 | 
| HbA1c a (%) | 5.66 (±0.55) | 5.6 | 0.4 | 
| Plasma-As a (µg/L) | 4.04 (±1.79) | 3.59 | 1.69 | 
| ln(Plasma-As) | 1.33 (±0.36) | 1.28 | 0.45 | 
| Kidney function | |||
| CKDEPI eGFR | 101.36 (±14.25) | 102.74 | 18.06 | 
| SNP | Number (%) | H–W a | MAF a | CKDEPI eGFR b | Plasma As b | 
|---|---|---|---|---|---|
| rs1799964 I | 493 | 0.1498 | 0.18 | ||
| C/C | 20 (4.06%) | 101.28 (±13.59) | 3.89 (±2.09) | ||
| C/T | 134 (27.18%) | 102.03 (±13.90) | 4.40 (±2.12) | ||
| T/T | 339 (68.76%) | 101.11 (±14.45) | 3.91 (±1.61) | ||
| rs1800629 I | 493 | 0.0023 | 0.11 | ||
| A/A | 13 (2.64%) | 100.21 (±9.99) | 3.66 (±0.88) | ||
| A/G | 85 (17.24%) | 99.98 (±14.72) | 3.97 (±1.59) | ||
| G/G | 395 (80.12%) | 101.70 (±14.27) | 4.07 (±1.85) | ||
| rs1800610 II | 492 | 0.8703 | 0.17 | ||
| A/A | 13 (2.64%) | 104.10 (±16.59) | 4.31 (±2.12) | ||
| A/G | 137 (27.79%) | 99.39 (±15.50) | 4.15 (±1.97) | ||
| G/G | 342 (69.37%) | 102.03 (±13.59) | 3.99 (±1.71) | ||
| rs3093662 II | 493 | 0.2132 | 0.03 | ||
| G/G | 1 (0.20%) | 120.21 (-) | 2.34 (-) | ||
| G/A | 23 (4.67%) | 100.76 (±16.61) | 4.07 (±1.09) | ||
| A/A | 469 (95.13%) | 101.35 (±14.13) | 4.05 (±1.82) | ||
| rs3093668 III | 493 | 0.0233 | 0.02 | ||
| C/C | 1 (0.20%) | 0.7141 c | 120.21 (-) | 2.34 (-) | |
| C/G | 15 (3.04%) | 97.09 (±16.31) | 3.99 (±1.07) | ||
| G/G | 477 (96.75%) | 101.46 (±14.16) | 4.05 (±1.81) | ||
| rs769177 IV | 493 | 0.4242 | 0.06 | ||
| T/T | 1 (0.20%) | 110.84 (-) | 4.06 (-) | ||
| T/C | 62 (12.58%) | 104.90 (±13.45) | 3.85 (±1.71) | ||
| C/C | 430 (87.22%) | 100.83 (±14.31) | 4.07 (±1.81) | ||
| rs769176 IV | 491 | 0.7311 | 0.02 | ||
| T/T | 0 (0%) | - | - | ||
| T/C | 15 (3.04%) | 98.33 (±13.83) | 3.95 (±1.12) | ||
| C/C | 476 (96.55%) | 101.40 (±14.26) | 4.05 (±1.81) | 
| CKDEPI eGFR | β (SE) | 
|---|---|
| ln(Plasma-As) | −7.92 (1.70) ** | 
| BMI | −0.41 (0.18) * | 
| Diabetes | |
| Diabetes (vs. Non-Diabetes) | −5.00 (2.66) | 
| Hypertension | |
| Hypertension (vs. Non-Hypertension) | −7.08 (1.56) ** | 
| Hyperlipidemia | |
| Hyperlipidemia (vs. Non-Hyperlipidemia) | −1.69 (2.65) | 
| Kidney Stones | |
| Kidney Stones (vs. Non-Kidney Stone)s | −1.32 (2.34) | 
| Smoking | |
| Smoking (vs. Non-smoking) | −1.24 (1.44) | 
| Dependent Variable | CKDEPI eGFR | β (SE) | 
|---|---|---|
| Model 1 | ln(Plasma-As) | −8.20 (1.71) ** | 
| rs1799964 | ||
| CC (vs. TT) | −0.05 (3.09) | |
| CT (vs. TT) | 1.79 (1.38) | |
| Model 2 | ln(Plasma-As) | −7.98 (1.70) ** | 
| rs1800629 | ||
| AA (vs. GG) | −3.38 (3.80) | |
| AG (vs. GG) | −1.22 (1.61) | |
| Model 3 | ln(Plasma-As) | −7.93 (1.70) ** | 
| rs1800610 | ||
| AA (vs. GG) | 2.86 (3.81) | |
| AG (vs. GG) | −2.42 (1.36) | |
| Model 4 | ln(Plasma-As) | −7.84 (1.70) ** | 
| rs3093662 | ||
| GG + GA (vs. AA) | 0.65 (2.84) | |
| Model 5 | ln(Plasma-As) | −7.93 (1.70) ** | 
| rs3093668 | ||
| CC + CG (vs. GG) | −2.33 (3.43) | |
| Model 6 | ln(Plasma-As) | −7.74 (1.69) ** | 
| rs769177 | ||
| TT + TC (vs.CC) | 4.02 (1.81) * | |
| Model 7 | ln(Plasma-As) | −7.83 (1.70) ** | 
| rs769176 | ||
| TC (vs. CC) | −2.71 (3.53) | |
| Interaction models | ||
| Model 8 | ln(Plasma-As) | −6.47 (1.87) * | 
| rs1800629 | ||
| AA (vs. GG) | −12.08 (20.67) | |
| AG (vs. GG) | 11.41 (6.23) | |
| ln(Plasma-As) × rs1800629 | ||
| AA (vs. GG) | 6.93 (15.99) | |
| AG (vs. GG) | −9.59 (4.56) * | |
| Model 9 | ln(Plasma-As) | −8.29 (1.71) ** | 
| rs769176 | ||
| TC (vs. CC) | −41.32 (18.59) * | |
| ln(Plasma-As) x rs769176 | ||
| TC (vs. CC) | 28.83 (13.63) * | 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.-J.; Lin, K.-L.; Lee, J.-H.; Luo, K.-H.; Chen, T.-H.; Yang, C.-C.; Chuang, H.-Y. Interaction between Single Nucleotide Polymorphisms (SNP) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Plasma Arsenic and the Effect on Estimated Glomerular Filtration Rate (eGFR). Int. J. Environ. Res. Public Health 2022, 19, 4404. https://doi.org/10.3390/ijerph19074404
Fang Y-J, Lin K-L, Lee J-H, Luo K-H, Chen T-H, Yang C-C, Chuang H-Y. Interaction between Single Nucleotide Polymorphisms (SNP) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Plasma Arsenic and the Effect on Estimated Glomerular Filtration Rate (eGFR). International Journal of Environmental Research and Public Health. 2022; 19(7):4404. https://doi.org/10.3390/ijerph19074404
Chicago/Turabian StyleFang, Yi-Jen, Kuan-Lin Lin, Jyuhn-Hsiarn Lee, Kuei-Hau Luo, Tzu-Hua Chen, Chen-Cheng Yang, and Hung-Yi Chuang. 2022. "Interaction between Single Nucleotide Polymorphisms (SNP) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Plasma Arsenic and the Effect on Estimated Glomerular Filtration Rate (eGFR)" International Journal of Environmental Research and Public Health 19, no. 7: 4404. https://doi.org/10.3390/ijerph19074404
APA StyleFang, Y.-J., Lin, K.-L., Lee, J.-H., Luo, K.-H., Chen, T.-H., Yang, C.-C., & Chuang, H.-Y. (2022). Interaction between Single Nucleotide Polymorphisms (SNP) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Plasma Arsenic and the Effect on Estimated Glomerular Filtration Rate (eGFR). International Journal of Environmental Research and Public Health, 19(7), 4404. https://doi.org/10.3390/ijerph19074404
        
                                                
