The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV
Abstract
1. Introduction
2. Materials and Methods
2.1. Investigating Group and Procedures
2.2. Ethichal Considerations
2.3. Measurement Instruments and Apparatus
2.4. Intervention
Week 3 | Week 10 |
Locomotor and physical skills (7 min) | Locomotor and physical skills (7 min) |
Crab walking | Crab walking through and over different objects (hoops, frisbees) |
Baboon walking | Baboon walking through and over different objects (hoops, frisbees) |
Frog jumping | Frog jumping over frisbees |
Hopping | Hopping through objects |
Galloping | Galloping through objects |
Reflexes and Vestibular (5 min) | Reflexes and Vestibular (5 min) |
Boat rolling | Boat rolling on ball |
Aeroplane | Aeroplane on ball |
Trunk rolls | Trunk rolls |
Fine motor (10 min) | Fine motor (10 min) |
Pressing sticks into clay and removing them again—using different fingers | Attaching laundry pegs to shapes—using different fingers |
Threading a string through holes in a piece of cardboard | Threading string through different forms of noodles |
Locomotor and physical skills (5 min) | Locomotor and physical skills (5 min) |
Two-leg jumping | Two-leg jumping—over and on small benches |
Single-leg jumping | One-leg jumping—around small benches |
Learning steps for skipping—hoop | Skipping |
Rest period (3 min) | Rest period (3 min) |
Stationary (10 min) | Stationary (10 min) |
Standing on 1 leg with eyes open, eyes closed | Frisbee—on different body parts |
Walking on ropes placed in forms—forwards, backwards, oblique, legs crossed | Standing on frisbee on one leg with eyes open, eyes closed |
Walking on edge of hoops—forwards, backwards, oblique, legs crossed | |
Object manipulation (10 min) | Object manipulation (10 min) |
Tossing up a large ball and catching it | Tossing up a ball and catching it—bigger children use tennis balls |
Rolling a ball forward | Rolling ball through markers |
Rolling a ball into goal area | Kicking a ball softly |
Kicking a ball | Kicking a ball through markers |
Kicking a ball into the goal area | Tossing a ball into a bucket—increase distance |
Fine motor (5 min) | Fine motor (5 min) |
Coloring a picture | Duplicating, cutting out and coloring a picture |
Game (5 min) | Game (5 min) |
Parachute game | Parachute game with balls |
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chemtob, D.; Srour, S. Epidemiology of HIV infection among Israeli Arabs. Public Health 2005, 119, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Van Rie, A.; Harrington, P.R.; Dow, A.; Robertson, K. Neurologic and neurodevelopmental manifestations of pediatric HIV/AIDS: A global perspective. Eur. J. Paediatr. Neurol. 2007, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- South African Department of Health. National HIV and Syphilis Antenatal Sero-Prevalence Survey in South Africa: 2002. Available online: https://www.westerncape.gov.za/text/2004/10/2003_antenatal_survey.pdf (accessed on 9 November 2021).
- Potterton, J.; Stewart, A.; Cooper, P.; Becker, P. The effect of a basic home stimulation programme on the development of young children infected with HIV. Dev. Med. Child Neurol. 2009, 52, 547–551. [Google Scholar] [CrossRef] [PubMed]
- South African Health Review. Publisher Health Systems Trust Publication. 2002. Available online: http://www.hst.org.za (accessed on 20 October 2004).
- UNAIDS. Fact Sheet-Latest Global and Regional Statistics on the Status of the AIDS Epidemic 2020. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 9 November 2021).
- Davis-McFarland, E. Language and Oral-Motor Development and Disorders in Infants and Young Toddlers with Human Immunodeficiency Virus. Semin. Speech Lang. 2000, 21, 0019–0036. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.L.; Armstrong, D.; Cohen, D.; Lai, S.; Hardy, M.D.; Swales, T.P.; Morrow, C.J.; Scott, G.B. The effects of HIV on cognitive and motor development in children born to HIV-seropositive woman with no reported drug use: Birth to 24 months. Pediatrics 1995, 96, 1078–1082. [Google Scholar] [CrossRef]
- Ruel, T.D.; Boivin, M.J.; Boal, H.E.; Bangirana, P.; Charlebois, E.; Havlir, D.V.; Rosenthal, P.J.; Dorsey, G.; Achan, J.; Akello, C.; et al. Neurocognitive and Motor Deficits in HIV-Infected Ugandan Children With High CD4 Cell Counts. Clin. Infect. Dis. 2012, 54, 1001–1009. [Google Scholar] [CrossRef]
- Boivin, M.J.; Barlow-Mosha, L.; Chernoff, M.C.; Laughton, B.; Zimmer, B.; Joyce, C.; Bwakura-Dangarembizi, M.; Ratswana, M.; Abrahams, N.; Fairlie, L.; et al. Neuropsychological performance in African children with HIV enrolled in a multisite antiretroviral clinical trial. AIDS 2018, 32, 189–204. [Google Scholar] [CrossRef]
- Blanchette, N.; Smith, M.L.; Fernandes-Penney, A.; King, S.; Read, S. Cognitive and motor development in children with vertically transmitted HIV infection. Brain Cogn. 2001, 46, 50–53. [Google Scholar] [CrossRef][Green Version]
- Phillips, N.; Amos, T.; Kuo, C.; Hoare, J.; Ipser, J.; Thomas, K.G.F.; Stein, D.J. HIV-Associated Cognitive Impairment in Perinatally Infected Children: A Meta-analysis. Pediatrics 2016, 138, e20160893. [Google Scholar] [CrossRef]
- McHenry, M.S.; McAteer, C.I.; Oyungu, E.; McDonald, B.C.; Bosma, C.B.; Mpofu, P.B.; Deathe, A.R.; Vreeman, R.C. Neurodevelopment in Young Children Born to HIV-Infected Mothers: A Meta-analysis. Pediatrics 2018, 141, e20172888. [Google Scholar] [CrossRef]
- Pearson, D.A.; McGrath, N.; Nozyce, M.; Nichols, S.L.; Raskino, C.; Brouwers, P.; Lifschitz, M.C.; Baker, C.J.; Englund, J.A.; for the Pediatric AIDS Clinical Trials 152 Study Team. Predicting HIV Disease Progression in Children Using Measures of Neuropsychological and Neurological Functioning. Pediatrics 2000, 106, e76. [Google Scholar] [CrossRef] [PubMed]
- Wachsler-Felder, J.L.; Golden, C.J. Neuropsychological consequences of HIV in children: A review of current literature. Clin. Psychol. Rev. 2002, 22, 441–462. [Google Scholar] [CrossRef]
- Crystal, S.; Fleishman, J.A.; Hays, R.D.; Shapiro, M.F.; Bozzette, S.A. Physical and role functioning among persons with HIV: Results from a nationally representative survey. Med. Care 2000, 38, 1210–1223. [Google Scholar] [CrossRef] [PubMed]
- Brady, M. Treatment of human immunodeficiency virus infection and its associated complications in children. J. Clin. Pharmacol. 1994, 34, 17–29. [Google Scholar] [CrossRef]
- Stein, Z.A.; Tsai, R.-T.; Singh, T.; Tsai, W.-Y.; Kuhn, L.; Williams, R. Changes Over Time in Survival of Children After AIDS Diagnosis in New York City. Am. J. Prev. Med. 1995, 11, 30–33. [Google Scholar] [CrossRef]
- Wilfert, C.M. Prevention of Perinatal Transmission of Human Immunodeficiency Virus: A Progress Report 2 Years After Completion of AIDS Clinical Trials Group Trial 076. Clin. Infect. Dis. 1996, 23, 438–441. [Google Scholar] [CrossRef][Green Version]
- Parks, R.A.; Danoff, J.V. Motor Performance Changes in Children Testing Positive for HIV Over 2 Years. Am. J. Occup. Ther. 1999, 53, 524–528. [Google Scholar] [CrossRef][Green Version]
- De Waal, E.; Pienaar, A.E.; Coetzee, D. Influence of Different Visual Perceptual Constructs on Academic Achievement Among Learners in the NW-CHILD Study. Percept. Mot. Ski. 2018, 125, 966–988. [Google Scholar] [CrossRef]
- De Waal, E.; Pienaar, A.E. Influences of Early Motor Proficiency and Socioeconomic Status on the Academic Achievement of Primary School Learners: The NW-CHILD Study. Day Care Early Educ. 2020, 48, 671–682. [Google Scholar] [CrossRef]
- Boivin, M.J.; Ruiseñor-Escudero, H.; Familiar-Lopez, I. CNS Impact of Perinatal HIV Infection and Early Treatment: The Need for Behavioral Rehabilitative Interventions Along with Medical Treatment and Care. Curr. HIV/AIDS Rep. 2016, 13, 318–327. [Google Scholar] [CrossRef]
- Strehlau, R.; Kuhn, L.; Abrams, E.J.; Coovadia, A. HIV-associated neurodevelopmental delay: Prevalence, predictors and persistence in relation to antiretroviral therapy initiation and viral suppression. Child Care Health Dev. 2016, 42, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Lowick, S.; Sawry, S.; Meyers, T. Neurodevelopmental delay among HIV-infected preschool children receiving antiretroviral therapy and healthy preschool children in Soweto, South Africa. Psychol. Health Med. 2012, 17, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Fundarò, C.; Miccinesi, N.; Baldieri, N.F.; Genovese, O.; Rendeli, C.; Segni, G. Cognitive impairment in school-age children with asymptomatic HIV infection. AIDS Patient Care STDs 1998, 12, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Laughton, B.; Cornell, M.; Boivin, M.; Van Rie, A. Neurodevelopment in perinatally HIV-infected children: A concern for adolescence. J. Int. AIDS Soc. 2013, 16, 18603. [Google Scholar] [CrossRef]
- Sherr, L.; Croome, N.; Castaneda, K.P.; Bradshaw, K.; Romero, R.H. Developmental challenges in HIV infected children—An updated systematic review. Child. Youth Serv. Rev. 2014, 45, 74–89. [Google Scholar] [CrossRef]
- Fiore, T.; Flanigan, T.; Hogan, J.; Cram, R.; Schuman, P.; Schoenbaum, E.; Solomon, L.; Moore, J. HIV infection in families of HIV-positive and ‘at-risk’ HIV-negative women. AIDS Care 2001, 13, 209–214. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Temple, J.A.; Robertson, D.L.; Mann, E.A. Long term effects of an earlychidhood intervention on educational achievement and juvenile arrest: A 15 year follow –up of low –income children in public schools. JAMA 2001, 285, 2339–2346. [Google Scholar] [CrossRef]
- Wagner, G.; Rabkin, J.; Rabkin, R. Exercise as a mediator of psychological and nutritional effects of testosterone therapy in HIV+ men. Med. Sci. Sports Exerc. 1998, 30, 811–817. [Google Scholar]
- Folio, M.R.; Fewell, R.R. Peabody Developmental Motor Scales, 2nd ed.; PRO-ED: Austin, TX, USA, 2000. [Google Scholar]
- Topend Sports. Available online: https://www.topendsports.com/testing/tests/index.htm (accessed on 4 March 2002).
- Statsoft. Statistica for Windows, Release 5.5: General Conversions and Statistics; StatSoft: Tulsa, OK, USA, 2006. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Science; Erlbaim: New York, NY, USA, 1988. [Google Scholar]
- Steyn, H.S. Praktiese Beduidendheid. Die gebruik van Effekgroottes; Wetenskaplike Bydraes, Reeks B: Natuurwetenskappe nr. 117., PU vir CHO; Publikasiebeheer-komitee: Potchefstroom, South Africa, 1999. [Google Scholar]
- Botha, J.E.; Pienaar, A.E. The motor and physical development of 2 to 6-year old children infected with HIV. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2008, 30, 39–52. [Google Scholar] [CrossRef]
- Taverna, L.; Bellavere, M.; Tremolada, M.; Santinelli, L.; Rudelli, N.; Mainardi, M.; Onder, G.; Putti, M.C.; Biffi, A.; Tosetto, B. Oncological Children andWell-Being: Occupational Performance and HRQOL Change after Fine Motor Skills Stimulation Activities. Pediatr. Rep. 2021, 13, 383–400. [Google Scholar] [CrossRef]
- Amundson, S.J.; Weil, M. Prewriting and handwriting skills. In Occupational Therapy for Children; Case-Smith, J., Allen, A.S., Pratt, P.N., Eds.; Mosby: St. Louis, MO, USA, 1996; pp. 524–541. [Google Scholar]
- Cantell, M.H.; Smyth, M.M.; Ahonen, T.P. Clumsiness in adolescence: Educational, motor, and social outcomes of motor delay detected at 5 years. Adapt. Phys. Act. Q. 1994, 11, 115–129. [Google Scholar] [CrossRef]
- Pienaar, A.E.; Van Rensburg, E.; Smit, A. The effect of a Kinderkinetics programme on components of children’s perceptual-motor and cognitive functioning. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2011, 33, 113–118. [Google Scholar]
- Castro-Piñero, J.; González-Montesinos, J.L.; Mora, J.; Keating, X.D.; Girela-Rejón, M.J.; Sjöström, M.; Ruiz, J.R. Percentile Values for Muscular Strength Field Tests in Children Aged 6 to 17 Years: Influence of Weight Status. J. Strength Cond. Res. 2009, 23, 2295–2310. [Google Scholar] [CrossRef] [PubMed]
- Shor-Posner, G.; Miguez, M.-J.; Hernandez-Reif, M.; Pérez-Then, E.; Fletcher, M. Massage Treatment in HIV-1 Infected Dominican Children: A Preliminary Report on the Efficacy of Massage Therapy to Preserve the Immune System in Children Without Antiretroviral Medication. J. Altern. Complement. Med. 2004, 10, 1093–1095. [Google Scholar] [CrossRef]
- Lima, L.R.A.D.; Teixeira, D.M.; Santos, E.C.M.D.; Petroski, E.L. Contribution of Physical Education in the fields of sport, physical activity, health and education for children and young people living with HIV. Rev. Bras. Cineantropometria Desempenho Hum. 2016, 18, 243–258. [Google Scholar]
Experimental Group (n = 9) | Control Group (n = 13) | Total | Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Boys | Girls | Boys | Girls | |||||||
N | Age | n | Age | n | Age | n | Age | n | Age | |
HIV infected | 1 | 46.0 | 3 | 50.33 | 7 | 53.14 | 0 | - | 11 | 51.73 |
HIV affected | 3 | 46.0 | 2 | 37.5 | 3 | 51.67 | 3 | 40.33 | 11 | 44.45 |
Total | 4 | 5 | 10 | 3 | 22 |
Infected Participants (n = 11) | Affected Participants (n = 11) | ||||
---|---|---|---|---|---|
M | SD | M | SD | p | |
Age | 51.73 | 10.15 | 44.45 | 10.76 | 0.1187 |
Stationary-S | 8.18 | 2.79 | 9.45 | 3.05 | 0.3187 |
Stationary-P | 31.64 | 25.46 | 42.64 | 30.96 | 0.3736 |
Locomotor-S | 7.45 | 2.30 | 9.09 | 2.74 | 0.1444 |
Locomotor-P | 25.00 | 21.48 | 37.64 | 26.13 | 0.2297 |
Object manip-S | 9.45 | 2.21 | 9.91 | 2.43 | 0.6508 |
Object manip-P | 43.91 | 25.34 | 49.00 | 27.25 | 0.6549 |
Grasping-S | 9.64 | 1.96 | 11.64 | 3.17 | 0.0905 |
Grasping-P | 44.82 | 22.19 | 64.91 | 27.15 | 0.0719 |
Visual–motor-S | 9.45 | 3.33 | 8.09 | 2.26 | 0.2739 |
Visual–motor-P | 46.18 | 34.43 | 30.55 | 23.52 | 0.2280 |
Gross motor-P | 30.55 | 24.29 | 42.09 | 25.63 | 0.2910 |
Gross motor-Q | 89.82 | 13.48 | 96.64 | 11.31 | 0.2134 |
Fine motor-P | 43.82 | 25.80 | 47.64 | 30.41 | 0.7541 |
Fine motor-Q | 97.00 | 11.30 | 99.18 | 15.12 | 0.7056 |
Total motor-P | 34.45 | 24.35 | 43.82 | 28.36 | 0.4159 |
Total motor-Q | 92.18 | 12.60 | 97.18 | 13.56 | 0.3810 |
Handgrip strength-R | 4.05 | 1.68 | 3.77 | 2.26 | 0.7515 |
Handgrip strength-L | 3.27 | 1.75 | 3.50 | 2.10 | 0.7855 |
Standing long-jump | 42.09 | 23.12 | 44.14 | 34.07 | 0.8708 |
Intervention Group (n = 9) | Control Group (n = 13) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-T | Post-T | Pre-T | Post-T | |||||||
M | SD | M | SD | P | M | SD | M | SD | p | |
Stationary-S | 7.44 | 2.30 | 8.11 | 2.85 | 0.5632 | 9.77 | 3.00 | 9.69 | 2.72 | 0.8506 |
Stationary-P | 25.00 | 17.79 | 33.44 | 25.29 | 0.3718 | 45.54 | 31.57 | 45.08 | 28.91 | 0.9172 |
Locomotor-S | 8.22 | 3.35 | 10.00 | 2.40 | 0.1614 | 8.31 | 2.10 | 8.23 | 2.35 | 0.7938 |
Locomotor-P | 29.67 | 29.73 | 50.56 | 25.88 | 0.0869 | 32.46 | 20.84 | 32.69 | 22.94 | 0.9370 |
Object manip-S | 9.44 | 2.01 | 10.78 | 2.22 | 0.2249 | 9.85 | 2.51 | 9.92 | 1.93 | 0.8078 |
Object manip-P | 43.67 | 22.54 | 57.33 | 23.60 | 0.2419 | 48.38 | 28.59 | 49.00 | 23.37 | 0.8449 |
Grasping-S | 9.44 | 2.19 | 10.89 | 2.52 | * 0.0499 | 11.46 | 2.90 | 11.15 | 2.03 | 0.4874 |
Grasping-P | 44.44 | 25.27 | 60.11 | 26.72 | 0.0694 | 62.08 | 25.41 | 61.92 | 21.35 | 0.9733 |
Visual–motor-S | 7.78 | 2.77 | 9.11 | 2.47 | 0.2133 | 9.46 | 2.82 | 8.92 | 2.96 | 0.3156 |
Visual–motor-P | 28.11 | 28.23 | 37.78 | 24.35 | 0.3613 | 45.46 | 29.94 | 39.69 | 31.02 | 0.3407 |
Gross motor-P | 31.44 | 23.29 | 45.22 | 21.50 | 0.1965 | 39.69 | 26.61 | 35.62 | 25.14 | 0.6412 |
Gross motor-Q | 90.11 | 13.25 | 97.67 | 9.29 | 0.1757 | 95.38 | 12.24 | 93.62 | 11.69 | 0.6508 |
Fine motor-P | 31.67 | 22.22 | 51.11 | 24.73 | * 0.0068 | 55.46 | 27.42 | 41.38 | 31.51 | * 0.0432 |
Fine motor-Q | 91.33 | 10.44 | 100.00 | 11.62 | * 0.0064 | 102.77 | 12.99 | 94.92 | 16.81 | * 0.0237 |
Total motor-P | 29.67 | 22.51 | 47.11 | 20.70 | * 0.0291 | 45.69 | 27.44 | 36.77 | 28.02 | 0.2460 |
Total motor-Q | 89.56 | 11.96 | 98.22 | 9.60 | * 0.0339 | 98.23 | 12.98 | 93.46 | 14.12 | 0.1770 |
Handgrip strength-R | 3.06 | 2.21 | 3.32 | 2.41 | 0.0941 | 4.50 | 1.57 | 4.65 | 1.66 | 0.1654 |
Handgrip strength-L | 3.11 | 1.95 | 3.33 | 1.92 | 0.1690 | 3.58 | 1.90 | 3.65 | 2.06 | 0.5486 |
Standing long-jump | 40.56 | 28.89 | 40.78 | 29.16 | 0.5588 | 44.88 | 29.16 | 45.81 | 29.15 | 0.0821 |
Intervention Group (n = 9) | Control Group (n = 13) | ||||
---|---|---|---|---|---|
M | SD | M | SD | ES | |
Stationary-S | 8.98 | 0.78 | 9.09 | 0.64 | - |
Stationary-P | 42.22 | 6.95 | 39.00 | 5.71 | - |
Locomotor-S | 10.03 | 0.66 | 8.21 | 0.55 | 0.82 |
Locomotor-P | 51.53 | 6.60 | 32.02 | 5.49 | 0.96 |
Object manip-S | 10.89 | 0.59 | 9.84 | 0.49 | - |
Object manip-P | 58.84 | 6.40 | 47.96 | 5.32 | - |
Grasping-S | 11.67 | 0.51 | 10.61 | 0.42 | - |
Grasping-P | 66.94 | 5.97 | 57.20 | 4.91 | - |
Visual–motor-S | 9.74 | 0.75 | 8.49 | 0.62 | - |
Visual–motor-P | 44.05 | 7.81 | 35.35 | 6.44 | - |
Gross motor-P | 46.34 | 7.94 | 34.84 | 6.59 | - |
Gross motor-Q | 98.35 | 3.61 | 93.14 | 3.00 | - |
Fine motor-P | 62.84 | 7.19 | 33.26 | 5.87 | 1.66 |
Fine motor-Q | 106.45 | 3.50 | 90.46 | 2.85 | 2.02 |
Total motor-P | 52.35 | 7.41 | 33.14 | 6.11 | 0.88 |
Total motor-Q | 101.25 | 3.57 | 91.36 | 2.94 | 0.95 |
Handgrip strength-R | 4.22 | 0.14 | 4.03 | 0.11 | - |
Handgrip strength-L | 3.61 | 0.15 | 3.46 | 0.13 | - |
Standing long-jump | 43.34 | 0.52 | 44.03 | 0.43 | - |
Intervention Group | Infected Group (n = 4) | Affected Group (n = 5) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-T | Post-T | Pre-T | Post-T | |||||||||||
M | SD | M | SD | Diff | p | ES | M | SD | M | SD | Diff | p | ES | |
Stationary-S | 7.25 | 3.1 | 8 | 2.58 | 0.75 | 0.689 | - | 7.6 | 1.82 | 8.2 | 3.35 | 0.6 | 0.73 | - |
Stationary-P | 26 | 21.8 | 30.3 | 25.6 | 4.25 | 0.751 | - | 24.2 | 16.6 | 36 | 27.8 | 11.8 | 0.44 | - |
Locomotor-S | 6.5 | 1.73 | 9.75 | 1.89 | 3.25 | * 0.022 | 1.72 | 9.6 | 3.85 | 10.2 | 2.95 | 0.6 | 0.77 | - |
Locomotor-P | 15 | 14.8 | 48 | 22.2 | 33 | * 0.038 | 1.49 | 41.4 | 34.9 | 52.6 | 31 | 11.2 | 0.57 | - |
Object manip-S | 8.25 | 1.71 | 11.5 | 2.65 | 3.25 | 0.184 | - | 10.4 | 1.82 | 10.2 | 1.92 | −0.2 | 0.70 | - |
Object manip-P | 30.3 | 17.5 | 64.3 | 25.9 | 34 | 0.182 | - | 54.4 | 21.5 | 51.8 | 22.9 | −2.6 | 0.70 | - |
Grasping-S | 8.25 | 0.96 | 10.8 | 1.5 | 2.5 | 0.096 | - | 10.4 | 2.51 | 11 | 3.32 | 0.6 | 0.37 | - |
Grasping-P | 28.8 | 10.2 | 59.3 | 19 | 30.5 | 0.09 | - | 57 | 27.5 | 60.8 | 34 | 3.8 | 0.53 | - |
Visual–motor-S | 7.75 | 3.59 | 8.5 | 0.58 | 0.75 | 0.729 | - | 7.8 | 2.39 | 9.6 | 3.36 | 1.8 | 0.15 | - |
Visual–motor-P | 28.5 | 37.3 | 31 | 6.93 | 2.5 | 0.912 | - | 27.8 | 23.5 | 43.2 | 32.7 | 15.4 | 0.16 | - |
Gross motor-P | 21.5 | 18.9 | 46.3 | 11.7 | 24.8 | 0.069 | - | 39.4 | 25.3 | 44.4 | 28.6 | 5 | 0.77 | - |
Gross motor-Q | 84 | 14.7 | 98.5 | 4.43 | 14.5 | 0.147 | - | 95 | 11.1 | 97 | 12.5 | 2 | 0.77 | - |
Fine motor-P | 21.5 | 13.8 | 44.3 | 13.2 | 22.8 | 0.119 | - | 39.8 | 25.7 | 56.6 | 31.7 | 16.8 | * 0.05 | 0.53 |
Fine motor-Q | 87.3 | 6.65 | 97.8 | 5.12 | 10.5 | 0.11 | - | 94.6 | 12.4 | 102 | 15.5 | 7.2 | * 0.04 | 0.46 |
Total motor-P | 18.5 | 14.8 | 44.3 | 10.1 | 25.8 | * 0.046 | 1.77 | 38.6 | 25 | 49.4 | 27.7 | 10.8 | 0.33 | - |
Total motor-Q | 84 | 10.8 | 97.8 | 3.86 | 13.8 | 0.079 | - | 94 | 12 | 98.6 | 13.2 | 4.6 | 0.31 | - |
Handgrip strength-R | 2.38 | 0.48 | 2.75 | 0.29 | 0.37 | 0.215 | - | 3.6 | 2.97 | 3.78 | 3.31 | 0.18 | 0.37 | - |
Handgrip strength-L | 2.63 | 0.48 | 2.88 | 0.25 | 0.25 | 0.391 | - | 3.5 | 2.65 | 3.7 | 2.64 | 0.2 | 0.37 | - |
Standing long-jump | 39.3 | 34 | 39.3 | 34 | 0 | - | 41.6 | 28.3 | 42 | 28.8 | 0.4 | 0.59 | - | |
Control Group | Infected Group (n = 7) | Affected Group (n = 6) | ||||||||||||
Stationary-S | 8.71 | 2.69 | 9.14 | 3.02 | 0.43 | 0.53 | - | 11 | 3.1 | 10.3 | 2.42 | −0.7 | 0.10 | - |
Stationary-P | 34.9 | 28.5 | 38.6 | 30.4 | 3.71 | 0.64 | - | 58 | 32.8 | 52.7 | 27.8 | −5.3 | 0.12 | - |
Locomotor-S | 8 | 2.52 | 8.14 | 2.79 | 0.14 | 0.77 | - | 8.67 | 1.63 | 8.33 | 1.97 | −0.3 | 0.36 | - |
Locomotor-P | 30.7 | 23.6 | 33.3 | 26.5 | 2.58 | 0.58 | - | 34.5 | 19.2 | 32 | 20.5 | −2.5 | 0.50 | - |
Object manip-S | 10.1 | 2.27 | 9.86 | 1.95 | −0.3 | 0.17 | - | 9.5 | 2.95 | 10 | 2.1 | 0.5 | 0.47 | - |
Object manip-P | 51.7 | 26.9 | 48.7 | 23.7 | −3 | 0.18 | - | 44.5 | 32.6 | 49.3 | 25.3 | 4.83 | 0.47 | - |
Grasping-S | 10.4 | 1.99 | 10.6 | 1.27 | 0.14 | 0.84 | - | 12.7 | 3.5 | 11.8 | 2.64 | −0.8 | 0.14 | - |
Grasping-P | 54 | 22.3 | 56.7 | 15 | 2.71 | 0.76 | - | 71.5 | 27.5 | 68 | 27.3 | −3.5 | 0.15 | - |
Visual–motor-S | 10.4 | 2.99 | 9.57 | 3.05 | −0.9 | 0.37 | - | 8.33 | 2.34 | 8.17 | 2.93 | −0.2 | 0.74 | - |
Visual–motor-P | 56.3 | 30.9 | 46.7 | 32.2 | −9.6 | 0.38 | - | 32.8 | 25.5 | 31.5 | 30.3 | −1.3 | 0.80 | - |
Gross motor-P | 35.7 | 26.8 | 30.3 | 27 | −5.4 | 0.74 | - | 44.3 | 28.1 | 41.8 | 23.6 | −2.5 | 0.64 | - |
Gross motor-Q | 93.1 | 12.6 | 90.7 | 13 | −2.4 | 0.75 | - | 98 | 12.4 | 97 | 9.94 | −1 | 0.65 | - |
Fine motor-P | 56.6 | 22.2 | 34.7 | 30.3 | −22 | 0.09 | - | 54.2 | 34.8 | 49.2 | 33.9 | −5 | * 0.06 | 1.27 |
Fine motor-Q | 103 | 9.55 | 90.6 | 17.3 | −12 | 0.06 | - | 103 | 17.2 | 100 | 16.2 | −3 | * 0.04 | 0.17 |
Total motor-P | 43.6 | 24.7 | 30 | 28.4 | −14 | 0.35 | - | 48.2 | 32.6 | 44.7 | 27.9 | −3.5 | 0.40 | - |
Total motor-Q | 96.9 | 11.7 | 89.4 | 14.9 | −7.4 | 0.27 | - | 99.8 | 15.3 | 98.2 | 12.7 | −1.7 | 0.36 | - |
Handgrip strength-R | 5 | 1.29 | 5.14 | 1.35 | 0.14 | 0.36 | - | 3.92 | 1.77 | 4.08 | 1.93 | 0.16 | 0.36 | - |
Handgrip strength-L | 3.64 | 2.14 | 3.71 | 2.45 | 0.07 | 0.77 | - | 3.5 | 1.79 | 3.58 | 1.72 | 0.08 | 0.36 | - |
Standing long-jump | 43.7 | 17.5 | 44.3 | 17.2 | 0.58 | 0.17 | - | 46.3 | 40.9 | 47.6 | 41 | 1.33 | 0.24 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pienaar, A.E.; Botha, J.-A.E. The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV. Int. J. Environ. Res. Public Health 2022, 19, 2967. https://doi.org/10.3390/ijerph19052967
Pienaar AE, Botha J-AE. The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV. International Journal of Environmental Research and Public Health. 2022; 19(5):2967. https://doi.org/10.3390/ijerph19052967
Chicago/Turabian StylePienaar, Anita Elizabeth, and Jo-Anne Elizabeth Botha. 2022. "The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV" International Journal of Environmental Research and Public Health 19, no. 5: 2967. https://doi.org/10.3390/ijerph19052967
APA StylePienaar, A. E., & Botha, J.-A. E. (2022). The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV. International Journal of Environmental Research and Public Health, 19(5), 2967. https://doi.org/10.3390/ijerph19052967