Examining the Temporal and Spatial Models of China’s Circular Economy Based upon Detailed Data of E-Plastic Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brief Analysis of Classification of Existing Estimation Methods
2.2. Construction of Estimation Method
3. Results
3.1. Analysis of the Basic Situation of E-Waste Plastics in China
3.2. Analysis on the Recovery Rate of China’s E-Waste Plastic Standards
3.3. Typical Regional Model of E-Plastic Recycling in China
4. Discussion
- Model 1, resource-based demonstration area, quadrant 1, typical area, Tianjin
- Mode 2, resource-based commissioned area, quadrant 2, typical area: Fujian
- Model 3, resource-based traditional area, quadrant 3, typical area, Gansu
- Model 4, resource-utilization potential area, quadrant 4, typical area, Heilongjiang
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.; Gong, R.; Chen, W.-Q.; Li, J. Uncovering the Recycling Potential of “New” WEEE in China. Environ. Sci. Technol. 2016, 50, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Pivnenko, K.; Astrup, T.F. E-plastics in Europe: An overview. In Proceedings of the CRETE 2018, Sixth International Conference on Industrial & Hazardous Waste Management, Crete, Greece, 4–7 September 2018. [Google Scholar]
- Baxter, J.; Wahlstrom, M.; Castell-Rüdenhausen, M.Z.; Fråne, A. WEEE Plastics Recycling: A Guide to Enhancing the Recovery of Plasticsfrom Waste Electrical and Electronic Equipment; Nordisk Ministerråd: Copenhagen, Denmark, 2015; p. 19. [Google Scholar]
- Buekens, A.; Yang, J. Recycling of WEEE plastics: A review. J. Mater. Cycles Waste Manag. 2014, 16, 415–434. [Google Scholar] [CrossRef]
- Garcia, J.M.; Robertson, M.L. The future of plastics recycling. Science 2017, 358, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total Environ. 2017, 601–602, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, J.H.; Duan, H.B.; Wang, Z.S. Thermal cracking of waste printed wiring boards for mechanical recycling by using residual steam preprocessing. Front. Environ. Sci. Eng. China 2011, 5, 167–174. [Google Scholar] [CrossRef]
- Chandrasekaran, S.R.; Avasarala, S.; Murali, D.; Rajagopalan, N.; Sharma, B.K. Materials and Energy Recovery from E-Waste Plastics. ACS Sustain. Chem. Eng. 2018, 6, 4594–4602. [Google Scholar] [CrossRef]
- Zeng, X.; Duan, H.; Wang, F.; Li, J. Examining environmental management of e-waste: China’s experience and lessons. Renew. Sustain. Energy Rev. 2017, 72, 1076–1082. [Google Scholar] [CrossRef]
- Chen, M.; Ogunseitan, O.A.; Duan, H.; Zeng, X.; Li, J. China E-waste management: Struggling for future success. Resour. Conserv. Recycl. 2018, 139, 48–49. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, G.Q.; Xu, Z.M. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Manag. 2015, 35, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Z. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition. Environ. Sci. Technol. 2016, 50, 9242–9250. [Google Scholar] [CrossRef] [PubMed]
- Stenvall, E.; Tostar, S.; Boldizar, A.; Foreman, M.R.S.; Moller, K. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag. 2013, 33, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Martinho, G.; Pires, A.; Saraiva, L.; Ribeiro, R. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag. 2012, 32, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Oguchi, M.; Murakami, S.; Sakanakura, H.; Kida, A.; Kameya, T. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manag. 2011, 31, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Research and Experimental Study of Automatic Sorting System for Recycling of Plastics in Waste Electric Household Appliances; Shanghai Jiao Tong University: Shanghai, China, 2011. [Google Scholar]
- Li, X. Study on Separation Techniques of Electronic Waste Plastic Shell; Southwest Jiao Tong University: Chengdu, China, 2015. [Google Scholar]
- Zeng, X.; Ali, S.H.; Tian, J.; Li, J. Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nat. Commun. 2020, 11, 1544. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Ali, S.H.; Li, J. Estimation of waste outflows for multiple product types in China from 2010–2050. Sci. Data 2021, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Duan, H.; Tang, Y. Toxicity evaluation of E-waste plastics and potential repercussions for human health. Environ. Int. 2020, 137, 105559. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qu, Y.; Liu, Y.; Zhang, Y. Understanding the barriers for Internet-based e-waste collection system in China. J. Environ. Plan. Manag. 2020, 63, 629–650. [Google Scholar] [CrossRef]
- Chen, M.; Ogunseitan, O.A. Zero E-waste: Regulatory impediments and blockchain imperatives. Front. Environ. Sci. Eng. 2021, 15, 114. [Google Scholar] [CrossRef]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential; United Nations University (UNU): Bonn, Germany; United Nations Institute for Training and Research (UNITAR)–co-hosted SCYCLE Programme, International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020; p. 120. [Google Scholar]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Gong, R.; Zeng, X.; Wang, J. Examining the Temporal and Spatial Models of China’s Circular Economy Based upon Detailed Data of E-Plastic Recycling. Int. J. Environ. Res. Public Health 2022, 19, 2807. https://doi.org/10.3390/ijerph19052807
Qi Y, Gong R, Zeng X, Wang J. Examining the Temporal and Spatial Models of China’s Circular Economy Based upon Detailed Data of E-Plastic Recycling. International Journal of Environmental Research and Public Health. 2022; 19(5):2807. https://doi.org/10.3390/ijerph19052807
Chicago/Turabian StyleQi, Yu, Ruying Gong, Xianlai Zeng, and Junfeng Wang. 2022. "Examining the Temporal and Spatial Models of China’s Circular Economy Based upon Detailed Data of E-Plastic Recycling" International Journal of Environmental Research and Public Health 19, no. 5: 2807. https://doi.org/10.3390/ijerph19052807
APA StyleQi, Y., Gong, R., Zeng, X., & Wang, J. (2022). Examining the Temporal and Spatial Models of China’s Circular Economy Based upon Detailed Data of E-Plastic Recycling. International Journal of Environmental Research and Public Health, 19(5), 2807. https://doi.org/10.3390/ijerph19052807