Association between Green Tea Consumption and Abdominal Obesity Risk in Middle-Aged Korean Population: Findings from the Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Assessment of Abdominal Obesity
2.3. Assessment of Green Tea Consumption
2.4. Assessment of Other Variables
2.5. Statistical Analyses
3. Results
3.1. Associations of Abdominal Obesity with Other Risk Factors
3.2. Associations of Green Tea Consumption per Week with Other Risk Factors
3.3. Risk of Abdominal Obesity Due to Green Tea Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, S.; Connell, J. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 319–326. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Service. National Health Screening Statistical Yearbook 2019; National Health Insurance Service: Wonju, Gangwon-do, Korea, 2019; Available online: https://www.nhis.or.kr/nhis/together/wbhaec07000m01.do?mode=view&articleNo=10803730 (accessed on 2 March 2021).
- Dagenais, G.R.; Yi, Q.; Mann, J.F.; Bosch, J.; Pogue, J.; Yusuf, S.; HOPE Study Investigators. Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am. Heart J. 2005, 149, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Postorino, M.; Marino, C.; Tripepi, G.; Zoccali, C.; CREDIT Working Group. Abdominal obesity and all-cause and cardiovascular mortality in end-stage renal disease. J. Am. Coll. Cardiol. 2009, 53, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Pischon, T.; Boeing, H.; Hoffmann, K.; Bergmann, M.; Schulze, M.B.; Overvad, K.; Van der Schouw, Y.; Spencer, E.; Moons, K.; Tjønneland, A. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 2008, 359, 2105–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Jo, B.N.; Hong, Y.J.; Lee, M.S.; Joo, S.S.; Kim, D.M.; Jin, D.G.; No, S.L. Effects of green tea, cocoon hydrolysates and capsulated components mixture on body fat and serum lipid composition in college women in terms of supplemented periods. J. Korean Soc. Food Sci. Nutr. 2003, 32, 715–722. [Google Scholar]
- Carey, D.G. Abdominal obesity. Curr. Opin. Lipidol. 1998, 9, 35–40. [Google Scholar] [CrossRef]
- Björntorp, P. Do stress reactions cause abdominal obesity and comorbidities? Obes. Rev. 2001, 2, 73–86. [Google Scholar] [CrossRef]
- Lee, J.W.; Yoo, S.Y.; Yang, S.Y.; Kim, H.; Cho, S.K. Effect of an abdominal obesity management program on dietary intake, stress index, and waist to hip ratio in abdominally obese women. Korean J. Food Nutr. 2012, 45, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Na, D.W.; Jeong, E.; Noh, E.K.; Chung, J.S.; Choi, C.H.; Park, J. Dietary factors and metabolic syndrome in middle-aged men. J. Agric. Med. Community Health 2010, 35, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Romaguera, D.; Ängquist, L.; Du, H.; Jakobsen, M.U.; Forouhi, N.G.; Halkjær, J.; Feskens, E.J.; Masala, G.; Steffen, A.; Palli, D. Food composition of the diet in relation to changes in waist circumference adjusted for body mass index. PLoS ONE 2011, 6, e23384. [Google Scholar] [CrossRef] [Green Version]
- Rains, T.M.; Agarwal, S.; Maki, K.C. Antiobesity effects of green tea catechins: A mechanistic review. J. Nutr. Biochem. 2011, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Han, S.H.; Shin, M.K. Effects of green and black Korean teas on lipid metabolism in diet-induced hyperlipidemic rats. J. East Asian Soc. Diet. Life. 2006, 16, 550–558. [Google Scholar]
- Lee, M.Y.; Yeom, Y.G. Antihyperlipidemic effects of fried beancurd containing powdered green tea in rats. J. Korea Acad. Ind. Coop. Soc. 2004, 5, 546–551. [Google Scholar]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef]
- Sayama, K.; Lin, S.; Zheng, G.; Oguni, I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004, 18, 55–62. [Google Scholar]
- Maki, K.C.; Reeves, M.S.; Farmer, M.; Yasunaga, K.; Matsuo, N.; Katsuragi, Y.; Komikado, M.; Tokimitsu, I.; Wilder, D.; Jones, F. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J. Nutr. 2009, 139, 264–270. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Zhou, Y.; Zhang, Z.; Xie, Z.; Zhang, J.; Wan, X. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem. 2013, 61, 8565–8572. [Google Scholar] [CrossRef]
- Wang, H.; Wen, Y.; Du, Y.; Yan, X.; Guo, H.; Rycroft, J.A.; Boon, N.; Kovacs, E.M.; Mela, D.J. Effects of catechin enriched green tea on body composition. Obesity 2010, 18, 773–779. [Google Scholar] [CrossRef]
- Choi, M.J.; Kim, S.H. Effects of green tea powder supplementation on blood glucose and lipid concentrations in rats with streptozotocin-induced diabetes. J. East. Asian Soc. Diet. Life 2010, 20, 46–53. [Google Scholar]
- Lee, S.J.; Kim, K.R.; Kim, H.T.; Hong, J.H. Effects of catechin on lipid composition and adipose tissue in obese rats fed high fat diet. J. Korean Soc. Food Sci. Nutr. 2007, 36, 540–547. [Google Scholar]
- Kim, Y.J.; Han, B.G.; KoGES Group. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Moon, S.; Oh, C.M.; Choi, M.K.; Park, Y.K.; Chun, S.K.; Choi, M.K.; Yu, J.M.; Yoo, H.J. The influence of physical activity on risk of cardiovascular disease in people who are obese but metabolically healthy. PLoS ONE 2017, 12, e0185127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Shin, D. Positive association between dietary acid load and future insulin resistance risk: Findings from the Korean Genome and Epidemiology Study. Nutr. J. 2020, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, Y.J.; Ahn, Y.O.; Paik, H.Y.; Aim, Y.J.; Tokudome, Y.; Hamajima, N.; Inouc, M.; Tajima, K.; Ahn, Y.J. Development of a food frequency questionnaire in Koreans. Asia Pac. J. Clin. Nutr. 2003, 12, 243–250. [Google Scholar]
- Korea Centers for Disease Control and Prevention. Korean Genome and Epidemiology Study (KoGES) Food Frequency Questionnaire guideline. Available online: https://www.kdca.go.kr/contents.es?mid=a40504040200 (accessed on 13 January 2022).
- Bulló, M.; Garcia-Aloy, M.; Martínez-González, M.A.; Corella, D.; Fernández-Ballart, J.D.; Fiol, M.; Gómez-Gracia, E.; Estruch, R.; Ortega-Calvo, M.; Francisco, S. Association between a healthy lifestyle and general obesity and abdominal obesity in an elderly population at high cardiovascular risk. Prev. Med. 2011, 53, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Cho, M.H.; Lee, K.H. A cross-cultural study of Korean Chinese Japanese consumer perceptions about green tea quality attributes and their consumption behavior. Int. J. Tour. Hosp. Res. 2018, 32, 251–266. [Google Scholar]
- Lee, J.O.; Yoo, K.H. The perception of the green tea among consumers in Taegu area. J. Life Sci. Res. 2009, 35, 191–215. [Google Scholar]
- Korean Statistical Information Service (KOSIS). Healthy Living Practice Rate by City, County, and District. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_117075_H_HEALTHY&conn_path=I2 (accessed on 9 April 2021).
- Hartley, D. Rural health disparities, population health, and rural culture. Am. J. Public Health 2004, 94, 1675–1678. [Google Scholar] [CrossRef]
- Ogunbodede, E.O.; Kida, I.A.; Madjapa, H.; Amedari, M.; Ehizele, A.; Mutave, R.; Sodipo, B.; Temilola, S.; Okoye, L. Oral health inequalities between rural and urban populations of the African and Middle East region. Adv. Dent. Res. 2015, 27, 18–25. [Google Scholar] [CrossRef]
- Ferrer, R.A.; Klein, W.M. Risk perceptions and health behavior. Curr. Opin. Psychiatry 2015, 5, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S. Health inequalities among Korean adults—Socioeconomic status and residential area differences. Korean J. Sociol. 2005, 39, 183–209. [Google Scholar]
- Lee, K.O.; Yoon, H.S. Relationship between inequalities in health and inequalities in socioeconomic status. J. Korean Acad. Community Health Nurs. 2001, 12, 609–619. [Google Scholar]
- Yoon, Y.S.; Oh, S.W.; Park, H.S. Socioeconomic status in relation to obesity and abdominal obesity in Korean adults: A focus on sex differences. Obesity 2006, 14, 909–919. [Google Scholar] [CrossRef]
- Skrzydlewska, E.; Ostrowska, J.; Stankiewicz, A.; Farbiszewski, R. Green tea as a potent antioxidant in alcohol intoxication. Addict. Biol. 2002, 7, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Arteel, G.E.; Uesugi, T.; Bevan, L.N.; Gäbele, E.; Wheeler, M.D.; McKim, S.E.; Thurman, R.G. Green tea extract protects against early alcohol-induced liver injury in rats. Biol. Chem. 2002, 383, 663–670. [Google Scholar] [CrossRef]
- Holzer, N.; Braun, K.F.; Ehnert, S.; Egaña, J.T.; Schenck, T.L.; Buchholz, A.; Schyschka, L.; Neumaier, M.; Benzing, S.; Stöckle, U. Green tea protects human osteoblasts from cigarette smoke-induced injury: Possible clinical implication. Langenbecks Arch. Surg. 2012, 397, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Syed, D.; Afaq, F.; Kweon, M.; Hadi, N.; Bhatia, N.; Spiegelman, V.; Mukhtar, H. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-κ B activation in normal human bronchial epithelial cells. Oncogene 2007, 26, 673–682. [Google Scholar] [CrossRef]
- Leanderson, P.; Faresjö, Å.O.; Tagesson, C. Green tea polyphenols inhibit oxidant-induced DNA strand breakage in cultured lung cells. Free Radic. Biol. Med. 1997, 23, 235–242. [Google Scholar] [CrossRef]
- Gao, J.; Tang, H.; Zhao, B. Toxicologic damage of gas phase cigarette smoke on cells and the protective effect of green tea polyphenols. Res. Chem. Intermed. 2001, 27, 269–279. [Google Scholar] [CrossRef]
- Nakachi, K.; Matsuyama, S.; Miyake, S.; Suganuma, M.; Imai, K. Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. Biofactors 2000, 13, 49–54. [Google Scholar] [CrossRef]
- Onakpoya, I.; Spencer, E.; Heneghan, C.; Thompson, M. The effect of green tea on blood pressure and lipid profile: A systematic review and meta-analysis of randomized clinical trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Bose, M.; Lambert, J.D.; Ju, J.; Reuhl, K.R.; Shapses, S.A.; Yang, C.S. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J. Nutr. 2008, 138, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.J.; Liu, C.Y.; Chiu, J.P.; Hsu, C.H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016, 35, 592–599. [Google Scholar] [CrossRef]
- Lee, B.R.; Yang, H.; Park, P.S. Effects of green tea polyphenol and vitamin C on type 2 diabetic rats induced by low dose streptozotocin following high fat diet. Korean J. Food Nutr. 2016, 45, 167–173. [Google Scholar] [CrossRef]
- Kim, J.D.; Lee, B.I.; Jeon, Y.H.; Park, J.P.; Kim, H.R.; Lim, B.W. Anti-oxidative and anti-inflammatory effects of green tea mixture and dietary fiber on liver of high fat diet-induced obese rats. Korean J. Med. Crop. Sci. 2010, 18, 224–230. [Google Scholar]
- Chen, Y.K.; Cheung, C.; Reuhl, K.R.; Liu, A.B.; Lee, M.J.; Lu, Y.P.; Yang, C.S. Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agr. Food Chem. 2011, 59, 11862–11871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senger, A.V.; Schwanke, C.; Gomes, I.; Gottlieb, M.G.V. Effect of green tea (Camellia sinensis) consumption on the components of metabolic syndrome in elderly. J. Nutr. Health Aging 2012, 16, 738–742. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Khanna, D. Green tea catechins: Defensive role in cardiovascular disorders. Chin. J. Nat. Med. 2013, 11, 345–353. [Google Scholar] [CrossRef]
- Yokozawa, T.; Nakagawa, T.; Kitani, K. Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J. Agric. Food Chem. 2002, 50, 3549–3552. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, R.; Wang, B.; Chen, K.; Shi, L.-Y.; Zhu, J.-D.; Mi, M.-T. Effect of green tea on glucose control and insulin sensitivity: A meta-analysis of 17 randomized controlled trials. Am. J. Clin. Nutr. 2013, 98, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Negishi, H.; Xu, J.-W.; Ikeda, K.; Njelekela, M.; Nara, Y.; Yamori, Y. Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. J. Nutr. 2004, 134, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Bogdanski, P.; Suliburska, J.; Szulinska, M.; Stepien, M.; Pupek-Musialik, D.; Jablecka, A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr. Res. Rev. 2012, 32, 421–427. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Chou, P.; Hsu, P.F.; Cheng, H.M.; Tsai, S.T.; Lin, I.F.; Chen, C.H. Presence and progression of abdominal obesity are predictors of future high blood pressure and hypertension. Am. J. Hypertens. 2006, 19, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Kuo, L.E.; Czarnecka, M.; Kitlinska, J.B.; Tilan, J.U.; Kvetňanský, R.; Zukowska, Z. Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci. 2008, 1148, 232. [Google Scholar] [CrossRef] [Green Version]
- Han, D.H.; Hansen, P.A.; Host, H.H.; Holloszy, J.O. Insulin resistance of muscle glucose transport in rats fed a high-fat diet: A reevaluation. Diabetes 1997, 46, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct. 2015, 6, 296–303. [Google Scholar] [CrossRef]
- Vessby, B. Dietary fat and insulin action in humans. Br. J. Nutr. 2000, 83, S91–S96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suara, S.B.; Siassi, F.; Saaka, M.; Foroshani, A.R.; Asadi, S.; Sotoudeh, G. Dietary fat quantity and quality in relation to general and abdominal obesity in women: A cross-sectional study from Ghana. Lipids Health Dis. 2020, 19, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Abate, N.; Chandalia, M. Diet composition and the metabolic syndrome: What is the optimal fat intake? Am. J. Med. 2002, 113, 25–29. [Google Scholar] [CrossRef]
- SHARE and SHARE-AP Investigators. Protein intake is inversely associated with abdominal obesity in a multi-ethnic population. J. Nutr. 2005, 135, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Iwase, M.; Ohkuma, T.; Ogata-Kaizu, S.; Ide, H.; Kikuchi, Y.; Idewaki, Y.; Joudai, T.; Hirakawa, Y.; Uchida, K. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. Nutr. J. 2013, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loenneke, J.P.; Wilson, J.M.; Manninen, A.H.; Wray, M.E.; Barnes, J.T.; Pujol, T.J. Quality protein intake is inversely related with abdominal fat. Nutr. Metab. 2012, 9, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arciero, P.J.; Ormsbee, M.J.; Gentile, C.L.; Nindl, B.C.; Brestoff, J.R.; Ruby, M. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity 2013, 21, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Thielecke, F.; Boschmann, M. The potential role of green tea catechins in the prevention of the metabolic syndrome—A review. Phytochemistry 2009, 70, 11–24. [Google Scholar] [CrossRef]
- Cheon, S.I.; Heo, E.J.; Yoon, M.J.; Choi, S.U.; Ryu, G.S.; Ryu, S.Y. Evaluation for long-term stability of EGCG rich green tea extract (EGTE). Kor. J. Pharmacogn. 2018, 49, 328–335. [Google Scholar]
- Nho, H.S.; Choi, S.K.; Lim, K.W. The effects of exercise and diet therapy on visceral fat area of the obese women. Korean J. Sports Med. 1999, 38, 428–438. [Google Scholar]
- Ahmad, T.; Lee, I.M.; Paré, G.; Chasman, D.I.; Rose, L.; Ridker, P.M.; Mora, S. Lifestyle interaction with fat mass and obesity-associated (FTO) genotype and risk of obesity in apparently healthy US women. Diabetes Care 2011, 34, 675–680. [Google Scholar] [CrossRef] [Green Version]
Variable | Men (n = 2875) | Women (n = 3003) | ||||
---|---|---|---|---|---|---|
Abdominal Obesity | No Abdominal Obesity | p-Value 1 | Abdominal Obesity | No Abdominal Obesity | p-Value 1 | |
Participants, n | 520 | 2355 | 1367 | 1636 | ||
Age (years) | 50.5 ± 8.2 | 49.9 ± 8.3 | 0.178 | 53.5 ± 8.8 | 48.3 ± 7.7 | <0.0001 |
Area | 0.009 | <0.0001 | ||||
Ansung | 185 (35.6%) | 700 (29.7%) | 711 (52.0%) | 349 (21.3%) | ||
Ansan | 335 (64.4%) | 1655 (70.3%) | 656 (48.0%) | 1287 (78.7%) | ||
Education level | 0.705 | <0.0001 | ||||
Elementary school or lower | 80 (15.4%) | 394 (16.7%) | 710 (51.9%) | 420 (25.7%) | ||
Middle/High school | 320 (61.5%) | 1409 (59.8%) | 609 (44.6%) | 1040 (63.6%) | ||
College or higher | 120 (23.1%) | 552 (23.4%) | 48 (3.5%) | 176 (10.8%) | ||
Household income (10,000 won/month) | 0.297 | <0.0001 | ||||
<100 | 114 (21.9%) | 523 (22.2%) | 634 (46.4%) | 379 (23.2%) | ||
100–200 | 147 (28.3%) | 693 (29.4%) | 376 (27.5%) | 500 (30.6%) | ||
200–300 | 105 (20.2%) | 523 (22.6%) | 203 (14.9%) | 393 (24.0%) | ||
≥300 | 154 (29.6%) | 607 (25.8%) | 154 (11.3%) | 364 (22.2%) | ||
Body mass index (kg/m2) | 27.6 ± 2.0 | 23.4 ± 2.4 | <0.0001 | 26.5 ± 2.9 | 22.9 ± 2.3 | <0.0001 |
Alcohol consumption | 0.295 | <0.0001 | ||||
None | 86 (16.5%) | 437 (18.6%) | 976 (71.4%) | 1107 (67.7%) | ||
Past | 54 (10.4%) | 203 (8.6%) | 54 (4.0%) | 30 (1.8%) | ||
Current | 380 (73.1%) | 1715 (72.8%) | 337 (24.7%) | 499 (30.5%) | ||
Smoking status | 0.122 | 0.363 | ||||
None | 114 (21.9%) | 458 (19.4%) | 1297 (94.9%) | 1557 (95.2%) | ||
Past | 167 (32.1%) | 699 (29.7%) | 22 (1.6%) | 17 (1.0%) | ||
Current | 239 (46.0%) | 1198 (50.9%) | 48 (3.5%) | 62 (3.8%) | ||
MET (hours/day) 2 | 23.6 ± 14.8 | 24.7 ± 15.7 | 0.017 | 23.7 ± 14.8 | 20.1 ± 11.8 | <0.0001 |
Dietary intake | ||||||
Total energy intake (kcal/day) | 2124.6 ± 726.7 | 1999.9 ± 620.4 | <0.0001 | 1935.0 ± 730.7 | 1863.9 ± 636.0 | 0.005 |
Protein intake (g/day) | 75.2 ± 32.5 | 69.4 ± 28.1 | <0.0001 | 64.7 ± 29.8 | 65.0 ± 30.0 | 0.761 |
Fat intake (g/day) | 39.4 ± 22.7 | 36.5 ± 21.2 | 0.008 | 29.5 ± 19.5 | 32.0 ± 20.5 | 0.001 |
Carbohydrate intake (g/day) | 361.8 ± 115.9 | 343.1 ± 96.7 | 0.001 | 348.6 ± 128.7 | 324.9 ± 103.3 | <0.0001 |
Fiber intake (g/day) | 7.3 ± 3.5 | 6.8 ± 3.1 | 0.001 | 7.3 ± 3.8 | 6.8 ± 3.2 | <0.0001 |
Weekly green tea consumption (cup) | 2.7 ± 5.0 | 2.4 ± 4.2 | 0.247 | 1.8 ± 4.3 | 2.6 ± 4.9 | <0.0001 |
Blood pressure (n = 5872) | ||||||
Systolic blood pressure (mmHg) | 123.3 ± 15.7 | 118.0 ± 15.3 | <0.0001 | 120.2 ± 16.6 | 111.7 ± 16.2 | <0.0001 |
Diastolic blood pressure (mmHg) | 84.0 ± 10.1 | 79.7 ± 10.4 | <0.0001 | 78.9 ± 10.6 | 73.5 ± 10.2 | <0.0001 |
Biomarkers | ||||||
Fasting blood glucose (mg/dL) (n = 5785) | 94.2 ± 24.8 | 89.2 ± 23.4 | <0.0001 | 86.6 ± 23.1 | 81.7 ± 14.1 | <0.0001 |
Total cholesterol (mg/dL) (n = 5878) | 199.5 ± 34.5 | 191.2 ± 36.1 | <0.0001 | 194.6 ± 37.2 | 184.9 ± 32.9 | <0.0001 |
HDL cholesterol (mg/dL) 3 (n = 5878) | 40.1 ± 7.5 | 44.5 ± 10.0 | <0.0001 | 44.0 ± 9.4 | 48.4 ± 10.4 | <0.0001 |
Triglyceride (mg/dL) (n = 5878) | 215.5 ± 135.3 | 163.2 ± 107.4 | <0.0001 | 159.6 ± 97.9 | 122.0 ± 63.4 | <0.0001 |
CRP (mg/dL) 4 (n = 5877) | 0.28 ± 0.40 | 0.22 ± 0.41 | 0.004 | 0.23 ± 0.38 | 0.17 ± 0.42 | <0.0001 |
Fasting insulin (uIU/mL) (n = 5786) | 8.9 ± 5.5 | 6.5 ± 3.5 | <0.0001 | 8.7 ± 6.2 | 7.0 ± 4.3 | <0.0001 |
Variable | Men (n = 2875) | Women (n = 3003) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weekly Green Tea Consumption (No. of Cups) | ||||||||||
None | <1 | 1 to <4 | ≥4 | p-Value 1 | None | <1 | 1 to <4 | ≥4 | p-Value 1 | |
Participants, n | 1099 | 483 | 727 | 566 | 1137 | 575 | 774 | 517 | ||
Age (years) | 52.0 ± 8.9 | 50.3 ± 8.5 | 49.1 ± 7.7 | 47.1 ± 6.5 | <0.0001 | 53.1 ± 8.9 | 50.7 ± 8.6 | 48.7 ± 7.9 | 47.9 ± 7.5 | <0.0001 |
Area | <0.0001 | <0.0001 | ||||||||
Ansung | 439 (39.9%) | 185 (38.3%) | 178 (24.5%) | 83 (14.7%) | 557 (49.0%) | 238 (41.4%) | 168 (21.7%) | 97 (18.8%) | ||
Ansan | 660 (60.1%) | 298 (61.7%) | 549 (75.5%) | 483 (85.3%) | 580 (51.0%) | 337 (58.6%) | 606 (78.3%) | 420 (81.2%) | ||
Education level | <0.0001 | <0.0001 | ||||||||
Elementary school or lower | 276 (25.1%) | 85 (17.6%) | 80 (11.0%) | 33 (5.8%) | 611 (53.7%) | 223 (38.8%) | 196 (25.3%) | 100 (19.3%) | ||
Middle/High school | 681 (62.0%) | 303 (62.7%) | 449 (61.8%) | 296 (52.3%) | 478 (42%) | 317 (55.1%) | 496 (64.1%) | 358 (69.2%) | ||
College or higher | 142 (12.9%) | 95 (19.7%) | 198 (27.2%) | 237 (41.9%) | 48 (4.2%) | 35 (6.1%) | 82 (10.6%) | 59 (11.4%) | ||
Household income (10,000 won/month) | <0.0001 | <0.0001 | ||||||||
<100 | 357 (32.5%) | 122 (25.3%) | 108 (14.9%) | 50 (8.8%) | 528 (46.4%) | 215 (37.4%) | 177 (22.9%) | 93 (18.0%) | ||
100–200 | 336 (30.6%) | 166 (34.4%) | 219 (30.1%) | 119 (21.0%) | 311 (27.4%) | 185 (32.2%) | 224 (28.9%) | 156 (30.2%) | ||
200–300 | 211 (19.2%) | 100 (20.7%) | 172 (23.7%) | 154 (27.2%) | 178 (15.7%) | 95 (16.5%) | 205 (26.5%) | 118 (22.8%) | ||
≥300 | 195 (17.7%) | 95 (19.7%) | 228 (31.4%) | 243 (42.9%) | 120 (10.6%) | 80 (13.9%) | 168 (21.7%) | 150 (29.0%) | ||
Body mass index (kg/m2) | 23.8 ± 3.0 | 23.9 ± 2.9 | 24.4 ± 2.7 | 24.7 ± 2.5 | <0.0001 | 24.5 ± 3.3 | 24.4 ± 3.1 | 24.5 ± 3.1 | 24.6 ± 3.0 | 0.745 |
Alcohol consumption | 0.204 | <0.0001 | ||||||||
None | 208 (18.9%) | 98 (20.3%) | 118 (16.2%) | 99 (17.5%) | 833 (73.3%) | 405 (70.4%) | 495 (64.0%) | 350 (67.7%) | ||
Past | 108 (9.8%) | 44 (9.1%) | 66 (9.1%) | 39 (6.9%) | 35 (3.1%) | 18 (3.1%) | 18 (2.3%) | 13 (2.5%) | ||
Current | 783 (71.2%) | 341 (70.6%) | 543 (74.7%) | 428 (75.6%) | 269 (23.7%) | 152 (26.4%) | 261 (33.7%) | 154 (29.8%) | ||
Smoking status | <0.0001 | 0.382 | ||||||||
None | 171 (15.6%) | 110 (22.8%) | 178 (24.5%) | 113 (20.0%) | 1075 (94.5%) | 545 (94.8%) | 747 (96.5%) | 487 (94.2%) | ||
Past | 283 (25.8%) | 147 (30.4%) | 243 (33.4%) | 193 (34.1%) | 17 (1.5%) | 7 (1.2%) | 9 (1.2%) | 6 (1.2%) | ||
Current | 645 (58.7%) | 226 (46.8%) | 306 (42.1%) | 260 (45.9%) | 45 (4.0%) | 23 (4.0%) | 18 (2.3%) | 24 (4.6%) | ||
MET (hours/day) 2 | 24.7 ± 15.7 | 23.6 ± 14.8 | 22.4 ± 13.3 | 20.3 ± 11.9 | <0.0001 | 24.0 ± 15.0 | 21.4 ± 13.8 | 20.4 ± 11.8 | 19.0 ± 10.5 | <0.0001 |
Dietary intake | ||||||||||
Total energy intake (kcal/day) | 1972.8 ± 677.9 | 1912.5 ± 541.4 | 2039.4 ± 560.5 | 2191.1 ± 714.0 | <0.0001 | 1825.6 ± 659.5 | 1850.6 ± 726.4 | 1969.0 ± 645.0 | 1993.5 ± 710.2 | <0.0001 |
Protein intake (g/day) | 66.6 ± 30.9 | 63.9 ± 24.5 | 71.7 ± 23.2 | 81.7 ± 32.1 | <0.0001 | 59.7 ± 28.8 | 62.4 ± 34.5 | 68.9 ± 25.5 | 72.9 ± 30.4 | <0.0001 |
Fat intake (g/day) | 35.1 ± 23.1 | 32.9 ± 19.2 | 37.7 ± 17.6 | 43.3 ± 23.4 | <0.0001 | 27.5 ± 19.2 | 28.7 ± 22.2 | 33.9 ± 16.9 | 36.0 ± 21.9 | <0.0001 |
Carbohydrate intake (g/day) | 341.9 ± 107.4 | 334.4 ± 84.3 | 347.8 ± 91.4 | 363.7 ± 109.1 | <0.0001 | 330.1 ± 113.7 | 331.2 ± 119.2 | 343.1 ± 114.9 | 341.6 ± 119.1 | 0.048 |
Fiber intake (g/day) | 6.6 ± 3.1 | 6.4 ± 3.2 | 6.9 ± 2.9 | 7.6 ± 3.5 | <0.0001 | 6.7 ± 3.4 | 6.9 ± 3.6 | 7.3 ± 3.3 | 7.6 ± 3.7 | <0.0001 |
Blood pressure (n = 5872) | ||||||||||
Systolic blood pressure (mmHg) | 120.4 ± 16.5 | 119.6 ± 15.7 | 117.2 ± 14.8 | 117.9 ± 13.7 | <0.0001 | 118.1 ± 17.6 | 116.1 ± 16.5 | 113.5 ± 16.2 | 112.3 ± 16.1 | <0.0001 |
Diastolic blood pressure (mmHg) | 80.5 ± 10.8 | 80.3 ± 10.5 | 79.9 ± 10.5 | 81.0 ± 9.8 | 0.304 | 77.2 ± 11.0 | 76.6 ± 10.6 | 74.7 ± 10.3 | 74.3 ± 10.6 | <0.0001 |
Biomarkers | ||||||||||
Fasting blood glucose (mg/dL) (n = 5785) | 88.2 ± 21.4 | 89.0 ± 20.4 | 90.5 ± 22.7 | 94.4 ± 31.0 | <0.0001 | 84.3 ± 18.4 | 83.0 ± 18.6 | 84.2 ± 17.5 | 83.7 ± 22.0 | 0.558 |
Total cholesterol (mg/dL) (n = 5878) | 189.7 ± 36.2 | 190.7 ± 36.0 | 194.1 ± 34.9 | 198.6 ± 36.1 | <0.0001 | 190.3 ± 36.0 | 185.7 ± 34.2 | 191.1 ± 36.1 | 188.5 ± 33.3 | 0.026 |
HDL cholesterol (mg/dL) 3 (n = 5878) | 44.1 ± 10.1 | 43.6 ± 9.6 | 43.3 ± 9.4 | 43.3 ± 9.7 | 0.232 | 46.2 ± 10.1 | 45.4 ± 9.8 | 47.1 ± 10.4 | 47.0 ± 10.2 | 0.008 |
Triglyceride (mg/dL) (n = 5878) | 174.3 ± 115.0 | 168.8 ± 116.6 | 173.4 ± 117.2 | 171.8 ± 109.5 | 0.843 | 142.3 ± 88.0 | 142.8 ± 81.9 | 136.0 ± 83.6 | 132.5 ± 71.2 | 0.067 |
CRP (mg/dL) 4 (n = 5877) | 0.24 ± 0.50 | 0.22 ± 0.33 | 0.22 ± 0.33 | 0.25 ± 0.38 | 0.344 | 0.20 ± 0.41 | 0.21 ± 0.46 | 0.20 ± 0.37 | 0.18 ± 0.33 | 0.689 |
Fasting Insulin (uIU/mL) (n = 5786) | 6.8 ± 3.8 | 7.0 ± 4.3 | 6.9 ± 4.0 | 7.2 ± 4.4 | 0.304 | 8.0 ± 6.7 | 7.7 ± 4.2 | 7.6 ± 4.1 | 7.6 ± 4.7 | 0.428 |
Weekly Green Tea Consumption (No. of Cups) | |||||
---|---|---|---|---|---|
(n = Cases/Total) | None | <1 | 1 to <4 | ≥4 | p for Trend 2 |
All (n = 1887/5878) | (n = 820/2236) | (n = 354/1058) | (n = 430/1501) | (n = 283/1083) | |
Crude OR (95% CI) | 1.00 | 0.73 (0.60–0.90) | 0.52 (0.43–0.63) | 0.45 (0.36–0.56) | <0.0001 |
Multivariable OR (95% CI) 1 | 1.00 | 0.89 (0.67–1.18) | 0.74 (0.56–0.98) | 0.56 (0.41–0.78) | 0.001 |
Men (n = 520/2875) | (n = 200/1099) | (n = 85/483) | (n = 133/727) | (n = 102/566) | |
Crude OR (95% CI) | 1.00 | 0.96 (0.73–1.27) | 1.01 (0.79–1.28) | 0.99 (0.76–1.29) | 0.987 |
Multivariable OR (95% CI) 1 | 1.00 | 0.85 (0.56–1.29) | 0.92 (0.64–1.31) | 0.82 (0.54–1.24) | 0.439 |
Women (n = 1367/3003) | (n = 620/1137) | (n = 269/575) | (n = 297/774) | (n = 181/517) | |
Crude OR (95% CI) | 1.00 | 0.92 (0.80–1.05) | 0.72 (0.64–0.81) | 0.65 (0.56–0.74) | <0.0001 |
Multivariable OR (95% CI) 1 | 1.00 | 0.92 (0.75–1.12) | 0.79 (0.65–0.96) | 0.71 (0.57–0.88) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, J.; Shin, D. Association between Green Tea Consumption and Abdominal Obesity Risk in Middle-Aged Korean Population: Findings from the Korean Genome and Epidemiology Study. Int. J. Environ. Res. Public Health 2022, 19, 2735. https://doi.org/10.3390/ijerph19052735
Kwak J, Shin D. Association between Green Tea Consumption and Abdominal Obesity Risk in Middle-Aged Korean Population: Findings from the Korean Genome and Epidemiology Study. International Journal of Environmental Research and Public Health. 2022; 19(5):2735. https://doi.org/10.3390/ijerph19052735
Chicago/Turabian StyleKwak, Junkyung, and Dayeon Shin. 2022. "Association between Green Tea Consumption and Abdominal Obesity Risk in Middle-Aged Korean Population: Findings from the Korean Genome and Epidemiology Study" International Journal of Environmental Research and Public Health 19, no. 5: 2735. https://doi.org/10.3390/ijerph19052735