Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Estimating Soil Sensitivity to Degradation
2.3. Logical Framework
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Landscape Dynamics and Soil Degradation
4.2. Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandez, R.J. Do humans create deserts? Trends Ecol. Evol. 2002, 17, 6–7. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Dynamic causal patterns of desertification. Bioscience 2004, 54, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Romm, J. Desertification: The next dust bowl. Nature 2011, 478, 450–451. [Google Scholar] [CrossRef] [PubMed]
- Pueyo, S. Desertification and power laws. Landsc. Ecol. 2011, 26, 305–309. [Google Scholar] [CrossRef]
- Portnov, B.A.; Safriel, U.N. Combating desertification in the Negev: Dryland agriculture vs. dryland urbanization. J. Arid. Environ. 2004, 56, 659–680. [Google Scholar] [CrossRef]
- Imeson, A. Desertification, Land Degradation and Sustainability; Routledge: London, UK, 2012. [Google Scholar]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-use and land degradation processes affecting soil resources: Evidence from a traditional Mediterranean cropland (Greece). Catena 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land degradation and long-term changes in agro-pastoral systems: An empirical analysis of ecological resilience in Asteroussia-Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Otto, R.; Krusi, B.O.; Kienast, F. Degradation of an arid coastal landscape in relation to land use changes in southern Tenerife (Canary Islands). J. Arid. Environ. 2007, 70, 527–539. [Google Scholar] [CrossRef]
- Lavado Contador, J.F.; Schnabel, S.; Gomez Gutierrez, A.; Pulido Fernandez, M. Mapping sensitivity to land degradation in Extremadura, SW Spain. Land Degrad. Dev. 2009, 20, 129–144. [Google Scholar] [CrossRef]
- Feng, L.I. A comparative researches on landscape diversity changes in two typical desertification areas--impacts of landscape matrices. Acta Ecol. Sin. 2002, 22, 1507–1511. [Google Scholar]
- Ge, X.; Dong, K.; Luloff, A.E.; Wang, L.; Xiao, J.; Wang, S.; Wang, Q. Correlation between landscape fragmentation and sandy desertification: A case study in Horqin Sandy Land, China. Environ. Monit. Assess. 2016, 188, 62. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Du, F.; Zuo, L.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Xueli, C.; Chunxia, L.; Yubao, G.; Yanying, C. Analysis of landscape patch structure influence on desertification process of Kerqin Sandy Land. Acta Ecol. Sin. 2004, 24, 1237–1242. [Google Scholar]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Bakra, N.; Weindorf, D.C.; Bahnassy, M.H.; El-Badawi, M.M. Multi-temporal assessment of land sensitivity to desertification in a fragile agro-ecosystem: Environmental indicators. Ecol. Indic. 2012, 15, 271–280. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Fernandes, L.F.S.; Junior, R.F.V.; Valera, C.A.; Pissarra, T.C.T. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Gomes, E.; Banos, A.; Abrantes, P.; Rocha, J.; Kristensen, S.B.P.; Busck, A. Agricultural land fragmentation analysis in a peri-urban context: From the past into the future. Ecol. Indic. 2019, 97, 380–388. [Google Scholar] [CrossRef]
- Kouba, Y.; Gartzia, M.; El Aich, A.; Alados, C.L. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. J. Arid. Environ. 2018, 158, 1–8. [Google Scholar] [CrossRef]
- Ares, J.; Del Valle, H.; Bisigato, A. Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification. Glob. Change Biol. 2003, 9, 1643–1659. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Salvati, L.; Kounalaki, A.; Kosmas, K. Exploring the impact of overgrazing on soil erosion and land degradation in a dry Mediterranean agro-forest landscape (Crete, Greece). Arid. Land Res. Manag. 2015, 29, 360–374. [Google Scholar] [CrossRef]
- Sun, D.; Dawson, R.; Li, H.; Wei, R.; Li, B. A landscape connectivity index for assessing desertification: A case study of Minqin County, China. Landsc. Ecol. 2007, 22, 531–543. [Google Scholar] [CrossRef]
- Alados, C.L.; Pueyo, B.; Barrantes, O.; Escos, J.; Giner, L.; Robles, A.B. Variations in landscape patterns and vegetation cover between 1957 and 1994 in a semiarid Mediterranean ecosystem. Landsc. Ecol. 2004, 19, 543–559. [Google Scholar] [CrossRef] [Green Version]
- Kéfi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; ElAich, A.; De Ruiter, P.C. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 2007, 449, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Han, G.; Zhao, M.; Chang, S.X. Spatial vegetation patterns as early signs of desertification: A case study of a desert steppe in Inner Mongolia, China. Landsc. Ecol. 2010, 25, 1519–1527. [Google Scholar] [CrossRef]
- Bajocco, S.; De Angelis, A.; Salvati, L. A satellite-based green index as a proxy for vegetation cover quality in a Mediterranean region. Ecol. Indic. 2012, 23, 578–587. [Google Scholar] [CrossRef]
- Symeonakis, E.; Calvo-Cases, A.; Arnau-Rosalen, E. Land use change and land degradation in southeastern Mediterranean Spain. Environ. Manag. 2007, 40, 80–94. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Bajocco, S.; Dragoz, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping Forest fuels through vegetation phenology: The role of coarse-resolution satellite time-series. PLoS ONE 2015, 10, e0119811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, E.; De Noronha, T.; Nijkamp, P. Exploratory landscape metrics for agricultural sustainability. Agroecol. Sustain. Food Syst. 2014, 38, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Pindral, S.; Kot, R.; Hulisz, P.; Charzyński, P. Landscape metrics as a tool for analysis of urban pedodiversity. Land Degrad. Dev. 2020, 31, 2281–2294. [Google Scholar] [CrossRef]
- Girvetz, E.H.; Thorne, J.H.; Berry, A.M.; Jaeger, J.A. Integration of landscape fragmentation analysis into regional planning: A statewide multi-scale case study from California, USA. Landsc. Urban Plan. 2008, 86, 205–218. [Google Scholar] [CrossRef]
- Llausàs, A.; Nogué, J. Indicators of landscape fragmentation: The case for combining ecological indices and the perceptive approach. Ecol. Indic. 2012, 15, 85–91. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Recanatesi, F.; Clemente, M.; Grigoriadis, E.; Ranalli, F.; Zitti, M.; Salvati, L. A fifty-year sustainability assessment of Italian agro-forest districts. Sustainability 2016, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Zitti, M. The environmental “risky” region: Identifying land degradation processes through integration of socio-economic and ecological indicators in a multivariate regionalization model. Environ. Manag. 2009, 44, 888. [Google Scholar] [CrossRef]
- Ferrara, A.; Kosmas, C.; Salvati, L.; Padula, A.; Mancino, G.; Nolè, A. Updating the MEDALUS-ESA Framework for Worldwide Land Degradation and Desertification Assessment. Land Degrad. Dev. 2020, 31, 1593–1607. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Sanchez, V.M.C.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Welton, S. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Nickayin, S.S.; Quaranta, G.; Salvia, R.; Cividino, S.; Cudlin, P.; Salvati, L. Reporting land degradation sensitivity through multiple indicators: Does scale matter? Ecol. Indic. 2021, 125, 107560. [Google Scholar] [CrossRef]
- Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Di Battista, F.; Scarascia, M.E.V. Italy’s renewable water resources as estimated on the basis of the monthly water balance. Irrig. Drain. 2008, 57, 507–515. [Google Scholar] [CrossRef]
- Salvati, L.; Gemmiti, R.; Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning? Area 2012, 44, 317–325. [Google Scholar] [CrossRef]
- Basso, B.; De Simone, L.; Cammarano, D.; Martin, E.C.; Margiotta, S.; Grace, P.R.; Yeh, M.L.; Chou, T.Y. Evaluating Responses to Land Degradation Mitigation Measures in Southern Italy. Int. J. Environ. Res. 2012, 6, 367–380. [Google Scholar]
- Smiraglia, D.; Tombolini, I.; Canfora, L.; Bajocco, S.; Perini, L.; Salvati, L. The Latent Relationship Between Soil Vulnerability to Degradation and Land Fragmentation: A Statistical Analysis of Landscape Metrics in Italy, 1960–2010. Environ. Manag. 2019, 64, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Wang, J.; Wei, H.; Cheng, K.; Ochir, A.; Davaasuren, D.; Li, P.; Nasanbat, E. Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environ. Dev. 2020, 34, 100497. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. Territorial disparities, natural resource distribution, and land degradation: A case study in southern Europe. Geojournal 2007, 70, 185–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Zhu, B.; Luo, X.; Guan, Y.; Guo, S.; Nie, Y. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS). Environ. Monit. Assess. 2008, 147, 327–337. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Qi, Y.; Chang, Q.; Jia, K.; Liu, M.; Liu, J.; Chen, T. Temporal-spatial variability of desertification in an agro-pastoral transitional zone of northern Shaanxi Province, China. Catena 2012, 88, 37–45. [Google Scholar] [CrossRef]
- Sun, D.; Li, H.; Li, B. Landscape connectivity changes analysis for monitoring desertification of Minqin county, China. Environ. Monit. Assess. 2008, 140, 303–312. [Google Scholar]
- Sun, D.; Dawson, R.; Li, H.; Li, B. Modeling desertification change in Minqin county, China. Environ. Monit. Assess. 2005, 108, 169–188. [Google Scholar] [CrossRef]
- Tao, W. Progress in sandy desertification research of China. J. Geogr. Sci. 2004, 14, 387–400. [Google Scholar] [CrossRef]
- Okin, G.S.; Parsons, A.J.; Wainwright, J.; Herrick, J.E.; Bestelmeyer, B.T.; Peters, D.C.; Fredrickson, E.L. Do changes in connectivity explain desertification? BioScience 2009, 59, 237–244. [Google Scholar] [CrossRef]
- Gonzalez-Abraham, C.E.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Building patterns and landscape fragmentation in northern Wisconsin, USA. Landsc. Ecol. 2007, 22, 217–230. [Google Scholar] [CrossRef]
- Vogt, J.V.; Safriel, U.; Bastin, G.; Zougmore, R.; von Maltitz, G.; Sokona, Y.; Hill, J. Monitoring and Assessment of Land Degradation and Desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 2011, 22, 150–165. [Google Scholar] [CrossRef]
- Sommer, S.; Zucca, C.; Grainger, A.; Cherlet, M.; Zougmore, R.; Sokona, Y.; Hill, J. Application of indicator systems for monitoring and assessment of desertification from national to global scales. Land Degrad. Dev. 2011, 22, 184–197. [Google Scholar] [CrossRef]
- Weng, Y.C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Cecchini, M.; Zambon, I.; Pontrandolfi, A.; Turco, R.; Colantoni, A.; Mavrakis, A.; Salvati, L. Urban sprawl and the ‘olive’ landscape: Sustainable land management for ‘crisis’ cities. GeoJournal 2019, 84, 237–255. [Google Scholar] [CrossRef]
- Istanbuly, M.N.; Jabbarian Amiri, B.; Kaboli, M. Applying Landscape Metrics to Revise Land Degradation Model for Assessing Environmental Impacts. J. Nat. Environ. 2021, 74, 195–207. [Google Scholar]
- Biasi, R.; Brunori, E.; Smiraglia, D.; Salvati, L. Linking traditional tree-crop landscapes and agro-biodiversity in Central Italy using a database of typical and traditional products: A multiple risk assessment through a data mining analysis. Biodivers. Conserv. 2015, 24, 3009–3031. [Google Scholar] [CrossRef]
- Hill, J.; Stellmes, M.; Udelhoven, T.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations. Glob. Planet. Change 2008, 64, 146–157. [Google Scholar] [CrossRef]
- Qi, F.; Wei, L.; Haiyang, X. Comprehensive evaluation and indicator system of land desertification in the Heihe River Basin. Nat. Hazards 2013, 65, 1573–1588. [Google Scholar] [CrossRef]
- Sklenicka, P. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy 2016, 57, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Adamo, S.B.; Crews-Meyer, K.A. Aridity and desertification: Exploring environmental hazards in Jáchal, Argentina. Appl. Geogr. 2006, 26, 61–85. [Google Scholar] [CrossRef]
- Hirche, A.; Salamani, M.; Abdellaoui, A.; Benhouhou, S.; Valderrama, J.M. Landscape changes of desertification in arid areas: The case of south-west Algeria. Environ. Monit. Assess. 2011, 179, 403–420. [Google Scholar] [CrossRef]
- Ibanez, J.; Martinez Valderrama, J.; Puigdefabregas, J. Assessing desertification risk using system stability condition analysis. Ecol. Model. 2008, 213, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Pili, S.; Grigoriadis, E.; Carlucci, M.; Clemente, M.; Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Indic. 2017, 76, 71–80. [Google Scholar] [CrossRef]
- Peters, D.P.; Havstad, K.M.; Archer, S.R.; Sala, O.E. Beyond desertification: New paradigms for dryland landscapes. Front. Ecol. Environ. 2015, 13, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Marathianou, M.; Kosmas, K.; Gerontidis, S.; Detsis, V. Land-use evolution and degradation in Lesvos (Greece): An historical approach. Land Degrad. Dev. 2000, 11, 63–73. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2004, 24, 223–234. [Google Scholar] [CrossRef]
- Perrin, C.; Nougarèdes, B.; Sini, L.; Branduini, P.; Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 2018, 70, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yuan, H.; Xu, X.; Liu, S. Landscape structure of desertification grassland in source region of Yellow River. J. Appl. Ecol. 2006, 17, 1665–1670. [Google Scholar]
- Briassoulis, H. Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in multi-level governance contexts. Land Degrad. Dev. 2011, 22, 313–325. [Google Scholar] [CrossRef]
- Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [Google Scholar] [CrossRef]
- Safriel, U.; Adeel, Z. Development paths of drylands: Thresholds and sustainability. Sustain. Sci. 2008, 3, 117–123. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Duniway, M.C.; James, D.K.; Burkett, L.M.; Havstad, K.M. A test of critical thresholds and their indicators in a desertification-prone ecosystem: More resilience than we thought. Ecol. Lett. 2013, 16, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Gül, E.; Erşahin, S. Evaluating the desertification vulnerability of a semiarid landscape under different land uses with the environmental sensitivity index. Land Degrad. Dev. 2019, 30, 811–823. [Google Scholar] [CrossRef]
Acronym | Metric | Rationale |
---|---|---|
MPI | Mean proximity index | The degree of isolation and fragmentation of the corresponding patch type |
MNN | Mean nearest neighbor distance | The shortest straight-line distance between the focal patch and its nearest neighbor of the same class |
IJI | Interspersion/juxtaposition index | The observed interspersion divided by maximum possible interspersion for the given number of patch types |
MPS | Mean patch size | The arithmetic mean of the patch sizes |
PSCoV | MPS coefficient of variation | The coefficient of variation in patch size relative to the mean patch size |
ED | Edge density | The sum of the lengths of all edge segments, divided by the total area |
MSI | Mean shape index | The average perimeter-to-area ratio for weighted by the size of its patches |
AWMSI | Area-weighted mean shape index | The average shape index of patches, weighted by patch area |
MPFD | Mean patch fractal dimension | The sum of 2 times the logarithm of patch perimeter divided by the logarithm of patch area for each patch of the corresponding patch type, divided by the number of patches of the same type |
AWMPFD | Area-weighted mean fractal dim. | The average patch fractal dimension, weighted by patch area |
LPI | Largest patch index | The percent of the landscape or class that the largest patch comprises |
LSI | Landscape shape index | The sum of the landscape boundary and all edge segments within the landscape boundary divided by the square root of the total landscape area |
SDI | Shannon diversity index | Minus the sum, across all patch types, of the proportional abundance of each patch type multiplied by that proportion |
SHEI | Shannon evenness index | The observed Shannon’s Diversity Index divided by the maximum Shannon’s Diversity Index for that number of patch types |
SIEI | Simpson’s evenness index | The observed Simpson’s Diversity Index divided by the maximum Simpson’s Diversity Index for that number of patch types |
MSIEI | Modified Simpson’s even. Index | The observed modified Simpson’s diversity index divided by the maximum modified Simpson’s diversity index for that number of patch types |
Metric | 1960 | 1990 | 2010 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Axis1 | Axis2 | Axis3 | Axis4 | Axis1 | Axis2 | Axis3 | Axis4 | Axis1 | Axis2 | Axis3 | Axis4 | |
MPI | 0.64 | 0.69 | 0.55 | 0.60 | 0.57 | |||||||
MNN | −0.61 | −0.63 | 0.65 | |||||||||
IJI | 0.69 | 0.58 | −0.68 | 0.57 | −0.62 | |||||||
MPS | −0.85 | −0.53 | 0.69 | −0.62 | ||||||||
PSCoV | 0.91 | 0.80 | 0.80 | |||||||||
ED | 0.60 | −0.59 | 0.66 | −0.62 | ||||||||
MSI | 0.76 | 0.50 | 0.74 | 0.88 | ||||||||
AWMSI | 0.61 | 0.75 | 0.96 | 0.88 | ||||||||
MPFD | 0.62 | 0.56 | 0.71 | |||||||||
AWMPFD | 0.67 | 0.66 | 0.93 | 0.85 | ||||||||
LPI | −0.74 | −0.87 | −0.77 | |||||||||
LSI | 0.72 | 0.58 | 0.82 | 0.64 | 0.63 | |||||||
SDI | 0.81 | 0.94 | 0.96 | |||||||||
SHEI | 0.89 | 0.94 | 0.94 | |||||||||
SIEI | 0.96 | 0.95 | 0.94 | |||||||||
MSIEI | 0.93 | 0.94 | 0.93 | |||||||||
ESAI | 0.88 | 0.58 | −0.57 | |||||||||
Variance (%) | 43.4 | 20.6 | 11.1 | 6.0 | 36.8 | 24.1 | 13.8 | 6.4 | 38.7 | 21.5 | 17.4 | 5.8 |
Metric | 1960 | 1990 | 2010 |
---|---|---|---|
MPI | 6.3 * | 0.8 | 0.6 |
MNN | 7.1 * | 0.8 | 0.1 |
IJI | 7.6 * | 6.3 * | 6.6 * |
MPS | 8.0 * | 1.4 | 0.3 |
PSCoV | 0.1 | 0.3 | 0.4 |
ED | 5.8 * | 4.3 * | 2.3 |
MSI | 7.6 * | 3.4 * | 2.0 |
AWMSI | 6.2 * | 2.9 * | 1.9 |
MPFD | 5.6 * | 1.1 | 1.1 |
AWMPFD | 6.4 * | 3.2 * | 2.3 |
LPI | 7.8 * | 0.3 | 0.8 |
LSI | 2.9 * | 4.3 * | 3.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halbac-Cotoara-Zamfir, R.; Polinesi, G.; Chelli, F.; Salvati, L.; Bianchini, L.; Marucci, A.; Colantoni, A. Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective. Int. J. Environ. Res. Public Health 2022, 19, 2710. https://doi.org/10.3390/ijerph19052710
Halbac-Cotoara-Zamfir R, Polinesi G, Chelli F, Salvati L, Bianchini L, Marucci A, Colantoni A. Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective. International Journal of Environmental Research and Public Health. 2022; 19(5):2710. https://doi.org/10.3390/ijerph19052710
Chicago/Turabian StyleHalbac-Cotoara-Zamfir, Rares, Gloria Polinesi, Francesco Chelli, Luca Salvati, Leonardo Bianchini, Alvaro Marucci, and Andrea Colantoni. 2022. "Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective" International Journal of Environmental Research and Public Health 19, no. 5: 2710. https://doi.org/10.3390/ijerph19052710
APA StyleHalbac-Cotoara-Zamfir, R., Polinesi, G., Chelli, F., Salvati, L., Bianchini, L., Marucci, A., & Colantoni, A. (2022). Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective. International Journal of Environmental Research and Public Health, 19(5), 2710. https://doi.org/10.3390/ijerph19052710