Does Natural Amenity Matter on the Permanent Settlement Intention? Evidence from Elderly Migrants in Urban China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Description
2.2. Extreme Temperature Index
2.3. The Logit Model
3. Empirical Analysis
3.1. The Spatiotemporal Changes of Elderly Migrants and Natural Amenity
3.2. The Empirical Results Based on the Logit Model
3.2.1. Natural Amenities and Elderly Migrants’ Permanent Settlement
3.2.2. Extreme Climate Conditions and Elderly Migrants’ Permanent Settlement
3.3. Analysis of the Mechanisms
3.4. The Dynamic Results of Natural Amenity and the Migration of the Elderly
3.5. Heterogeneity Analysis by Flow Reason
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kou, L.; Hannam, K.; Xu, H. Understanding seasonal mobilities, health and wellbeing to Sanya, China. Soc. Sci. Med. 2017, 177, 87–99. [Google Scholar] [CrossRef]
- Van Arsdol, M.D.; Sabagh, G.; Butler, E.W. Retrospective and Subsequent Metropolitan Residential Mobility. Demography 1968, 5, 249–267. [Google Scholar] [CrossRef]
- Walters William, H. Types and Patterns of Later-Life Migration. Geogr. Ann. Ser. B Hum. Geogr. 2000, 82, 129–147. [Google Scholar] [CrossRef]
- Ravenstein, E.G. The Laws of Migration. J. Stat. Soc. Lond. 1885, 48, 167–235. [Google Scholar] [CrossRef]
- Wiseman, R.F.; Roseman, C.C. A Typology of Elderly Migration Based on the Decision Making Process. Econ. Geogr. 1979, 55, 324–337. [Google Scholar] [CrossRef]
- Clark, D.E.; Hunter, W.J. The impact of economic opportunity, amenities and fiscal factors on age-specific migration rates. J. Reg. Sci. 1992, 32, 349–365. [Google Scholar] [CrossRef]
- Wiseman, R.F. Why Older People Move: Theoretical Issues. Res. Aging 1980, 2, 141–154. [Google Scholar] [CrossRef]
- Litwak, E.; Longino, C.F., Jr. Migration Patterns Among the Elderly: A Developmental Perspective. Gerontologist 1987, 27, 266–272. [Google Scholar] [CrossRef]
- Longino, C.F., Jr.; Jackson, D.J.; Zimmerman, R.S.; Bradsher, J.E. The second move: Health and geographic mobility. J. Gerontol. 1991, 46, S218–S224. [Google Scholar] [CrossRef]
- Choi, N.G. Older Persons Who Move: Reasons and Health Consequences. J. Appl. Gerontol. 1996, 15, 325–344. [Google Scholar] [CrossRef]
- Sommers, D.G.; Rowell, K.R. Factors Differentiating Elderly Residential Movers and Nonmovers: A Longitudinal Analysis. Popul. Res. Policy Rev. 1992, 11, 249–262. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S. An analysis of the migration selectivity of the elderly in China. South China Popul. 2013, 3, 38–45. [Google Scholar]
- Oliveira, J.; Pereda, P. The impact of climate change on internal migration in Brazil. J. Environ. Econ. Manag. 2020, 103, 102340. [Google Scholar] [CrossRef]
- Lai, W.; Song, H.; Wang, C.; Wang, H. Air pollution and brain drain: Evidence from college graduates in China. China Econ. Rev. 2021, 68, 101624. [Google Scholar] [CrossRef]
- Henry, S.; Schoumaker, B.; Beauchemin, C. The Impact of Rainfall on the First Out-Migration: A Multi-level Event-History Analysis in Burkina Faso. Popul. Environ. 2004, 25, 423–460. [Google Scholar] [CrossRef]
- Dou, X.; Liu, Y. Elderly Migration in China: Types, Patterns, and Determinants. J. Appl. Gerontol. 2015, 36, 751–771. [Google Scholar] [CrossRef]
- Newbold, K.B. Determinants of older adults interstate migration in the United States, 1985–1990. Res. Aging 1996, 18, 451–476. [Google Scholar] [CrossRef]
- Chai, Y.; Tahara, Y.; Li, C. A review of the geographical research on the elderly migration. Areal Res. Dev. 2006, 25, 109–115. [Google Scholar]
- Gray, C.L.; Mueller, V. Natural disasters and population mobility in Bangladesh. Proc. Natl. Acad. Sci. USA 2012, 109, 6000–6005. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, J. Rethinking the ‘debate on environmental refugees’: From ‘maximilists and minimalists’ to ‘proponents and critics’. J. Polit. Ecol. 2012, 19, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, W.; Sun, Y. Policy options to support climate-induced migration: Insights from disaster relief in China. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 375–389. [Google Scholar] [CrossRef]
- Gray, C.; Hopping, D.; Mueller, V. The changing climate-migration relationship in China, 1989–2011. Clim. Chang. 2020, 160, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Swain, A. Environmental migration and conflict dynamics: Focus on developing regions. Third World Q. 1996, 17, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, K.; Hu, L. China’s Largest Scale Ecological Migration in the Three-River Headwater Region. Ambio 2010, 39, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Nawrotzki, R.J.; Bakhtsiyarava, M. International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway. Popul. Space Place 2017, 23, e2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, C.; Peri, G. The migration response to increasing temperatures. J. Dev. Econ. 2016, 122, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, P. Tourism and seasonal retirement migration. Ann. Tour. Res. 2002, 29, 899–918. [Google Scholar] [CrossRef]
- Mueller, V.; Sheriff, G.; Dou, X.; Gray, C. Temporary Migration and Climate Variation in Eastern Africa. World Dev. 2020, 126, 104704. [Google Scholar] [CrossRef]
- Cai, R.; Feng, S.; Oppenheimer, M.; Mariola, P. Climate Variability and International Migration: The Importance of the Agricultural Linkage. J. Environ. Econ. Manag. 2016, 79, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Bohra-Mishra, P.; Oppenheimer, M.; Hsiang, S.M. Nonlinear permanent migration response to climatic variations but minimal response to disasters. Proc. Natl. Acad. Sci. USA 2014, 111, 9780. [Google Scholar] [CrossRef] [Green Version]
- Barrios, S.; Bertinelli, L.; Strobl, E. Climatic change and rural–urban migration: The case of sub-Saharan Africa. J. Urban. Econ. 2006, 60, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Abel, G.J.; Brottrager, M.; Cuaresma, J.C.; Muttarak, R. Climate, conflict and forced migration. Glob. Environ. Chang. 2019, 54, 239–249. [Google Scholar] [CrossRef]
- Wen, X.; Yao, S.; Zhao, M. Research on the Coordination and Development of Urbanization and Vegetation Coverage Based on Precipitation Conditions. Prog. Geogr. Sci. 2018, 10, 1–10. [Google Scholar]
- Hunter, L.M. The Association Between Environmental Risk and Internal Migration Flows. Popul. Environ. 1998, 19, 247–277. [Google Scholar] [CrossRef]
- Zhang, S.; Goldmann, J. Accessibility, Diversity, Environmental Quality and the Dynamics of Intra: Urban Population and Employment Location. Growth. Chang. 2010, 41, 85–144. [Google Scholar] [CrossRef]
- Xu, S. A historical investigation of the impact of natural environment changes on population migration. Popul. J. 1991, 5, 26–29. [Google Scholar]
- Cebula, R.; Vedder, R. A note on migration, economic opportunity, and the quality of life. J. Reg. Sci. 2010, 13, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: Workshop summary. Clim. Chang. 1999, 42, 3–7. [Google Scholar] [CrossRef]
- Pei, Q.; Zhang, D.D.; Lee, H.F. Contextualizing human migration in different agro-ecological zones in ancient China. Quat. Int. 2016, 426, 65–74. [Google Scholar] [CrossRef]
- Zhao, M.; Hu, Y. Migration premium? The economic returns to youth inter-province migration in post-reform China. J. Youth Stud. 2019, 10, 1409–1427. [Google Scholar] [CrossRef]
- Balli, H.O.; Sorensen, B.E. Interaction effects in econometrics. Empir. Econ. 2013, 45, 583–603. [Google Scholar] [CrossRef] [Green Version]
Variables | Definition of Variables | Sample Size 1 | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|---|
Dependent variable | Settlement intention | The willingness to settle in urban areas in the next five years (0 = No; 1 = Yes) | 15,515 | 0.67 | 0.47 | 0 | 1 |
Independent variables | Air quality | Annual PM2.5 | 1023 | 43.39 | 15.37 | 3.46 | 91.84 |
Temperature | Annual temperature | 1023 | 12.90 | 5.42 | −2.90 | 25.30 | |
Extreme low temperature | Number of frost days per year | 1023 | 41.80 | 27.34 | 0 | 92 | |
Extreme high temperature | Number of summer days per year | 1023 | 43.66 | 39.01 | 0 | 91 | |
Precipitation | Annual precipitation (mm) | 1023 | 891.11 | 533.47 | 68.45 | 3053.84 | |
Control variables | Age | Above 60 years old | 15,515 | 65.83 | 5.58 | 60 | 98 |
Age | Age squared | 15,515 | 4365.39 | 776.99 | 3600 | 9604 | |
Gender | 0 = male; 1 = female | 15,515 | 0.41 | 0.49 | 0 | 1 | |
Education | Completed years of formal education in regular school | 15,515 | 7.46 | 4.22 | 0 | 19 | |
Hukou 2 | 0 = non-agricultural Hukou; 1 = agricultural Hukou | 15,513 | 0.58 | 0.49 | 0 | 1 | |
Expenditure | Monthly household consumption | 15,513 | 2991.92 | 3187.32 | 50 | 10,500 | |
Income | Monthly household income | 15,515 | 5685.83 | 10,241.05 | −1000 | 100,000 | |
Health archives | Whether a health record was established in the local city (0 = No; 1 = Yes) | 14,514 | 0.44 | 0.50 | 0 | 1 | |
Family size | The total number of biological children | 15,515 | 2.71 | 1.37 | 1 | 10 | |
Length of migration | Years of migration | 15,515 | 8.08 | 7.75 | 0 | 81 | |
Distance of migration 3 | 1 = intra-provincial migration; 2 = inner-provincial migration; 3 = inner-city migration | 15,509 | 1.80 | 0.78 | 1 | 3 | |
Housing price | Average commercial housing price of the city | 1023 | 9848.54 | 8248.17 | 2245.45 | 47,936 | |
GDP | Gross domestic product (100 million Yuan) | 1023 | 8049.06 | 9172.54 | 34.95 | 30,632.99 | |
Hospital facilities | The number of beds in medical and health institutions (per thousand) | 1023 | 37.92 | 41.65 | 0.12 | 142.71 |
Year | Settlement Intention | PM2.5 (μg/m3) | SU (Day) | FD (Day) | Precipitation (mm) |
---|---|---|---|---|---|
2009 | - | 43.738 | 46.000 | 34.000 | 875.684 |
2010 | - | 44.381 | 45.000 | 35.000 | 1033.332 |
2011 | - | 41.520 | 45.000 | 40.000 | 823.257 |
2012 | - | 39.336 | 45.000 | 40.000 | 1008.093 |
2013 | - | 44.952 | 49.000 | 36.000 | 951.092 |
2014 | - | 45.116 | 41.000 | 34.000 | 958.653 |
2015 | 0.680 | 41.677 | 42.000 | 32.000 | 1026.735 |
2016 | 0.730 | 37.580 | 49.000 | 34.000 | 1139.313 |
2017 | 0.620 | 43.313 | 49.000 | 31.000 | 976.922 |
Mean | 0.670 | 42.401 | 46.000 | 35.000 | 977.009 |
Slope | −0.03 | −0.267 | 0.178 | −0.589 | 18.007 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Margin Effects | Margin Effects | Margin Effects | Margin Effects | Margin Effects | |
Precipitation | −0.135 *** | −0.146 *** | −0.148 *** | −0.112 ** | −0.147 ** |
(−3.33) | (−3.45) | (−3.46) | (−2.41) | (−2.44) | |
Temperature | −0.026 *** | 0.008 | 0.016 | 0.022 | 0.039 * |
(−4.99) | (0.52) | (1.01) | (1.26) | (1.77) | |
Temperature squared | −0.001 ** | −0.002 ** | −0.002 ** | −0.002 ** | |
(−2.05) | (−2.45) | (−2.20) | (−2.50) | ||
PM2.5 | 0.002 | 0.001 | −0.001 | 0.003 * | −0.004 ** |
(1.58) | (0.80) | (−0.62) | (1.70) | (−2.04) | |
Age | 0.182 *** | 0.165 *** | 0.147 ** | ||
(3.12) | (2.64) | (2.04) | |||
Age squared | −0.001 *** | −0.001 ** | −0.001 * | ||
(−2.66) | (−2.27) | (−1.71) | |||
Gender (base group: male) | 0.109 *** | 0.139 *** | 0.162 *** | ||
(3.00) | (3.54) | (3.70) | |||
Junior middle school (base group: primary and below) | 0.126 *** | 0.204 *** | 0.189 *** | ||
(2.94) | (4.34) | (3.63) | |||
High school (base group: primary and below) | 0.154*** | 0.248*** | 0.311*** | ||
(2.63) | (3.89) | (4.41) | |||
College and above (base group: primary and below) | 0.482 *** | 0.642 *** | 0.677 *** | ||
(4.91) | (6.12) | (5.97) | |||
Agricultural Hukou | −0.522 *** | −0.570 *** | −0.554 *** | ||
(−12.45) | (−12.07) | (−10.58) | |||
Ln (expenditure) | 0.061 | 0.366 *** | 0.353 *** | ||
(1.34) | (8.72) | (7.57) | |||
Ln (income) | −0.135 *** | −0.282 *** | −0.258 *** | ||
(−3.16) | (−7.18) | (−5.78) | |||
Health archives | 0.195 *** | 0.186 *** | |||
(4.94) | (4.19) | ||||
Family size | 0.057 *** | 0.058 *** | |||
(3.40) | (3.09) | ||||
Length of migration | 0.074*** | 0.077 *** | |||
(23.12) | (21.16) | ||||
Inner-provincial migration (base group: intra-provincial migration) | 0.301 *** | 0.275 *** | |||
(6.82) | (5.13) | ||||
Inner-city migration (base group: intra-provincial migration) | 0.413 *** | 0.433 *** | |||
(7.99) | (6.98) | ||||
Ln (Housing prices) | −0.034 | −0.060 | |||
(−0.66) | (−0.94) | ||||
Ln (GDP) | −0.301 *** | 0.040 | |||
(−6.09) | (0.82) | ||||
Ln (Beds) | 0.089 * | ||||
(1.94) | |||||
2016 (base group: 2015) | 0.109 ** | −0.087 | |||
(2.44) | (−1.54) | ||||
2017 (base group: 2015) | −0.088 ** | −0.328 *** | |||
(−2.10) | (−5.32) | ||||
_cons | 1.870 *** | 1.788 *** | −5.040 ** | −6.192 *** | −6.288 ** |
(7.78) | (6.67) | (−2.48) | (−2.80) | (−2.47) | |
N | 15,515 | 15,515 | 15,513 | 14,337 | 11,734 |
Variables | Model 6 | Model 7 | Model 8 |
---|---|---|---|
Extreme Hot Weather | Extreme Cold Weather | Excellent Air Quality | |
Precipitation | −0.151 ** | −0.169 *** | −0.148 ** |
(−2.50) | (−2.78) | (−2.46) | |
Temperature | 0.037 * | 0.040 * | 0.030 |
(1.69) | (1.82) | (1.48) | |
Temperature squared | −0.002 ** | −0.003 *** | −0.002 ** |
(−2.44) | (−2.89) | (−2.29) | |
Summer weather | 0.012 | ||
(0.10) | |||
Frost weather | −0.163 ** | ||
(−2.17) | |||
PM2.5 | −0.004 ** | −0.003 | |
(−1.98) | (−1.53) | ||
Excellent air quality | 0.120 ** | ||
(2.23) | |||
Control variables | YES | YES | YES |
_cons | −6.202 ** | −5.923 ** | −6.599 *** |
(−2.43) | (−2.33) | (−2.58) | |
N | 11,734 | 11,734 | 11,734 |
Variables | Model 9 | Model 10 | Model 11 |
---|---|---|---|
Margin Effects | Margin Effects | Margin Effects | |
Air quality × Precipitation | −0.279 *** | −0.250 *** | |
(−4.57) | (−3.84) | ||
Air quality × Frost weather | 0.164 | ||
(1.51) | |||
Air quality × Beds | 0.020 | ||
(0.45) | |||
Precipitation | −0.170 *** | −0.011 | −0.011 |
(−2.78) | (−0.54) | (−0.53) | |
Temperature | 0.035 * | 0.029 | 0.029 |
(1.71) | (1.45) | (1.42) | |
Temperature squared | −0.002 *** | −0.002 ** | −0.002 ** |
(−2.87) | (−2.24) | (−2.19) | |
Frost weather | −0.174 ** | −0.132 * | −0.218 ** |
(−2.32) | (−1.76) | (−2.35) | |
Excellent air quality | 0.111 ** | 1.975 *** | 1.459 ** |
(2.05) | (4.80) | (2.36) | |
Health archives | 0.183 *** | 0.178 *** | 0.177 *** |
(4.12) | (4.00) | (3.97) | |
Ln (Bed) | 0.066 | 0.092 ** | 0.081 |
(1.43) | (1.97) | (1.39) | |
Control variables | YES | YES | YES |
_cons | −6.715 *** | −7.730 *** | −7.405 *** |
(−2.63) | (−3.05) | (−2.92) | |
N | 11,734 | 11,734 | 11,734 |
Variables | Model 12 | Model 13 | Model 14 |
---|---|---|---|
2015 | 2016 | 2017 | |
Air quality × GDP | 0.223 ** | −0.097 | 0.031 |
(2.23) | (−1.09) | (0.54) | |
Air quality × Precipitation | −0.583 *** | −0.483 ** | −0.410 *** |
(−3.79) | (−2.46) | (−2.83) | |
Excellent air quality | 0.044 | 5.250 *** | 2.282 * |
(0.03) | (2.68) | (1.92) | |
Frost weather | 0.008 ** | −0.000 | 0.002 |
(2.07) | (−0.12) | (0.74) | |
Precipitation | 0.426 ** | 0.274 | 0.244 |
(2.16) | (1.35) | (1.41) | |
Temperature | 0.049 | 0.044 | 0.139 *** |
(0.91) | (1.01) | (3.72) | |
Temperature squared | −0.002 | −0.002 | −0.00 *** |
(−0.98) | (−1.36) | (−3.99) | |
Health archives | −0.403 *** | 0.681 *** | 0.210 *** |
(−4.52) | (8.31) | (2.73) | |
Ln (Bed) | 0.064 | 0.174 ** | 0.196 * |
(0.72) | (2.26) | (1.94) | |
Control variables | YES | YES | YES |
_cons | −0.335 | −13.96 *** | −12.61 *** |
(−0.06) | (−2.88) | (−3.06) | |
N | 3347 | 4051 | 4336 |
Variables | Model 15 | Model 16 |
---|---|---|
Active Migrants | Passive Migrants | |
Precipitation | 0.149 | 0.262 |
(1.04) | (1.54) | |
Temperature | −0.067 * | 0.104 *** |
(−1.81) | (2.76) | |
Temperature squared | 0.002 | −0.004 *** |
(1.33) | (−3.00) | |
Frost weather | −0.001 | 0.004 |
(−0.49) | (1.45) | |
Excellent air quality | 1.966 * | 0.979 |
(1.75) | (0.74) | |
Air quality × Precipitation | −0.517 *** | −0.334 ** |
(−4.21) | (−2.21) | |
Air quality × Frost weather | 0.051 | 0.024 |
(1.23) | (0.51) | |
Air quality × Beds | 0.076 | 0.078 |
(1.30) | (1.15) | |
Health archives | 0.135 ** | 0.223 *** |
(2.15) | (3.17) | |
Ln (Bed) | 0.146 ** | 0.005 |
(2.28) | (0.06) | |
_cons | −6.864 * | −4.315 |
(−1.72) | (−1.09) | |
N | 5589 | 5392 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhu, N. Does Natural Amenity Matter on the Permanent Settlement Intention? Evidence from Elderly Migrants in Urban China. Int. J. Environ. Res. Public Health 2022, 19, 1022. https://doi.org/10.3390/ijerph19031022
Song Y, Zhu N. Does Natural Amenity Matter on the Permanent Settlement Intention? Evidence from Elderly Migrants in Urban China. International Journal of Environmental Research and Public Health. 2022; 19(3):1022. https://doi.org/10.3390/ijerph19031022
Chicago/Turabian StyleSong, Yanjiao, and Nina Zhu. 2022. "Does Natural Amenity Matter on the Permanent Settlement Intention? Evidence from Elderly Migrants in Urban China" International Journal of Environmental Research and Public Health 19, no. 3: 1022. https://doi.org/10.3390/ijerph19031022
APA StyleSong, Y., & Zhu, N. (2022). Does Natural Amenity Matter on the Permanent Settlement Intention? Evidence from Elderly Migrants in Urban China. International Journal of Environmental Research and Public Health, 19(3), 1022. https://doi.org/10.3390/ijerph19031022