The Relationship between Bullshit Receptivity and Willingness to Share Misinformation about Climate Change: The Moderating Role of Pregnancy †
Abstract
:1. Introduction
1.1. Definition of Misinformation
1.2. The Relationship between Bullshit Receptivity and Willingness to Share Misinformation about Climate Change
1.3. The Mediating Role of Belief in Misinformation about Climate Change
1.4. The Moderating Role of Pregnancy
2. Materials and Methods
2.1. Sample and Procedure
2.2. Measures
2.2.1. The Belief and Willingness to Share Misinformation about Climate Change
2.2.2. Bullshit Receptivity
2.2.3. Control Variables
2.2.4. Data Analysis
3. Results
3.1. Preliminary Analysis
3.2. Model Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Linden, S.; Leiserowitz, A.; Rosenthal, S.; Maibach, E. Inoculating the public against misinformation about climate change. Glob. Chall. 2017, 1, 1600008. [Google Scholar] [CrossRef] [PubMed]
- Treen, K.M.D.I.; Williams, H.T.; O’Neill, S.J. Online misinformation about climate change. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e665. [Google Scholar] [CrossRef]
- Al-Rawi, A.; Kane, O.; Bizimana, A.J. Topic modelling of public Twitter discourses, part bot, part active human user, on climate change and global warming. J. Environ. Media 2021, 2, 31–53. [Google Scholar] [CrossRef]
- Stop Funding Heat. In Denial-Facebook’s Growing Friendship with Climate Misinformation. Available online: https://stopfundingheat.info/facebook-in-denial/ (accessed on 10 August 2022).
- Al-Rawi, A.; Fakida, A. The methodological challenges of studying “fake news”. J. Pract. 2021, 15, 1–20. [Google Scholar] [CrossRef]
- Van der Linden, S.L.; Leiserowitz, A.A.; Feinberg, G.D.; Maibach, E.W. The scientific consensus on climate change as a gateway belief: Experimental evidence. PLoS ONE 2015, 10, e0118489. [Google Scholar] [CrossRef] [Green Version]
- David-Chavez, D.M.; Gavin, M.C. A global assessment of Indigenous community engagement in climate research. Environ. Res. Lett. 2018, 13, 123005. [Google Scholar] [CrossRef]
- Van der Linden, S.; Maibach, E.; Leiserowitz, A. Improving public engagement with climate change: Five “best practice” insights from psychological science. Perspect. Psychol. Sci. 2015, 10, 758–763. [Google Scholar] [CrossRef]
- Pennycook, G.; Rand, D.G. Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. J. Personal. 2020, 88, 185–200. [Google Scholar] [CrossRef]
- Pennycook, G.; Cheyne, J.A.; Barr, N.; Koehler, D.J.; Fugelsang, J.A. On the reception and detection of pseudo-profound bullshit. Judgm. Decis. Mak. 2015, 10, 549–563. [Google Scholar]
- Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; Lazer, D. Fake news on Twitter during the 2016 US presidential election. Science 2019, 363, 374–378. [Google Scholar] [CrossRef]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.; Recchia, G.; Van Der Bles, A.M.; Van Der Linden, S. Susceptibility to misinformation about COVID-19 around the world. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef] [PubMed]
- Guess, A.; Nagler, J.; Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Sci. Adv. 2019, 5, eaau4586. [Google Scholar] [CrossRef] [Green Version]
- Pennycook, G.; Rand, D.G. Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition 2019, 188, 39–50. [Google Scholar] [CrossRef]
- Imhoff, R.; Zimmer, F.; Klein, O.; António, J.H.; Babinska, M.; Bangerter, A.; Bilewicz, M.; Blanuša, N.; Bovan, K.; Bužarovska, R.; et al. Conspiracy mentality and political orientation across 26 countries. Nat. Hum. Behav. 2022, 6, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Gonzalez-Ramirez, J. Trust and the Media: Perceptions of Climate Change News Sources Among US College Students. Postdigit. Sci. Educ. 2021, 3, 910–933. [Google Scholar] [CrossRef]
- Cook, J.; Bedford, D.; Mandia, S. Raising climate literacy through addressing misinformation: Case studies in agnotology-based learning. J. Geosci. Educ. 2014, 62, 296–306. [Google Scholar] [CrossRef]
- Saunders, J.; Jess, A. The effects of age on remembering and knowing misinformation. Memory 2010, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brashier, N.M.; Schacter, D.L. Aging in an era of fake news. Curr. Dir. Psychol. Sci. 2020, 29, 316–323. [Google Scholar] [CrossRef]
- Stahl, B.C. On the difference or equality of information, misinformation, and disinformation: A critical research perspective. Inf. Sci. 2006, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Lazer, D.M.; Baum, M.A.; Benkler, Y.; Berinsky, A.J.; Greenhill, K.M.; Menczer, F.; Metzger, M.J.; Nyhan, B.; Pennycook, G.; Rothschild, D.; et al. The science of fake news. Science 2018, 359, 1094–1096. [Google Scholar] [CrossRef]
- Dunlap, R.E. Climate change skepticism and denial: An introduction. Am. Behav. Sci. 2013, 57, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Farrell, H.; Newman, A.L. Weaponized interdependence: How global economic networks shape state coercion. Int. Secur. 2019, 44, 42–79. [Google Scholar] [CrossRef]
- Frankfurt, H. On bullshit. Raritan Q. Rev. 1986, 6, 81–100. [Google Scholar] [CrossRef]
- Petrocelli, J.V. Antecedents of bullshitting. J. Exp. Soc. Psychol. 2018, 76, 249–258. [Google Scholar] [CrossRef]
- Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2, 175–220. [Google Scholar] [CrossRef]
- Dennis, A.R. Information exchange and use in small group decision making. Small Group Res. 1996, 27, 532–550. [Google Scholar] [CrossRef]
- Pennycook, G.; McPhetres, J.; Zhang, Y.; Lu, J.G.; Rand, D.G. Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 2020, 31, 770–780. [Google Scholar] [CrossRef]
- Blondé, J.; Desrichard, O.; Kaiser, B. Psychological predictors of the use of complementary and alternative medicines during pregnancy within a sample of Swiss women. Health Psychol. Res. 2020, 8, 8789. [Google Scholar] [CrossRef]
- Eibach, R.P.; Libby, L.K.; Gilovich, T.D. When change in the self is mistaken for change in the world. J. Personal. Soc. Psychol. 2003, 84, 917. [Google Scholar] [CrossRef]
- Hoekzema, E.; Barba-Müller, E.; Pozzobon, C.; Picado, M.; Lucco, F.; García-García, D.; Soliva, J.C.; Tobeña, A.; Desco, M.; Crone, E.A.; et al. Pregnancy leads to long-lasting changes in human brain structure. Nat. Neurosci. 2017, 20, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Tiran, D.; Chummun, H. Complementary therapies to reduce physiological stress in pregnancy. Complement. Ther. Nurs. Midwifery 2004, 10, 162–167. [Google Scholar] [CrossRef]
- Affonso, D.D.; Liu-Chiang, C.Y.; Mayberry, L.J. Worry: Conceptual dimensions and relevance to childbearing women. Health Care Women Int. 1999, 20, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Yali, A.M.; Lobel, M. Coping and distress in pregnancy: An investigation of medically high risk women. J. Psychosom. Obstet. Gynecol. 1999, 20, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Ruddick, S. Maternal Thinking: Toward a Politics of Peace; Beacon Press: Boston, MA, USA, 1995. [Google Scholar]
- Mitchell, M.; McClean, S. Pregnancy, risk perception and use of complementary and alternative medicine. Health Risk Soc. 2014, 16, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Brislin, R.W. Translation and content analysis of oral and written materials. Methodology 1980, 389–444. [Google Scholar]
- Wang, H.; Zou, X.; Lai, K.; Luo, W.; He, L. Does Quality of Life Act as a Protective Factor against Believing Health Rumors? Evidence from a National Cross-Sectional Survey in China. Int. J. Environ. Res. Public Health 2021, 18, 4669. [Google Scholar] [CrossRef]
- Rhemtulla, M.; Brosseau-Liard, P.É.; Savalei, V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol. Methods 2012, 17, 354. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yang, H.; Cheng, M.; Miao, T. Family Dysfunction and Cyberchondria among Chinese Adolescents: A Moderated Mediation Model. Int. J. Environ. Res. Public Health 2022, 19, 9716. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhang, X.; Lin, X.; Sun, Y.; Wang, N.; Wang, J.; Luo, F. The Relationship between Perfectionism and Social Anxiety: A Moderated Mediation Model. Int. J. Environ. Res. Public Health 2022, 19, 12934. [Google Scholar] [CrossRef]
- Gabielkov, M.; Ramachandran, A.; Chaintreau, A.; Legout, A. Social clicks: What and who gets read on Twitter? In Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, New York, NY, USA, 9–14 June 2016; pp. 179–192. [Google Scholar] [CrossRef]
- Pennycook, G.; Cannon, T.D.; Rand, D.G. Prior exposure increases perceived accuracy of fake news. J. Exp. Psychol. Gen. 2018, 147, 1865. [Google Scholar] [CrossRef]
- Lai, K.; Xiong, X.; Jiang, X.; Sun, M.; He, L. Who falls for rumor? Influence of personality traits on false rumor belief. Personal. Individ. Differ. 2020, 152, 109520. [Google Scholar] [CrossRef]
- Ngah, H.; Mohd Hairon, S.; Hamzah, N.A.; Noordin, S.; Shafei, M.N. Development and validation of knowledge, attitude, and practice questionnaire: Toward safe working in confined spaces. Int. J. Environ. Res. Public Health 2022, 19, 1242. [Google Scholar] [CrossRef] [PubMed]
- Van Griethuijsen, R.A.; van Eijck, M.W.; Haste, H.; Den Brok, P.J.; Skinner, N.C.; Mansour, N.; Gencer, A.S.; BouJaoude, S. Global patterns in students’ views of science and interest in science. Res. Sci. Educ. 2015, 45, 581–603. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutzke, L.; Drummond, C.; Slovic, P.; Árvai, J. Priming critical thinking: Simple interventions limit the influence of fake news about climate change on Facebook. Glob. Environ. Chang. 2019, 58, 101964. [Google Scholar] [CrossRef]
- Van der Linden, S. The social-psychological determinants of climate change risk perceptions: Towards a comprehensive model. J. Environ. Psychol. 2015, 41, 112–124. [Google Scholar] [CrossRef]
- De Neys, W. Bias and conflict: A case for logical intuitions. Perspect. Psychol. Sci. 2012, 7, 28–38. [Google Scholar] [CrossRef]
- Evans, J.S.B.; Stanovich, K.E. Dual-process theories of higher cognition: Advancing the debate. Perspect. Psychol. Sci. 2013, 8, 223–241. [Google Scholar] [CrossRef]
- Swami, V.; Voracek, M.; Stieger, S.; Tran, U.S.; Furnham, A. Analytic thinking reduces belief in conspiracy theories. Cognition 2014, 133, 572–585. [Google Scholar] [CrossRef] [Green Version]
- Shenhav, A.; Rand, D.G.; Greene, J.D. Divine intuition: Cognitive style influences belief in God. J. Exp. Psychol. Gen. 2012, 141, 423. [Google Scholar] [CrossRef] [Green Version]
- Gervais, W.M. Override the controversy: Analytic thinking predicts endorsement of evolution. Cognition 2015, 142, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Hennig-Thurau, T.; Wiertz, C.; Feldhaus, F. Does Twitter matter? The impact of microblogging word of mouth on consumers’ adoption of new movies. J. Acad. Mark. Sci. 2015, 43, 375–394. [Google Scholar] [CrossRef]
- Jordan, J.J.; Sommers, R.; Bloom, P.; Rand, D.G. Why do we hate hypocrites? Evidence for a theory of false signaling. Psychol. Sci. 2017, 28, 356–368. [Google Scholar] [CrossRef]
- Boyd, D.; Golder, S.; Lotan, G. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Altay, S.; de Araujo, E.; Mercier, H. “If this account is true, it is most enormously wonderful”: Interestingness-if-true and the sharing of true and false news. Digit. J. 2022, 10, 373–394. [Google Scholar] [CrossRef]
- Li, A.; Wang, H.; Sun, H.; Xiong, G.; Yang, S. The nudge effect of “foreight for the future of our children”: Pregnancy and environmental intertemporal choice. Acta Psychol. Sin. 2018, 50, 858–867. [Google Scholar] [CrossRef]
Demographic Variables | Pregnant Group | Nonpregnant Group | |
---|---|---|---|
n (%) | n (%) | ||
Age | Mean (S) | Mean = 29.85 (SD = 3.78) 22–42 | Mean = 29.60 (SD = 7.26) 13–65 |
Employment status | Employed | 204 (91.1%) | 298 (83.2%) |
Unemployed | 20 (8.9%) | 60 (16.8%) | |
Education | Less than technical secondary school | 3 (1.3%) | 13 (3.6%) |
Some college | 18 (8.0%) | 40 (11.2%) | |
Bachelor’s degree | 180 (80.4%) | 279 (77.9%) | |
Master’s degree | 21 (9.4%) | 24 (6.7%) | |
Doctor’s degree or higher | 2 (0.9%) | 2 (0.6%) | |
Marital Status | Married | 221 (98.7%) | 237 (66.2%) |
Unmarried | 3 (1.3%) | 119 (33.2%) | |
Other | 0 | 2 (0.6%) | |
The number of children born | 0 | 71 (31.7%) | 132 (36.9%) |
1 | 129 (57.6%) | 172 (48.0%) | |
2 | 23 (10.3%) | 51 (14.2%) | |
3 | 1 (0.4%) | 3 (0.8%) |
Title 1 | M | SD | 1 | 2 | 3 |
---|---|---|---|---|---|
Bullshit receptivity | 3.689 | 0.479 | - | ||
Belief in misinformation | 2.658 | 0.669 | 0.224 ** | - | |
Willingness to share misinformation | 2.202 | 0.795 | 0.230 ** | 0.625 ** | - |
Pregnancy | 0.380 | 0.487 | 0.108 ** | 0.040 | 0.092 * |
b | SE | t | p | |
---|---|---|---|---|
Model 1 | ||||
Constant | 0.791 ** | 0.250 | 3.169 | <0.01 |
Bullshit receptivity | 0.382 *** | 0.067 | 5.698 | <0.001 |
Model 2 | ||||
Constant | 1.074 * | 0.491 | 2.188 | <0.05 |
Age | 0.008 | 0.006 | 1.260 | 0.208 |
Education | −0.134 * | 0.060 | −2.248 | <0.05 |
Employment status | −0.126 | 0.106 | −1.186 | 0.236 |
Marital status | 0.010 | 0.106 | 0.096 | 0.924 |
The number of children born | 0.006 | 0.063 | 0.090 | 0.929 |
Bullshit receptivity | 0.381 *** | 0.068 | 5.561 | <0.001 |
b | SE | t | p | |
---|---|---|---|---|
Mediator variable (Belief in misinformation) model | ||||
Constant | 1.182 ** | 0.414 | 2.852 | <0.01 |
Age | 0.011 * | 0.005 | 2.069 | <0.05 |
Education | −0.069 | 0.050 | −1.371 | 0.171 |
Employment status | 0.082 | 0.089 | 0.917 | 0.360 |
Marital status | 0.033 | 0.089 | 0.372 | 0.710 |
The number of children born | 0.007 | 0.053 | 0.138 | 0.890 |
Bullshit receptivity | 0.326 *** | 0.058 | 5.649 | <0.001 |
Dependent variable (Willingness to share misinformation) model | ||||
Constant | 0.231 | 0.395 | 0.584 | 0.560 |
Age | 0.0001 | 0.005 | 0.017 | 0.986 |
Education | −0.085 | 0.048 | −1.778 | 0.076 |
Employment status | −0.184 * | 0.085 | −2.175 | <0.05 |
Marital status | −0.014 | 0.084 | −0.160 | 0.873 |
The number of children born | 0.0004 | 0.050 | 0.008 | 0.994 |
Bullshit receptivity | 0.148 ** | 0.056 | 2.630 | <0.01 |
Belief in misinformation | 0.714 *** | 0.039 | 18.084 | <0.001 |
Effect | SE | BootLLCI | BootULCI | |
---|---|---|---|---|
Direct effect | 0.148 | 0.056 | 0.037 | 0.258 |
Indirect effect | 0.233 | 0.048 | 0.144 | 0.333 |
Total effect | 0.381 | 0.068 | 0.246 | 0.515 |
b | SE | t | p | |
---|---|---|---|---|
Mediator variable (Belief in misinformation) model | ||||
Constant | 2.304 *** | 0.338 | 6.816 | <0.001 |
Age | 0.011 * | 0.005 | 2.124 | <0.05 |
Education | −0.065 | 0.050 | −1.289 | 0.198 |
Employment status | 0.717 | 0.089 | 0.802 | 0.422 |
Marital status | 0.058 | 0.100 | 0.576 | 0.564 |
The number of children born | 0.018 | 0.054 | 0.333 | 0.739 |
Bullshit receptivity | 0.230 ** | 0.073 | 3.170 | <0.01 |
Pregnancy | 0.043 | 0.633 | 0.676 | 0.50 |
Bullshit receptivity x Pregnancy | 0.255 * | 0.118 | 2.162 | <0.05 |
Dependent variable (Willingness to share misinformation) model | ||||
Constant | 0.776 * | 0.319 | 2.434 | <0.05 |
Age | 0.0001 | 0.005 | 0.017 | 0.986 |
Education | −0.085 | 0.048 | −1.778 | 0.076 |
Employment status | −0.184 * | 0.085 | −2.175 | <0.05 |
Marital status | −0.014 | 0.084 | −0.160 | 0.873 |
The number of children born | 0.0004 | 0.050 | 0.008 | 0.994 |
Bullshit receptivity | 0.148 ** | 0.056 | 2.630 | <0.01 |
Belief in misinformation | 0.714 *** | 0.039 | 18.084 | <0.001 |
Conditional effects of predictor (Bullshit receptivity) considering the moderator (Pregnancy) | b | BootSE | BootLLCI | BootULCI |
Nonpregnant | 0.230 ** | 0.073 | 0.088 | 0.373 |
Pregnant | 0.485 *** | 0.094 | 0.302 | 0.669 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.; Yang, Y.; Na, Y.; Wang, H. The Relationship between Bullshit Receptivity and Willingness to Share Misinformation about Climate Change: The Moderating Role of Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 16670. https://doi.org/10.3390/ijerph192416670
Lai K, Yang Y, Na Y, Wang H. The Relationship between Bullshit Receptivity and Willingness to Share Misinformation about Climate Change: The Moderating Role of Pregnancy. International Journal of Environmental Research and Public Health. 2022; 19(24):16670. https://doi.org/10.3390/ijerph192416670
Chicago/Turabian StyleLai, Kaisheng, Yingxin Yang, Yuxiang Na, and Haixia Wang. 2022. "The Relationship between Bullshit Receptivity and Willingness to Share Misinformation about Climate Change: The Moderating Role of Pregnancy" International Journal of Environmental Research and Public Health 19, no. 24: 16670. https://doi.org/10.3390/ijerph192416670