Comprehensive Analysis of the Association between Human Diseases and Water Pollutants
Abstract
:1. Introduction
2. Methods and Materials
2.1. Datasets Download
2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis
2.3. Protein–Protein Interaction (PPI) Network
2.4. Specific Analysis of Water Pollutants According to Industry Classification
2.5. Identification of Disease-Related Genes Caused by Water Pollutants
2.6. The Distribution of Hub Genes in Human Organs
3. Results
3.1. Identification of Water-Pollutant-Related Genes
3.2. GO and KEGG Pathway Enrichment Analysis
3.3. Construction of the PPI Network and the Identification of Key Genes
3.4. Specific Analysis of the Different Type of Water Pollutants
3.5. Integrative Analysis of Disease-Related Genes
3.6. Identification of the Genes Related to Colonic Neoplasms and Breast Neoplasms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Thani, R.F.; Yasseen, B.T. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environ. Pollut. 2020, 259, 113694. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; Mishra, S.; Tripathi, R.D. Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environ. Int. 2018, 117, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, X.; Zhang, T.; Zhou, X.; Chen, X.; Lu, H.; Zhou, X.; Zhang, X.; Wang, S.; Qin, C. Comprehensive Analysis of the Association between Human Non-obstructive Azoospermia and Plasticisers via Single-Cell and Traditional RNA Sequencing Methods. Expo. Health 2022, 14, 829–842. [Google Scholar] [CrossRef]
- Ellis, J.B.; Butler, D. Surface water sewer misconnections in England and Wales: Pollution sources and impacts. Sci. Total Environ. 2015, 526, 98–109. [Google Scholar] [CrossRef]
- Giesy, J.P.; Naile, J.E.; Khim, J.S.; Jones, P.D.; Newsted, J.L. Aquatic toxicology of perfluorinated chemicals. Rev. Environ. Contam. Toxicol. 2010, 202, 1–52. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, X.; Zhang, X.; Ren, X.; Wu, J.; Wang, Z.; Wang, S.; Wang, Z. Gut microbiota may contribute to the postnatal male reproductive abnormalities induced by prenatal dibutyl phthalate exposure. Chemosphere 2022, 287 Pt 1, 132046. [Google Scholar] [CrossRef]
- Chen, J.; Han, T.; Li, X.; He, X.; Wang, Y.; Chen, F.; Song, X.; Zhou, D.; Wang, X. Occurrence and distribution of marine natural organic pollutants: Lipophilic marine algal toxins in the Yellow Sea and the Bohai Sea, China. Sci. Total Environ. 2018, 612, 931–939. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, T.; Chen, X.; Wei, X.; Tian, Y.; Li, G.; Zhang, X.; Zhang, W.; You, Z.; Wang, S.; et al. Early-life exposure to bisphenol A and reproductive-related outcomes in rodent models: A systematic review and meta-analysis. Aging 2020, 12, 18099–18126. [Google Scholar] [CrossRef]
- Ismail, N.A.H.; Wee, S.Y.; Aris, A.Z. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere 2017, 188, 375–388. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Ren, X.; Li, B.; Wang, S. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. Ecotoxicol. Environ. Saf. 2021, 221, 112457. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Q.; Zhang, Z.; Hu, B.; Chen, J.; Chen, J.; Qian, H. Pollutant toxicology with respect to microalgae and cyanobacteria. J. Environ. Sci. 2021, 99, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Daud, M.K.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W.; et al. Drinking Water Quality Status and Contamination in Pakistan. Biomed. Res. Int. 2017, 2017, 7908183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boelee, E.; Geerling, G.; van der Zaan, B.; Blauw, A.; Vethaak, A.D. Water and health: From environmental pressures to integrated responses. Acta Trop. 2019, 193, 217–226. [Google Scholar] [CrossRef]
- Chen, C.C.; Zechariah, A.; Hsu, Y.H.; Chen, H.W.; Yang, L.C.; Chang, C. Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis. Exp. Neurol. 2008, 210, 322–330. [Google Scholar] [CrossRef]
- Klaunig, J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef]
- Bieberich, E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem. Phys. Lipids 2018, 216, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Kuramitsu, S.; Posey, A.D., Jr.; June, C.H. Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Front. Immunol. 2018, 9, 2486. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Greening, D.W.; Zhu, H.J.; Takahashi, N.; Simpson, R.J. Extracellular vesicle isolation and characterization: Toward clinical application. J. Clin. Investig. 2016, 126, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Pandit, A.B.; Kumar, J.K. Clean Water for Developing Countries. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 217–246. [Google Scholar] [CrossRef] [Green Version]
- Li, P. To Make the Water Safer. Expo. Health 2020, 12, 337–342. [Google Scholar] [CrossRef]
- Lasram, M.M.; Annabi, A.B.; El Elj, N.; Selmi, S.; Kamoun, A.; El-Fazaa, S.; Gharbi, N. Metabolic disorders of acute exposure to malathion in adult Wistar rats. J. Hazard. Mater. 2009, 163, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lee, H.L.; Hwang, Y.T.; Wang, C.; Hsieh, C.J.; Wu, C.; Sung, F.C.; Su, T.C. The association between urine di-(2-ethylhexyl) phthalate metabolites, global DNA methylation, and subclinical atherosclerosis in a young Taiwanese population. Environ. Pollut. 2020, 265 Pt B, 114912. [Google Scholar] [CrossRef]
- Singh, A.V.; Romeo, A.; Scott, K.; Wagener, S.; Leibrock, L.; Laux, P.; Luch, A.; Kerkar, P.; Balakrishnan, S.; Dakua, S.P.; et al. Emerging Technologies for In Vitro Inhalation Toxicology. Adv. Healthc. Mater. 2021, 10, e2100633. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhang, H.; Wang, X.; Zhang, X.; Ding, K. Comprehensive Analysis of the Association between Human Diseases and Water Pollutants. Int. J. Environ. Res. Public Health 2022, 19, 16475. https://doi.org/10.3390/ijerph192416475
Jiang X, Zhang H, Wang X, Zhang X, Ding K. Comprehensive Analysis of the Association between Human Diseases and Water Pollutants. International Journal of Environmental Research and Public Health. 2022; 19(24):16475. https://doi.org/10.3390/ijerph192416475
Chicago/Turabian StyleJiang, Xinlu, Huanhuan Zhang, Xiaoyan Wang, Xu Zhang, and Kaiyang Ding. 2022. "Comprehensive Analysis of the Association between Human Diseases and Water Pollutants" International Journal of Environmental Research and Public Health 19, no. 24: 16475. https://doi.org/10.3390/ijerph192416475
APA StyleJiang, X., Zhang, H., Wang, X., Zhang, X., & Ding, K. (2022). Comprehensive Analysis of the Association between Human Diseases and Water Pollutants. International Journal of Environmental Research and Public Health, 19(24), 16475. https://doi.org/10.3390/ijerph192416475