Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model
Abstract
:1. Introduction
2. Theoretical Basis and Research Hypothesis
2.1. Unified Theory of Technology Adoption and Use (UTAUT)
2.2. Research Hypotheses
3. Materials and Methods
3.1. Questionnaire Design
3.2. Data Collection
3.3. Data Analysis
4. Results
4.1. Sample Characteristics
4.2. Reliability and Validity
4.3. Hypothetical Path Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Survey Instrument
References
- Hu, H.; Cao, A.D.; Chen, S.; Li, H. Effects of risk perception of pests and diseases on tea farmers’ green control techniques adoption. Int. J. Environ. Res. Public Health 2022, 12, 8465. [Google Scholar] [CrossRef] [PubMed]
- He, D.C.; Zhan, J.S.; Xie, L.H. Problems, challenges and future of plant disease management: From an ecological point of view. J. Integr. Agric. 2016, 15, 705–715. [Google Scholar] [CrossRef]
- Xie, L.H. Plant protection strategy of China in the 21st century. Rev. China Agric. Sci. Technol. 2003, 5, 5–7. (In Chinese) [Google Scholar]
- Tian, S. Ecological agriculture in China: Bridging the gap between rhetoric and practice of sustainability. Ecol. Econ. 2002, 42, 359–368. [Google Scholar] [CrossRef]
- Fred, M. Ecological agriculture: Principles, practices, and constraints. Renew. Agric. Food Syst. 2007, 2, 109–117. [Google Scholar] [CrossRef]
- Khan, M.; Mahmood, H.Z.; Damalas, C.A. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Prot. 2015, 67, 184–190. [Google Scholar] [CrossRef]
- Khan, M.; Damalas, C.A. Factors preventing the adoption of alternatives to chemical pest control among Pakistani cotton farmers. Int. J. Pest Manag. 2014, 61, 9–16. [Google Scholar] [CrossRef]
- Matthews, G. Pesticides, IPM and training. Phytoparasitica 1999, 27, 253–256. [Google Scholar] [CrossRef]
- Danne, M.; Musshoff, O. Analysis of farmers’ willingness to participate in pasture grazing designed: Results from a discrete choice experiment with German dairy farmers. J. Dairy Sci. 2017, 100, 7569–7580. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Chen, J. Small-scale farmers’ preference heterogeneity for green agriculture policy incentives identified by choice experiment. Sustainability 2022, 14, 5770. [Google Scholar] [CrossRef]
- Verbeke, W.; Spranghers, T.; De Clercq, P.; De Smet, S.; Sas, B.; Eeckhout, M. Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim. Feed Sci. Technol. 2015, 204, 72–87. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Sabbagh, M.; Gutierrez, L. Micro-irrigation technology adoption in the Bekaa Valley of Lebanon: A behavioural model. Sustainability 2022, 14, 7685. [Google Scholar] [CrossRef]
- Rusere, F.; Crespo, O.; Dicks, L.; Mkuhlani, S.; Francis, J.; Zhou, L. Enabling acceptance and use of ecological intensification options through engaging smallholder farmers in semi-arid rural Limpopo and Eastern Cape, South Africa. Agroecol. Sustain. Food Syst. 2019, 44, 696–725. [Google Scholar] [CrossRef]
- Nejadrezaei, N.; Sadegh Allahyari, M.; Sadeghzadeh, M.; Michailidis, A.; El Bilali, H. Factors affecting adoption of pressurized irrigation technology among olive farmers in Northern Iran. Appl. Water Sci. 2018, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, J.B.; Zeng, Y.M. Rural households’ willingness to accept compensation for energy utilization of crop straw in China. Energy 2018, 165, 562–571. [Google Scholar] [CrossRef]
- Amir, A.F.; Mohammad, K.-K.; Hamid, E. Bilali. Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County, Northern Irfan. Land Use Policy 2020, 99, 104885. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.B.; Zeng, Y.M. Households’ willingness to pay for energy utilization of crop straw in rural China: Based on an improved UTAUT model. Energy Policy 2020, 140, 111373. [Google Scholar] [CrossRef]
- Ronaghi, M.H.; Forouharfar, A. A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern Country within the context of Unified Theory of Acceptance and Use of Technology Model (UTAUT). Technol. Soc. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Von Veltheim, F.R.; Heise, H. German farmers’ attitudes on adopting autonomous field robots: An empirical survey. Agriculture 2021, 11, 216. [Google Scholar] [CrossRef]
- Beza, E.; Reidsma, P.; Poortvliet, M.; Misker Belay, M.; Bijen, B.S.; Kooistra, L. Exploring farmers’ intentions to adopt mobile short message service (SMS) for citizen science in agriculture. Comput. Electron. Agric. 2018, 151, 295–310. [Google Scholar] [CrossRef]
- Narine, L.K.; Harder, A.; Roberts, T.G. Farmers’ intention to use text messaging for extension services in Trinidad. J. Agric. Educ. Ext. 2019, 25, 293–306. [Google Scholar] [CrossRef]
- Michels, M.; Bonke, V.; Musshoff, O. Understanding the adoption of smartphone apps in crop protection. Precis. Agric. 2020, 21, 1209–1226. [Google Scholar] [CrossRef]
- Molina-Maturano, J.; Verhulst, N.; Tur-Cardona, J.; Güereña, J.T.; Gardeazábal-Monsalve, A.; Govaerts, B.; Speelman, S. Understanding smallholder farmers’ intention to adopt agricultural apps: The role of mastery approach and innovation hubs in Mexico. Agronomy 2021, 11, 194. [Google Scholar] [CrossRef]
- Paul, M. Community-supported agriculture in the United States: Social, ecological and economic benefits to farming. J. Agrar. Change 2019, 19, 162–180. [Google Scholar] [CrossRef]
- He, K. Ecological Compensation for Agricultural Waste Recycling; M. People’s Publishing House: Beijing, China, 2019. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Sørebø, Ø.; Eikebrokk, T.R. Explaining IS continuance in environments where the usage is mandatory. Comput. Hum. Behav. 2008, 24, 2357–2371. [Google Scholar] [CrossRef]
- Tzeling, N.; Eheart, J.; Cai, X.M. An agent-based model of farmer decision-making and water quality impacts at the water shed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resour. Res. 2011, 47, 113–120. [Google Scholar] [CrossRef]
- Zeng, Y.; Dong, P.; Shi, Y.; Wang, L.; Li, Y. Analyzing the coevolution of green technology diffusion and consumers’ proenvironmental attitudes: An agent-based model. J. Clean. Prod. 2020, 256, 120384. [Google Scholar] [CrossRef]
- BenYishay, A.; Mobarak, A.M. Social learning and incentives for experimentation and communication. Rev. Econ. Stud. 2018, 86, 976–1009. [Google Scholar] [CrossRef] [Green Version]
- Shikuku, K.M.; Pieters, J.; Bulte, E.; Läderach, P. Incentives and the diffusion of agricultural knowledge: Experimental evidence from northern Uganda. Am. J. Agric. Econ. 2019, 101, 1164–1180. [Google Scholar] [CrossRef]
- Paul, J.; Sierra, J.; Causeret, F.; Guindé, L.; Blazy, J.M. Factors affecting the adoption of compost use by farmers in small tropical Caribbean islands. J. Clean. Prod. 2017, 142, 1387–1396. [Google Scholar] [CrossRef]
- Oo, S.P.; Usami, K. Farmers’ perception of good agricultural practices in rice production in Myanmar: A case study of Myaungmya District, Ayeyarwady Region. Agriculture 2020, 10, 249. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Woodruff, R.B. Customer value: The next source for competitive advantage. J. Acad. Mark. Sci. 1997, 25, 139–153. [Google Scholar] [CrossRef]
- Ren, L.; Gan, C.L.; Wu, M.; Chin, Y. A study on farmers’ land investment behavior in resettlement area based on PVT. Resour. Sci. 2018, 40, 1539–1549. (In Chinese) [Google Scholar]
- Li, M.Y.; Chen, K. An empirical analysis of farmers’ take risks and behaviors in green agriculture production. J. Huazhong Univ. Agric. Univ. (Soc. Sci. Ed.) 2020, 4, 10–19, 173–174. (In Chinese) [Google Scholar]
- Schultz, T.W. Transforming traditional agriculture: Reply. J. Farm Econ. 1966, 48, 1015–1018. [Google Scholar] [CrossRef]
- Ros, E.X.R.; Field, A. Discovering Statistics Using SPSS; SAGE Publications: London, UK, 2006; Volume 37, pp. 189–196. [Google Scholar]
- Bontis, N.; Crossan, M.M.; Hulland, J. Managing an organizational learning system by aligning stocks and flows. J. Manag. Stud. 2002, 39, 437–469. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Kumar, R.; Trivedi, H.; Yadav, R.; Das, B.; Bist, A.S. Effect of drip irrigation on yield and water use efficiency on brinjal (Solanum melongena) cv. Pant samrat. Int. J. Eng. Sci. Res. Technol. 2016, 5, 7–17. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Goded, M.; Barreiro-Hurle, J.; Ruto, E. What do farmers want from agri-environmental scheme design? A choice experiment approach. J. Agric. Econ. 2010, 61, 259–273. [Google Scholar] [CrossRef]
- Chatzimichael, K.; Genius, M.; Tzouvelekas, V. Informational cascades and technology adoption: Evidence from Greek and German organic growers. Food Policy 2014, 49, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Lampach, N.; Van Phu, N. The Effect of Agricultural Extension Programs on Technical Efficiency of Crop Farms in Low and Middle-Income Countries. 2021. Available online: https://ssrn.com/abstract=3208034 (accessed on 25 May 2022).
- USAID; LRBMS. Litani River Basin Management Support Program: Training on Mechanization of Field Drip Irrigation Installation; USAID Agency: Beirut, Lebanon, 2012. [Google Scholar]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econ. 2014, 96, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Castillo, G.M.L.; Engler, A.; Wollni, M. Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies. Agric. Water Manag. 2021, 243, 106524. [Google Scholar] [CrossRef]
- Namara, R.; Upadhyay, B.; Nagar, R.K. Adoption and Impacts of Microirrigation Technologies: Empirical Results from Selected Localities of Maharashtra and Gujarat States of India; Research Report 93; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2005. [Google Scholar]
Variable | Definition | Frequency (n) | Proportion (%) |
---|---|---|---|
Gender | Male | 125 | 70.2 |
Female | 53 | 29.8 | |
Age | 20–30 years | 62 | 34.8 |
31–40 years | 54 | 30.3 | |
41–50 years | 40 | 22.5 | |
51–60 years | 15 | 8.4 | |
Older than 60 years | 7 | 4.0 | |
Educational level | Elementary school and below | 3 | 1.7 |
Junior high school | 23 | 12.9 | |
Technical secondary or high school | 72 | 40.4 | |
College or bachelor’s degree | 62 | 34.8 | |
Graduate and above | 18 | 10.1 | |
Occupation | Renting land to others and working in a tea company | 36 | 20.2 |
Engaged in agriculture during the production season, working outside the home the rest of the time | 60 | 33.7 | |
Mostly farming, with occasional outside work to supplement household income | 31 | 17.4 | |
Full-time farming | 51 | 28.7 |
Variable | Number of ITEMS | Mean | Standard Deviation |
---|---|---|---|
Performance expectation | 4 | 4.560 | 0.564 |
Effort expectation | 6 | 3.904 | 0.849 |
Social influence | 4 | 4.324 | 0.620 |
Facilitating factors | 6 | 4.337 | 0.634 |
Perceived value | 5 | 4.349 | 0.605 |
Behavioral intention | 5 | 4.394 | 0.620 |
Variable | Item | Factor Loading | AVE | CR | CA | VIF | Reliability/ Validity Criteria |
---|---|---|---|---|---|---|---|
Performance expectation | PE1 | 0.793 | 0.670 | 0.890 | 0.836 | 1.621 | using |
PE2 | 0.806 | 1.819 | |||||
PE3 | 0.836 | 2.060 | |||||
PE4 | 0.838 | 1.958 | |||||
Effort expectation | EE1 | 0.818 | 0.685 | 0.929 | 0.908 | 2.180 | using |
EE2 | 0.789 | 2.182 | |||||
EE3 | 0.774 | 2.074 | |||||
EE4 | 0.871 | 2.876 | |||||
EE5 | 0.818 | 2.305 | |||||
EE6 | 0.891 | 3.360 | |||||
Social influence | SI1 | 0.770 | 0.632 | 0.873 | 0.806 | 1.695 | using |
SI2 | 0.827 | 1.943 | |||||
SI3 | 0.792 | 1.688 | |||||
SI4 | 0.792 | 1.606 | |||||
Facilitating factors | IF1 | 0.756 | 0.587 | 0.895 | 0.860 | 1.923 | using |
IF2 | 0.810 | 2.198 | |||||
IF3 | 0.755 | 1.799 | |||||
IF4 | 0.774 | 2.400 | |||||
IF5 | 0.751 | 2.391 | |||||
IF6 | 0.750 | 1.626 | |||||
Perceived value | PV1 | 0.787 | 0.643 | 0.900 | 0.860 | 1.901 | using |
PV2 | 0.761 | 1.768 | |||||
PV3 | 0.863 | 2.588 | |||||
PV4 | 0.825 | 2.158 | |||||
PV5 | 0.767 | 1.759 | |||||
Behavioral intention | BI1 | 0.866 | 0.745 | 0.936 | 0.915 | 2.686 | using |
BI2 | 0.872 | 2.897 | |||||
BI3 | 0.885 | 3.132 | |||||
BI4 | 0.852 | 2.517 | |||||
BI5 | 0.842 | 2.427 |
Variable | BI | EE | IF | PV | PE | SI |
---|---|---|---|---|---|---|
Behavioral intention | 0.863 | |||||
Effort expectancy | 0.584 | 0.828 | ||||
Irritant factors | 0.637 | 0.467 | 0.766 | |||
Perceived value | 0.769 | 0.655 | 0.642 | 0.802 | ||
Performance expectancy | 0.632 | 0.465 | 0.466 | 0.705 | 0.818 | |
Social influence | 0.718 | 0.589 | 0.757 | 0.746 | 0.639 | 0.795 |
Path Hypothesis | Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|---|
Effect of Value | p | Decision | Effect of Value | p | Decision | ||
PE–BI | Direct | 0.266 | 0.000 ** | Accept | 0.135 | 0.085 | Reject |
EE–BI | Direct | 0.202 | 0.00 ** | Accept | 0.097 | 0.134 | Reject |
SI–BI | Direct | 0.266 | 0.007 ** | Accept | 0.176 | 0.060 | Reject |
FF–BI | Direct | 0.219 | 0.005 ** | Accept | 0.149 | 0.063 | Reject |
PV–BI | Direct | 0.383 | 0.000 ** | Accept | |||
PE–PV–BI | Indirect | 0.350 | 0.000 ** | Accept | |||
EE–PV–BI | Indirect | 0.276 | 0.000 ** | Accept | |||
SI–PV–BI | Indirect | 0.223 | 0.010 * | Accept | |||
FF–PV–BI | Indirect | 0.181 | 0.004 ** | Accept | |||
R2 | 0.618 | 0.658 | |||||
SRMR | 0.069 | 0.070 | |||||
d_ULS | 1.558 | 2.302 | |||||
Chi-square | 733.343 | 1057.123 | |||||
NFI | 0.770 | 0.742 |
Path Hypothesis | Effect of Value | 95% Confidence Interval | Result | |
---|---|---|---|---|
LLCI | ALSO | |||
PE–PV–BI | 0.350 | 0.230 | 0.447 | Mediation |
EE–PV–BI | 0.276 | 0.143 | 0.444 | Mediation |
SI–PV–BI | 0.223 | 0.062 | 0.423 | Mediation |
FF–PV–BI | 0.181 | 0.055 | 0.297 | Mediation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, K.; Zhu, Y.; Ma, Y.; Chen, Y.; Chen, S.; Chen, Z. Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model. Int. J. Environ. Res. Public Health 2022, 19, 15351. https://doi.org/10.3390/ijerph192215351
Xie K, Zhu Y, Ma Y, Chen Y, Chen S, Chen Z. Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model. International Journal of Environmental Research and Public Health. 2022; 19(22):15351. https://doi.org/10.3390/ijerph192215351
Chicago/Turabian StyleXie, Kexiao, Yuerui Zhu, Yongqiang Ma, Youcheng Chen, Shuiji Chen, and Zhidan Chen. 2022. "Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model" International Journal of Environmental Research and Public Health 19, no. 22: 15351. https://doi.org/10.3390/ijerph192215351