Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Case–Control Study Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Popa, M.L.; Albulescu, R.; Neagu, M.; Hinescu, M.E.; Tanase, C. Multiplex assay for multiomics advances in personalized-precision medicine. J. Immunoass. Immunochem. 2019, 40, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Markman, J.L.; Shiao, S.L. Impact of the immune system and immunotherapy in colorectal cancer. J. Gastrointest. Oncol. 2015, 6, 208–223. [Google Scholar] [PubMed]
- Poh, C.M.; Zheng, J.; Channappanavar, R.; Chang, Z.W.; Nguyen, T.H.O.; Rénia, L.; Kedzierska, K.; Perlman, S.; Poon, L.L.M. Multiplex Screening Assay for Identifying Cytotoxic CD8+ T Cell Epitopes. Front. Immunol. 2020, 11, 400. [Google Scholar] [CrossRef] [Green Version]
- Procaccini, C.; De Rosa, V.; Galgani, M.; Carbone, F.; La Rocca, C.; Formisano, L.; Matarese, G. Role of adipokines signaling in the modulation of T cells function. Front. Immunol. 2013, 4, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, L.J.; Peake, R.; Price, S.; Morris, T.C.; Irvine, A.E. Adiponectin is produced by lymphocytes and is a negative regulator of granulopoiesis. J. Leukoc. Biol. 2010, 88, 807–811. [Google Scholar] [CrossRef]
- Surmacz, E.; Otvos, L. Molecular targeting of obesity pathways in cancer. Horm. Mol. Biol. Clin. Investig. 2015, 22, 53–62. [Google Scholar] [CrossRef]
- Di Zazzo, E.; Polito, R.; Bartollino, S.; Nigro, E.; Porcile, C.; Bianco, A.; Daniele, A.; Moncharmont, B. Adiponectin as link factor between adipose tissue and cancer. Int. J. Mol. Sci. 2019, 20, 839. [Google Scholar] [CrossRef] [Green Version]
- Dalamaga, M.; Diakopoulos, K.N.; Mantzoros, C.S. The role of adiponectin in cancer: A review of current evidence. Endocr. Rev. 2012, 33, 547–594. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, M. Adiponectin: A versatile player of innate immunity. J. Mol. Cell Biol. 2016, 8, 120–128. [Google Scholar] [CrossRef]
- He, B.; Pan, Y.; Zhang, Y.; Bao, Q.; Chen, L.; Nie, Z.; Gu, L.; Xu, Y.; Wang, S. Effects of genetic variations in the adiponectin pathway genes on the risk of colorectal cancer in the Chinese population. BMC Med. Genet. 2011, 12, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byeon, J.-S.; Jeong, J.-Y.; Kim, M.J.; Lee, S.-M.; Nam, W.-H.; Myung, S.-J.; Kim, J.G.; Yang, S.-K.; Kim, J.-H.; Suh, D.J. Adiponectin and adiponectin receptor in relation to colorectal cancer progression. Int. J. Cancer 2010, 127, 2758–2767. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Mitsiades, N.; Sozopoulos, E.; Hsi, A.; Wolk, A.; Nifli, A.-P.; Tseleni-Balafouta, S.; Mantzoros, C.S. Adiponectin receptor expression is elevated in colorectal carcinomas but not in gastrointestinal stromal tumors. Endocr.-Relat. Cancer 2008, 15, 289–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101–2114. [Google Scholar] [CrossRef] [PubMed]
- Osório-Costa, F.; Carvalheira, J.B. TNF-α in obesity-associated colon cancer. Transl. Gastrointest. Cancer 2013, 2, 179–193. [Google Scholar]
- Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416. [Google Scholar] [CrossRef]
- Wang, X.; Lin, L. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Maeda, N.; Shimomura, I.; Kishida, K.; Nishizawa, H.; Matsuda, M.; Nagaretani, H.; Furuyama, N.; Kondo, H.; Takahashi, M.; Arita, Y.; et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 2002, 8, 731–737. [Google Scholar] [CrossRef]
- Kappes, A.; Löffler, G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm. Metab. Res. 2000, 32, 548–554. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Lau, W.B.; Yuan, Y.; Booth, D.; Li, J.-J.; Scalia, R.; Preston, K.; Gao, E.; Koch, W.; et al. Adiponectin inhibits tumor necrosis factor-α–induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 2014, 114, 792–805. [Google Scholar] [CrossRef] [Green Version]
- Neitzel, C.; Demuth, P.; Wittmann, S.; Fahrer, J. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers 2020, 12, 1731. [Google Scholar] [CrossRef] [PubMed]
- Formica, V.; Cereda, V.; Nardecchia, A.; Tesauro, M.; Roselli, M. Immune reaction and colorectal cancer: Friends or foes? World J. Gastroenterol. 2014, 20, 12407–12419. [Google Scholar] [CrossRef] [PubMed]
- Hamm, A.; Prenen, H.; Van Delm, W.; Di Matteo, M.; Wenes, M.; Delamarre, E.; Schmidt, T.; Weitz, J.; Sarmiento, R.; Dezi, A.; et al. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut 2016, 65, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Solé, X.; Crous-Bou, M.; Cordero, D.; Olivares, D.; Guinó, E.; Sanz-Pamplona, R.; Moranta, F.R.; Sanjuan, X.; De Oca, J.; Salazar, R.; et al. Discovery and validation of new potential biomarkers for early detection of colon cancer. PLoS ONE 2014, 9, e106748. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihajlovic, M.; Gojkovic, T.; Vladimirov, S.; Miljkovic, M.; Stefanovic, A.; Vekic, J.; Zeljkovic, D.; Trifunovic, B.; Kotur-Stevuljevic, J.; Spasojevic-Kalimanovska, V.; et al. Changes in lecithin: Cholesterol acyltransferase, cholesteryl ester transfer protein and paraoxonase-1 activities in patients with colorectal cancer. Clin. Biochem. 2019, 63, 32–38. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Ninic, A.; Sopic, M.; Miljkovic, M.; Stefanovic, A.; Vekic, J.; Spasojevic-Kalimanovska, V.; Zeljkovic, D.; Trifunovic, B.; Stjepanovic, Z.; et al. Association among resistin, adenylate cyclase-associated protein 1 and high-density lipoprotein cholesterol in patients with colorectal cancer: A multi-marker approach, as a hallmark of innovative predictive, preventive, and personalized medicine. EPMA J. 2019, 10, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Vujovic, A.; Spasojevic-Kalimanovska, V.; Bogavac-Stanojevic, N.; Spasic, S.; Kotur-Stevuljevic, J.; Jelic-Ivanovic, Z. Comparison of two RNA isolation methods for determination of SOD1 and SOD2 gene expression in human blood and mononuclear cells. Indian J. Biotech. 2013, 12, 468–474. [Google Scholar]
- Fujisawa, T.; Endo, H.; Tomimoto, A.; Sugiyama, M.; Takahashi, H.; Saito, S.; Inamori, M.; Nakajima, N.; Watanabe, M.; Kubota, N.; et al. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 2008, 57, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- De Simone, V.; Franze, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015, 34, 3493–3503. [Google Scholar] [CrossRef]
- Sugiyama, M.; Takahashi, H.; Hosono, K.; Endo, H.; Kato, S.; Yoneda, K.; Nozaki, Y.; Fujita, K.; Yoneda, M.; Wada, K.; et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int. J. Oncol. 2009, 34, 339–344. [Google Scholar] [PubMed]
- Tae, C.H.; Kim, S.-E.; Jung, S.-A.; Joo, Y.-H.; Shim, K.-N.; Jung, H.-K.; Kim, T.H.; Cho, M.-S.; Kim, K.H.; Kim, J.S. Involvement of adiponectin in early stage of colorectal carcinogenesis. BMC Cancer 2014, 14, 811. [Google Scholar] [CrossRef] [PubMed]
- Hector, J.; Schwarzloh, B.; Goehring, J.; Strate, T.G.; Hess, U.F.; Deuretzbacher, G.; Hansen-Algenstaedt, N.; Beil, F.-U.; Algenstaedt, P. TNF-α alters visfatin and adiponectin levels in human fat. Horm. Metab. Res. 2007, 39, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tan, B.; Karteris, E.; Zervou, S.; Digby, J.; Hillhouse, E.W.; Vatish, M.; Randeva, H.S. Secretion of adiponectin by human placenta: Differential modulation of adiponectin and its receptors by cytokines. Diabetologia 2006, 49, 1292–1302. [Google Scholar] [CrossRef] [Green Version]
- Surendar, J.; Frohberger, S.J.; Karunakaran, I.; Schmitt, V.; Stamminger, W.; Neumann, A.-L.; Wilhelm, C.; Hoerauf, A.; Hübner, M.P. Adiponectin limits IFN-γ and IL-17 producing CD4 T cells in obesity by restraining cell intrinsic glycolysis. Front. Immunol. 2019, 10, 2555. [Google Scholar] [CrossRef] [Green Version]
- Barth, R.J.; Camp, B.J.; Martuscello, T.A.; Dain, B.J.; Memoli, V.A. The cytokine microenvironment of human colon carcinoma: Lymphocyte expression of tumor necrosis factor-α and interleukin-4 predicts improved survival. Cancer: Interdiscip. Int. J. Am. Cancer Soc. 1996, 78, 1168–1178. [Google Scholar] [CrossRef]
- Al Obeed, O.A.; Alkhayal, K.A.; Al Sheikh, A.; Zubaidi, A.M.; Vaali-Mohammed, M.-A.; Boushey, R.; McKerrow, J.H.; Abdulla, M.-H. Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. World J. Gastroenterol. 2014, 20, 18390. [Google Scholar] [CrossRef]
- Ganapathi, S.K.; Beggs, A.D.; Hodgson, S.V.; Kumar, D. Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance. Br. J. Cancer 2014, 111, 1581–1589. [Google Scholar] [CrossRef] [Green Version]
- Kaklamani, V.G.; Wisinski, K.B.; Sadim, M.; Gulden, C.; Do, A.; Offit, K.; Baron, J.A.; Ahsan, H.; Mantzoros, C.; Pasche, B. Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA 2008, 300, 1523–1531. [Google Scholar] [CrossRef] [Green Version]
- Divella, R.; Daniele, A.; Mazzocca, A.; Abbate, I.; Casamassima, P.; Caliandro, C.; Ruggeri, E.; Naglieri, E.; Sabbà, C.; DE Luca, R. ADIPOQ rs266729 G/C gene polymorphism and plasmatic adipocytokines connect metabolic syndrome to colorectal cancer. J. Cancer 2017, 8, 1000. [Google Scholar] [CrossRef] [Green Version]
- Soccio, T.; Zhang, Y.-Y.; Bacci, S.; Mlynarski, W.; Placha, G.; Raggio, G.; Di Paola, R.; Marucci, A.; Johnstone, M.T.; Gervino, E.V.; et al. Common haplotypes at the adiponectin receptor 1 (ADIPOR1) locus are associated with increased risk of coronary artery disease in type 2 diabetes. Diabetes 2006, 55, 2763–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, A.J.; Lambird, J.E.; An, S.S.; Register, T.C.; Langefeld, C.D.; Carr, J.; Freedman, B.I.; Bowden, D.W. Variants in adiponectin signaling pathway genes show little association with subclinical CVD in the diabetes heart study. Obesity 2013, 21, E456–E462. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Z.; Pu, L.M.; Li, X.; Ruan, Y.; Yang, F.; Meng, S.; Yang, D.; Yao, W.; Fu, H.; et al. Adiponectin receptor 1 and small ubiquitin-like modifier 4 polymorphisms are associated with risk of coronary artery disease without diabetes. J. Geriatr. Cardiol. 2016, 13, 776–782. [Google Scholar] [PubMed]
- Kim, A.Y.; Lee, Y.S.; Kim, K.H.; Lee, J.H.; Lee, H.K.; Jang, S.H.; Kim, S.E.; Lee, G.Y.; Lee, J.W.; Jung, S.A.; et al. Adiponectin represses colon cancer cell proliferation via AdipoR1-and-R2-mediated AMPK activation. Mol. Endocrinol. 2010, 24, 1441–1452. [Google Scholar] [CrossRef]
- Van Stijn, C.M.; Kim, J.; Lusis, A.J.; Barish, G.D.; Tangirala, R.K. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 2015, 29, 636–649. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, P.; Palmirotta, R.; Spila, A.; Martini, F.; Raparelli, V.; Fossile, E.; Mariotti, S.; Del Monte, G.; Buonomo, O.; Roselli, M.; et al. Prognostic significance of adiponectin levels in non-metastatic colorectal cancer. Anticancer. Res. 2007, 27, 483–489. [Google Scholar]
- Gialamas, S.P.; Petridou, E.T.; Tseleni-Balafouta, S.; Spyridopoulos, T.N.; Matsoukis, I.L.; Kondi-Pafiti, A.; Zografos, G.; Mantzoros, C.S. Serum adiponectin levels and tissue expression of adiponectin receptors are associated with risk, stage, and grade of colorectal cancer. Metabolism 2011, 60, 1530–1538. [Google Scholar] [CrossRef]
- Hiyoshi, M.; Tsuno, N.H.; Otani, K.; Kawai, K.; Nishikawa, T.; Shuno, Y.; Sasaki, K.; Hongo, K.; Kaneko, M.; Sunami, E.; et al. Adiponectin receptor 2 is negatively associated with lymph node metastasis of colorectal cancer. Oncol. Lett. 2012, 3, 756–760. [Google Scholar] [CrossRef]
- Luo, N.; Chung, B.H.; Wang, X.; Klein, R.L.; Tang, C.-K.; Garvey, W.T.; Fu, Y. Enhanced adiponectin actions by overexpression of adiponectin receptor 1 in macrophages. Atherosclerosis 2013, 228, 124–135. [Google Scholar] [CrossRef]
Parameter | CRC Patients (N = 73) | Control Group (N = 80) | p |
---|---|---|---|
Gender (f/m) | 24/49 | 38/42 | 0.066 |
Age (years) a | 66.5 (58–74) | 53 (50.2–58) | <0.001 |
BMI (kg/m2) | 24.695 ± 2.925 | 26.202 ± 3.984 | <0.050 |
TC (mmol/L) a | 4.438 (3.700–5.025) | 5.669 (4.951–6.388) | <0.001 |
HDL-C (mmol/L) b | 0.985 (0.910–1.066) | 1.269 (1.165–1.382) | <0.001 |
LDL-C (mmol/L) a | 2.890 (2.130–3.266) | 3.682 (2.869–4.372) | <0.001 |
TG (mmol/L) b | 1.241 (1.152–1.336) | 1.244 (1.133–1.366) | 0.964 |
ADIPOR-1 mRNA levels a | 0.535 (0.446–0.748) | 0.849 (0.706–1.088) | <0.001 |
ADIPOR-2 mRNA levels b | 0.978 (0.913–1.047) | 0.939 (0.869–1.016) | 0.442 |
TNFα mRNA levels b | 0.792 (0.688–0.912) | 0.962 (0.877–1.056) | <0.050 |
CRC Patients | ||
---|---|---|
Parameter | HDL-C (mmol/L) | Normalized ADIPOR1 mRNA |
TNF α mRNA levels | r = 0.238; p < 0.05 | ρ = 0.142; p = 0.230 |
ADIPOR2 mRNA levels | r = −0.129; p = 0.278 | ρ = 0.268; p < 0.05 |
ADIPOR1 mRNA levels | ρ = −0.262; p < 0.05 | / |
Control group | ||
Parameter | TC (mmol/L) | Normalized ADIPOR1 mRNA |
TNF α mRNA levels | ρ = −0.228; p < 0.05 | r = 0.619; p < 0.001 |
ADIPOR2 mRNA levels | ρ = −0.204; p = 0.072 | r = 0.634; p < 0.001 |
ADIPOR1 mRNA levels | ρ = −0.230; p < 0.05 | / |
Parameter | CRC | Control Group | ||||
---|---|---|---|---|---|---|
CC | CG + GG | p | CC | CG + GG | p | |
BMI | 25.279 ± 2.606 | 24.073 ± 3.153 | p = 0.094 | 26.030 ± 3.546 | 26.383 ± 4.439 | p = 0.698 |
TG (mmol/L) | 1.275 (1.167–1.391) | 1.210 (1.073–1.365) | p = 0.489 b | 1.098 (0.965–1.251) | 1.413 (1.244–1.605) | p = 0.006 b |
HDL-C (mmol/L) | 1.140 ± 0.437 | 0.952 ± 0.241 | p = 0.029 | 1.276 (1.111–1.464) | 1.262 (1.136–1.403) | p = 0.904 b |
TC (mmol/L) | 4.839 (4.472–5.237) | 3.963 (3.648–4.306) | p = 0.001 b | 5.601 ± 1.037 | 5.668 ± 1.056 | p = 0.777 |
LDL-C (mmol/L) | 3.068 (2.751–3.423) | 2.401 (2.114–2.727) | p = 0.004 b | 3.663 ± 0.963 | 3.664 ± 1.013 | p = 0.996 |
ADIPOR1 mRNA levels | 0.535 (0.454–0.674) | 0.528 (0.399–0.794) | p = 0.453 a | 0.870 (0.691–1.096) | 0.834 (0.725–1.073) | p = 0.866 a |
ADIPOR2 mRNA levels | 0.979 (0.885–1.085) | 0.977 (0.887–1.075) | p = 0.961 b | 0.792 (0.668–1.192) | 0.939 (0.776–1.145) | p = 0.220 a |
TNF-α mRNA levels | 0.837 (0.647–1.219) | 0.794 (0.579–1.204) | p = 0.651 a | 0.954 (0.825–1.104) | 0.971 (0.862–1.093) | p = 0.856 b |
Parameter | CRC | Control Group | ||||
---|---|---|---|---|---|---|
CC | CG + GG | p | CC | CG + GG | p | |
BMI | 24.570 ± 3.201 | 24.826 ± 2.646 | p = 0.725 | 26.254 ± 3.802 | 26.159 ± 4.170 | p = 0.917 |
TG (mmol/L) | 1.284 (1.168–1.413) | 1.195 (1.061–1.345) | p = 0.335 b | 1.272 (1.119–1.444) | 1.223 (1.067–1.403) | p = 0.685 b |
HDL-C (mmol/L) | 0.995 (0.883–1.120) | 0.975 (0.875–1.086) | p = 0.803 b | 1.276 (1.126–1.446) | 1.264 (1.120–1.425) | p = 0.910 b |
TC (mmol/L) | 4.454 (4.058–4.889) | 4.263 (3.934–4.619) | p = 0.475 b | 5.808 ± 1.047 | 5.503 ± 1.028 | p = 0.199 |
LDL-C (mmol/L) | 2.786 (2.456–3.160) | 2.611 (2.302–2.961) | p = 0.463 b | 3.828 ± 0.960 | 3.539 ± 0.989 | p = 0.196 |
ADIPOR1 mRNA levels | 0.526 (0.448–0.646) | 0.549 (0.401–0.885) | p = 0.903 a | 0.802 (0.661–1.100) | 0.876 (0.728–1.083) | p = 0.385 a |
ADIPOR2 mRNA levels | 1.024 (0.923–1.137) | 0.931 (0.852–1.017) | p = 0.166 b | 0.885 (0.729–1.145) | 0.872 (0.679–1.192) | p = 0.812 a |
TNF α mRNA levels | 0.939 (0.680–1.302) | 0.704 (0.468–1.171) | p = 0.053 a | 0.987 (0.643–1.393) | 0.977 (0.776–1.163) | p = 0.687 a |
Model 1 | Standardized Beta (Standard Error) | p Value | Adjusted R-Square and Model’s p Value |
---|---|---|---|
TG (mmol/L) | 0.281 (0.127) | 0.011 | R2 = 0.164; p = 0.001 |
SNP ADIPOR1 | −0.307 (0.035) | 0.006 | |
Model 2 | Standardized beta (standard error) | p value | Adjusted R-square and model’s p value |
TG (mmol/L) | 0.375 (0.083) | 0.000 | R2 = 0.268; p = 0.000 |
SNP ADIPOR1 | −0.355 (0.023) | 0.001 | |
Model 3 | Standardized beta (standard error) | p value | Adjusted R-square and model’s p value |
BMI (kg/m2) | 0.280 (0.605) | 0.021 | R2 = 0.099; p = 0.014 |
SNP ADIPOQ | −0.237 (0.062) | 0.049 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihajlović, M.; Ninić, A.; Ostojić, M.; Sopić, M.; Stefanović, A.; Vekić, J.; Antonić, T.; Zeljković, D.; Trifunović, B.; Spasojević-Kalimanovska, V.; et al. Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. Int. J. Environ. Res. Public Health 2022, 19, 14995. https://doi.org/10.3390/ijerph192214995
Mihajlović M, Ninić A, Ostojić M, Sopić M, Stefanović A, Vekić J, Antonić T, Zeljković D, Trifunović B, Spasojević-Kalimanovska V, et al. Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. International Journal of Environmental Research and Public Health. 2022; 19(22):14995. https://doi.org/10.3390/ijerph192214995
Chicago/Turabian StyleMihajlović, Marija, Ana Ninić, Marija Ostojić, Miron Sopić, Aleksandra Stefanović, Jelena Vekić, Tamara Antonić, Dejan Zeljković, Bratislav Trifunović, Vesna Spasojević-Kalimanovska, and et al. 2022. "Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings" International Journal of Environmental Research and Public Health 19, no. 22: 14995. https://doi.org/10.3390/ijerph192214995
APA StyleMihajlović, M., Ninić, A., Ostojić, M., Sopić, M., Stefanović, A., Vekić, J., Antonić, T., Zeljković, D., Trifunović, B., Spasojević-Kalimanovska, V., Bogavac Stanojević, N., Jančić, I., & Zeljković, A. (2022). Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. International Journal of Environmental Research and Public Health, 19(22), 14995. https://doi.org/10.3390/ijerph192214995