Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Statistical Analyses
2.5. Quality Assessment
2.6. Study Characteristics
3. Results
3.1. Lower-Body Strength
3.2. Lower-Body Power
3.3. Aerobic Capacity
4. Discussion
4.1. Lower-Body Strength
4.2. Lower-Body Power
4.3. Aerobic Capacity
5. Limitations
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; Diprampero, P.E. Energy Cost and Metabolic Power in Elite Soccer: A New Match Analysis Approach. Med. Sci. Sport. Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sport. Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef]
- Fereday, K.; Hills, S.P.; Russell, M.; Smith, J.; Cunningham, D.J.; Shearer, D.; McNarry, M.; Kilduff, L.P. A comparison of rolling averages versus discrete time epochs for assessing the worst-case scenario locomotor demands of professional soccer match-play. J. Sci. Med. Sport 2020, 23, 764–769. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Nymark, B.S.; Raastad, T. Effects of In-Season Strength Maintenance Training Frequency in Professional Soccer Players. J. Strength Cond. Res. 2011, 25, 2653–2660. [Google Scholar] [CrossRef]
- Robineau, J.; Lacome, M.; Piscione, J.; Bigard, X.; Babault, N. Concurrent Training in Rugby Sevens: Effects of High-Intensity Interval Exercises. Int. J. Sport. Physiol. Perform. 2017, 12, 336–344. [Google Scholar] [CrossRef]
- Ferley, D.D.; Scholten, S.; Vukovich, M.D. Combined Sprint Interval, Plyometric, and Strength Training in Adolescent Soccer Players: Effects on Measures of Speed, Strength, Power, Change of Direction, and Anaerobic Capacity. J. Strength Cond. Res. 2020, 34, 957–968. [Google Scholar] [CrossRef]
- Balabinis, C.P.; Psarakis, C.H.; Moukas, M.; Vassiliou, M.P.; Behrakis, P.K. Early phase changes by concurrent endurance and strength training. J. Strength Cond. Res. 2003, 17, 393–401. [Google Scholar] [CrossRef]
- Enright, K.; Morton, J.; Iga, J.; Drust, B. The effect of concurrent training organisation in youth elite soccer players. Eur. J. Appl. Physiol. 2015, 115, 2367–2381. [Google Scholar] [CrossRef]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.; Loenneke, J.P.; Anderson, J.C. Concurrent training: A meta-analysis examining interference of aerobic and resistance exercises. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef] [PubMed]
- Leveritt, M.; Abernethy, P.J.; Barry, B.K.; Logan, P.A. Concurrent Strength and Endurance Training. Sports Med. 1999, 28, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.J.; Bishop, D.J.; Stepto, N.K. Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Med. 2014, 44, 743–762. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.P.; Pozniak, M.A.; Agre, J.C. Neuromuscular adaptations to concurrent strength and endurance training. Med. Sci. Sport. Exerc. 2002, 34, 511–519. [Google Scholar] [CrossRef]
- Lundberg, T.R.; Fernandez-Gonzalo, R.; Gustafsson, T.; Tesch, P.A. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J. Appl. Physiol. 2013, 114, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Kazior, Z.; Willis, S.J.; Moberg, M.; Apró, W.; Calbet, J.A.; Holmberg, H.C.; Blomstrand, E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS ONE 2016, 11, e0149082. [Google Scholar] [CrossRef]
- McGawley, K.; Andersson, P.I. The order of concurrent training does not affect soccer-related performance adaptations. Int. J. Sports Med. 2013, 34, 983–990. [Google Scholar] [CrossRef]
- Denadai, B.S.; de Aguiar, R.A.; de Lima, L.C.R.; Greco, C.C.; Caputo, F. Explosive Training and Heavy Weight Training are Effective for Improving Running Economy in Endurance Athletes: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 545–554. [Google Scholar] [CrossRef]
- Fletcher, J.R.; Esau, S.P.; MacIntosh, B.R. Changes in tendon stiffness and running economy in highly trained distance runners. Eur. J. Appl. Physiol. 2010, 110, 1037–1046. [Google Scholar] [CrossRef]
- Albracht, K.; Arampatzis, A. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur. J. Appl. Physiol. 2013, 113, 1605–1615. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Zatsiorsky, V.M. Joint stiffness: Myth or reality? Hum. Mov. Sci. 1993, 12, 653–692. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.A.; Cheng, G.C. The mechanics of running: How does stiffness couple with speed? J. Biomech. 1990, 23 (Suppl. S1), 65–78. [Google Scholar] [CrossRef]
- Butler, R.J.; Crowell, H.P., 3rd; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Pearson, S.J.; McMahon, J. Lower limb mechanical properties: Determining factors and implications for performance. Sports Med. 2012, 42, 929–940. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Patton, J.F.; Gordon, S.E.; Harman, E.A.; Deschenes, M.R.; Reynolds, K.; Newton, R.U.; Triplett, N.T.; Dziados, J.E. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J. Appl. Physiol. 1995, 78, 976–989. [Google Scholar] [CrossRef]
- Bell, G.J.; Syrotuik, D.; Martin, T.P.; Burnham, R.; Quinney, H.A. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur. J. Appl. Physiol. 2000, 81, 418–427. [Google Scholar] [CrossRef]
- Hennessy, L.C.; Watson, A.W.S. The Interference Effects of Training for Strength and Endurance Simultaneously. J. Strength Cond. Res. 1994, 8, 12–19. [Google Scholar]
- Fyfe, J.J.; Bartlett, J.D.; Hanson, E.D.; Stepto, N.K.; Bishop, D.J. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training. Front. Physiol. 2016, 7, 487. [Google Scholar] [CrossRef]
- Craig, B.W.; Lucas, J.; Pohlman, R.; Stelling, H. The Effects of Running, Weightlifting and a Combination of Both on Growth Hormone Release. J. Strength Cond. Res. 1991, 5, 198–203. [Google Scholar]
- Häkkinen, K.; Alen, M.; Kraemer, W.J.; Gorostiaga, E.; Izquierdo, M.; Rusko, H.; Mikkola, J.; Häkkinen, A.; Valkeinen, H.; Kaarakainen, E.; et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur. J. Appl. Physiol. 2003, 89, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R.; Oliverson, J.R.; Marshall, G.; Peterson, M.D.; Kenn, J.G.; Ayllón, F.N. Noncompatibility of power and endurance training among college baseball players. J. Strength Cond. Res. 2008, 22, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Dudley, G.A.; Djamil, R. Incompatibility of endurance- and strength-training modes of exercise. J. Appl. Physiol. 1985, 59, 1446–1451. [Google Scholar] [CrossRef]
- Lee, M.J.; Ballantyne, J.K.; Chagolla, J.; Hopkins, W.G.; Fyfe, J.J.; Phillips, S.M.; Bishop, D.J.; Bartlett, J.D. Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS ONE 2020, 15, e0233134. [Google Scholar] [CrossRef]
- Kilen, A.; Bay, J.; Bejder, J.; Breenfeldt Andersen, A.; Bonne, T.; Larsen, P.; Carlsen, A.; Egelund, J.; Nybo, L.; Olsen, N.V.; et al. Distribution of concurrent training sessions does not impact endurance adaptation. J. Sci. Med. Sport 2021, 24, 291–296. [Google Scholar] [CrossRef]
- Vechin, F.C.; Conceição, M.S.; Telles, G.D.; Libardi, C.A.; Ugrinowitsch, C. Interference Phenomenon with Concurrent Strength and High-Intensity Interval Training-Based Aerobic Training: An Updated Model. Sports Med. 2021, 51, 599–605. [Google Scholar] [CrossRef]
- Bell, G.; Syrotuik, D.; Socha, T.; Maclean, I.; Quinney, H.A. Effect of Strength Training and Concurrent Strength and Endurance Training on Strength, Testosterone, and Cortisol. J. Strength Cond. Res. 1997, 11, 57–64. [Google Scholar]
- García-Pallarés, J.; Izquierdo, M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011, 41, 329–343. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Santos-Concejero, J.; Grivas, G.V. Effects of Strength Training on Running Economy in Highly Trained Runners: A Systematic Review with Meta-Analysis of Controlled Trials. J. Strength Cond. Res. 2016, 30, 2361–2368. [Google Scholar] [CrossRef]
- Methenitis, S. A Brief Review on Concurrent Training: From Laboratory to the Field. Sports 2018, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Eddens, L.; van Someren, K.; Howatson, G. The Role of Intra-Session Exercise Sequence in the Interference Effect: A Systematic Review with Meta-Analysis. Sports Med. 2018, 48, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Murlasits, Z.; Kneffel, Z.; Thalib, L. The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis. J. Sports Sci. 2018, 36, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Sabag, A.; Najafi, A.; Michael, S.; Esgin, T.; Halaki, M.; Hackett, D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: A systematic review and meta-analysis. J. Sports Sci. 2018, 36, 2472–2483. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J. Statistical Algorithms in Review Manager 5; Statistical Methods Group of The Cochrane Collaboration: Melbourne, VIC, Australia, 2010. [Google Scholar]
- Morris, S.B. Estimating Effect Sizes from Pretest-Posttest-Control Group Designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef]
- Higgins, J.; Thompson, S.G.; Decks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Kotzamanidis, C.; Chatzopoulos, D.; Michailidis, C.; Papaiakovou, G.; Patikas, D. The effect of a combined high-intensity strength and speed training program on the running and jumping ability of soccer players. J. Strength Cond. Res. 2005, 19, 369–375. [Google Scholar]
- Ross, R.E.; Ratamess, N.A.; Hoffman, J.R.; Faigenbaum, A.D.; Kang, J.; Chilakos, A. The effects of treadmill sprint training and resistance training on maximal running velocity and power. J. Strength Cond. Res. 2009, 23, 385–394. [Google Scholar] [CrossRef]
- Makhlouf, I.; Castagna, C.; Manzi, V.; Laurencelle, L.; Behm, D.G.; Chaouachi, A. Effect of Sequencing Strength and Endurance Training in Young Male Soccer Players. J. Strength Cond. Res. 2016, 30, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Robineau, J.; Babault, N.; Piscione, J.; Lacome, M.; Bigard, A.X. Specific Training Effects of Concurrent Aerobic and Strength Exercises Depend on Recovery Duration. J. Strength. Cond. Res. 2016, 30, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Hermassi, S.; Haddad, M.; Bouhafs, E.G.; Laudner, K.G.; Schwesig, R. Comparison of a Combined Strength and Handball-Specific Training vs. Isolated Strength Training in Handball Players Studying Physical Education. Sportverletz.-Sportschaden 2019, 33, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Murach, K.A.; Bagley, J.R. Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect. Sports Med. 2016, 46, 1029–1039. [Google Scholar] [CrossRef]
- Hickson, R.C. Interference of strength development by simultaneously training for strength and endurance. Eur. J. Appl. Physiol. 1980, 45, 255–263. [Google Scholar] [CrossRef]
- Leveritt, M.; Abernethy, P.J.; Barry, B.; Logan, P.A. Concurrent strength and endurance training: The influence of dependent variable selection. J. Strength Cond. Res. 2003, 17, 503–508. [Google Scholar] [CrossRef]
- Fyfe, J.J.; Loenneke, J.P. Interpreting Adaptation to Concurrent Compared with Single-Mode Exercise Training: Some Methodological Considerations. Sports Med. 2018, 48, 289–297. [Google Scholar] [CrossRef]
- Camera, D.M. Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med. 2022, 52, 441–461. [Google Scholar] [CrossRef]
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef]
- Petré, H.; Hemmingsson, E.; Rosdahl, H.; Psilander, N. Development of Maximal Dynamic Strength During Concurrent Resistance and Endurance Training in Untrained, Moderately Trained, and Trained Individuals: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 991–1010. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G.B.; Bentley, D.J. Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sports Med. 2017, 47, 2187–2200. [Google Scholar] [CrossRef] [PubMed]
- Coffey, V.G.; Pilegaard, H.; Garnham, A.P.; O’Brien, B.J.; Hawley, J.A. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J. Appl. Physiol. 2009, 106, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Afonso, J.; Camões, M.; Sarmento, H.; Sá, M.; Lima, R.; Oliveira, R.; Clemente, F.M. Methodological Characteristics, Physiological and Physical Effects, and Future Directions for Combined Training in Soccer: A Systematic Review. Healthcare 2021, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Apró, W.; Moberg, M.; Hamilton, D.L.; Ekblom, B.; van Hall, G.; Holmberg, H.C.; Blomstrand, E. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E470–E481. [Google Scholar] [CrossRef]
- Helgerud, J.; Rodas, G.; Kemi, O.J.; Hoff, J. Strength and endurance in elite football players. Int. J. Sports Med. 2011, 32, 677–682. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability—Part II: Recommendations for training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Ghigiarelli, J.J.; Sell, K.M.; Shone, E.W.; Kelly, C.F.; Mangine, G.T. Muscle activation during resistance exercise at 70% and 90% 1-repetition maximum in resistance-trained men. Muscle Nerve 2017, 56, 505–509. [Google Scholar] [CrossRef]
- McCaulley, G.O.; McBride, J.M.; Cormie, P.; Hudson, M.B.; Nuzzo, J.L.; Quindry, J.C.; Travis Triplett, N. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur. J. Appl. Physiol. 2009, 105, 695–704. [Google Scholar] [CrossRef]
- Jones, T.W.; Howatson, G.; Russell, M.; French, D.N. Performance and neuromuscular adaptations following differing ratios of concurrent strength and endurance training. J. Strength Cond. Res. 2013, 27, 3342–3351. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, G.S.; Schilling, B.K.; Paquette, M.R.; Murlasits, Z. Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. Eur. J. Appl. Physiol. 2014, 114, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1 alpha and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol.-Reg. I 2011, 300, R1303–R1310. [Google Scholar]
- Jacobs, R.A.; Flück, D.; Bonne, T.C.; Bürgi, S.; Christensen, P.M.; Toigo, M.; Lundby, C. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J. Appl. Physiol. 2013, 115, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Close, G.L.; MacLaren, D.P.; Gregson, W.; Drust, B.; Morton, J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011, 29, 547–553. [Google Scholar] [CrossRef]
- Arampatzis, A.; De Monte, G.; Karamanidis, K.; Morey-Klapsing, G.; Stafilidis, S.; Brüggemann, G.P. Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J. Exp. Biol. 2006, 209, 3345–3357. [Google Scholar] [CrossRef]
Concept Search Strategy | Line No. | Entry |
---|---|---|
Concurrent training | 1 | Concurrent training |
2 | Concurrent exercise | |
3 | Combined training | |
4 | Concurrent strength and endurance training | |
5 | 1 or 2 or 3 or 4 | |
Sports | 6 | Soccer |
7 | Football | |
8 | Association football | |
9 | American football | |
10 | Rugby | |
11 | Basketball | |
12 | Handball | |
13 | Hockey | |
14 | Softball | |
15 | Team sports | |
16 | 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 | |
17 | 5 and 16 |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Balabinis et al., 2003 [9] | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 7 |
Kotzamanidis et al., 2005 [50] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 9 |
Ross et al., 2009 [51] | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 6 |
Makhlouf et al., 2016 [52] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Robineau et al., 2016 [53] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Robineau et al., 2017 [7] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Hermassi et al., 2019 [54] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Study | Sport | Training Status | Group | N(m/f) | Mean Age (Years) | ET | R E C | ST | Additional Training Except Intervention | Outcome Measure | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protocol | W | F | Protocol | W | F | |||||||||
Balabinis et al. 2003 [9] | Basketball | Trained | ET | 7 (7/0) | 22.4 ± 0.5 | 100 m, 200 m, 300 m, 400 m, 500 m sprints | 7 | 4 | — | — | — | — | Nothing | 1 RM HS CMJ VO2max |
ET + ST | 7 (7/0) | 22.6 ± 0.8 | 7 h | Half squat, Bench press, Leg press, Lateral pull down | 7 | 4 | ||||||||
ST | 7 (7/0) | 22.2 ± 0.4 | — | — | — | — | ||||||||
CON | 5 (5/0) | 22.2 ± 0.5 | — | — | — | — | — | — | — | |||||
Kotzamanidis et al. 2005 [50] | Soccer | Trained | ST + ET | 12 (12/0) | 17.0 ± 1.1 | Maximal intensity repetitions of 30 m | 9 | 2 | 10 min | Backwards lunge, Half squat, Hamstrings kick | 9 | 2 | Only the control group performed some moderate activity per week. | 1 RM HS CMJ 30 m sprint |
ST | 11 (11/0) | 17.1 ± 1.1 | — | — | — | |||||||||
CON | 12 (12/0) | 17.8 ± 0.3 | — | — | — | — | — | — | — | |||||
Ross et al. 2009 [51] | Soccer, American football | Athlete | ET | 6 (6/0) | 19.8 ± 1.8 | 8 to 12 maximal sprints for 40–60 m at 0–25% of each subject’s body mass | 7 | 2 | — | — | — | — | Subjects in all training groups refrained from participating in any type of exercise outside the domain of the study. | 1 RM HS Powerpeak 30 m sprint |
ET + ST | 10 (10/0) | 19.8 ± 1.2 | N/A | Squat, Dead lift, Seated row, Dumbbell biceps curl, Leg extension, Core circuit, standing calf raise, Leg curl, Dumbbell hammer curl | 7 | 2 | ||||||||
ST | 9 (9/0) | 19.8 ± 1.4 | — | — | — | — | ||||||||
Makhlouf et al. 2016 [52] | Soccer | Athlete | ST + ET | 15 (15/0) | 13.7 ± 0.5 | 10 to 16 HIIT running without interruption according to the peak speed of each player | 12 | 2 | 15 min | Bent over row, Push up, Forward lunge, Sit up, Upright row, Biceps curl, Supine leg raise, Front half squat, Stiff leg deadlift, Supine leg lateral twist, Weighted Forward lunge, Plyometrics | 12 | 2 | All players trained 4 times a week with a match. During the remaining weekly training sessions, players performed mainly technical-tactical drills. | 1 RM HS CMJ YYIRT 10 m sprint 30 m sprint |
ET + ST | 14 (14/0) | 13.7 ± 0.5 | ||||||||||||
AES | 14 (14/0) | 13.7 ± 0.5 | 4 | AD | 4 | |||||||||
CON | 14 (14/0) | 13.7 ± 0.5 | — | — | — | — | — | — | — | |||||
Robineau et al. 2016 [53] | Rugby | Trained | ST + ET (0) | 15 (N/A) | 24.3 ± 3.8 | Three 6-min sets at 120% individual maximal aerobic velocity of 15 s/15 s interval training | 7 | 2 | 0 h | Bench row, Leg press, Half squat, Bench press, Plyometrics | 7 | 2 | Nothing | 1 RM HS CMJ VO2peak |
ST + ET (6) | 11 (N/A) | 28.0 ± 4.5 | 6 h | |||||||||||
ST + ET (24) | 12 (N/A) | 24.8 ± 3.9 | 24 h | |||||||||||
ST | 10 (N/A) | 25.2 ± 4.4 | — | — | — | — | ||||||||
CON | 10 (N/A) | 25.2 ± 3.5 | — | — | — | — | — | — | — | |||||
Robineau et al. 2017 [7] | Rugby | Trained | ST + ET (SIT) | 10 (N/A) | 26.4 ± 3.0 | 30 s runs at 100% individual maximal aerobic velocity with 30 s of active recovery, 30 s running all-out efforts with 4 min of passive recovery | 8 | 2 | 24 h | Half squat, Bench row, Deadlift, Leg extension, Bench press | 8 | 2 | Nothing | 1 RM HS CMJ VO2peak |
ST + ET (INT) | 9 (N/A) | 25.0 ± 3.7 | — | — | — | |||||||||
ST | 11 (N/A) | 27.5 ± 2.5 | — | — | — | — | ||||||||
Hermassi et al. 2019 [54] | Handball | Trained | ST + ET | 12 (12/0) | 20.6 ± 0.5 | Sub maximal 30 m shuttle runs, Small-sided games | 10 | 2 | 0 | Half squat, Drop jump, Pull over, Hurdle jumps, Medicine ball throw, Balance training, Bench press. | 10 | 2 | All participants performed their usual physical education training requirements. | 1 RM HS CMJ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Ye, Z.; Yin, X.; Zhou, C.; Gong, B. Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14800. https://doi.org/10.3390/ijerph192214800
Kang J, Ye Z, Yin X, Zhou C, Gong B. Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(22):14800. https://doi.org/10.3390/ijerph192214800
Chicago/Turabian StyleKang, Jian, Zhijing Ye, Xinxing Yin, Changjing Zhou, and Bo Gong. 2022. "Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 22: 14800. https://doi.org/10.3390/ijerph192214800
APA StyleKang, J., Ye, Z., Yin, X., Zhou, C., & Gong, B. (2022). Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(22), 14800. https://doi.org/10.3390/ijerph192214800