Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Statistical Analyses
2.5. Quality Assessment
2.6. Study Characteristics
3. Results
3.1. Lower-Body Strength
3.2. Lower-Body Power
3.3. Aerobic Capacity
4. Discussion
4.1. Lower-Body Strength
4.2. Lower-Body Power
4.3. Aerobic Capacity
5. Limitations
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; Diprampero, P.E. Energy Cost and Metabolic Power in Elite Soccer: A New Match Analysis Approach. Med. Sci. Sport. Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sport. Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Fereday, K.; Hills, S.P.; Russell, M.; Smith, J.; Cunningham, D.J.; Shearer, D.; McNarry, M.; Kilduff, L.P. A comparison of rolling averages versus discrete time epochs for assessing the worst-case scenario locomotor demands of professional soccer match-play. J. Sci. Med. Sport 2020, 23, 764–769. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Nymark, B.S.; Raastad, T. Effects of In-Season Strength Maintenance Training Frequency in Professional Soccer Players. J. Strength Cond. Res. 2011, 25, 2653–2660. [Google Scholar] [CrossRef]
- Robineau, J.; Lacome, M.; Piscione, J.; Bigard, X.; Babault, N. Concurrent Training in Rugby Sevens: Effects of High-Intensity Interval Exercises. Int. J. Sport. Physiol. Perform. 2017, 12, 336–344. [Google Scholar] [CrossRef]
- Ferley, D.D.; Scholten, S.; Vukovich, M.D. Combined Sprint Interval, Plyometric, and Strength Training in Adolescent Soccer Players: Effects on Measures of Speed, Strength, Power, Change of Direction, and Anaerobic Capacity. J. Strength Cond. Res. 2020, 34, 957–968. [Google Scholar] [CrossRef]
- Balabinis, C.P.; Psarakis, C.H.; Moukas, M.; Vassiliou, M.P.; Behrakis, P.K. Early phase changes by concurrent endurance and strength training. J. Strength Cond. Res. 2003, 17, 393–401. [Google Scholar] [CrossRef]
- Enright, K.; Morton, J.; Iga, J.; Drust, B. The effect of concurrent training organisation in youth elite soccer players. Eur. J. Appl. Physiol. 2015, 115, 2367–2381. [Google Scholar] [CrossRef]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.; Loenneke, J.P.; Anderson, J.C. Concurrent training: A meta-analysis examining interference of aerobic and resistance exercises. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef] [PubMed]
- Leveritt, M.; Abernethy, P.J.; Barry, B.K.; Logan, P.A. Concurrent Strength and Endurance Training. Sports Med. 1999, 28, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.J.; Bishop, D.J.; Stepto, N.K. Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Med. 2014, 44, 743–762. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.P.; Pozniak, M.A.; Agre, J.C. Neuromuscular adaptations to concurrent strength and endurance training. Med. Sci. Sport. Exerc. 2002, 34, 511–519. [Google Scholar] [CrossRef]
- Lundberg, T.R.; Fernandez-Gonzalo, R.; Gustafsson, T.; Tesch, P.A. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J. Appl. Physiol. 2013, 114, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazior, Z.; Willis, S.J.; Moberg, M.; Apró, W.; Calbet, J.A.; Holmberg, H.C.; Blomstrand, E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS ONE 2016, 11, e0149082. [Google Scholar] [CrossRef] [Green Version]
- McGawley, K.; Andersson, P.I. The order of concurrent training does not affect soccer-related performance adaptations. Int. J. Sports Med. 2013, 34, 983–990. [Google Scholar] [CrossRef]
- Denadai, B.S.; de Aguiar, R.A.; de Lima, L.C.R.; Greco, C.C.; Caputo, F. Explosive Training and Heavy Weight Training are Effective for Improving Running Economy in Endurance Athletes: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 545–554. [Google Scholar] [CrossRef]
- Fletcher, J.R.; Esau, S.P.; MacIntosh, B.R. Changes in tendon stiffness and running economy in highly trained distance runners. Eur. J. Appl. Physiol. 2010, 110, 1037–1046. [Google Scholar] [CrossRef]
- Albracht, K.; Arampatzis, A. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur. J. Appl. Physiol. 2013, 113, 1605–1615. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Zatsiorsky, V.M. Joint stiffness: Myth or reality? Hum. Mov. Sci. 1993, 12, 653–692. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, T.A.; Cheng, G.C. The mechanics of running: How does stiffness couple with speed? J. Biomech. 1990, 23 (Suppl. S1), 65–78. [Google Scholar] [CrossRef]
- Butler, R.J.; Crowell, H.P., 3rd; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Pearson, S.J.; McMahon, J. Lower limb mechanical properties: Determining factors and implications for performance. Sports Med. 2012, 42, 929–940. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Patton, J.F.; Gordon, S.E.; Harman, E.A.; Deschenes, M.R.; Reynolds, K.; Newton, R.U.; Triplett, N.T.; Dziados, J.E. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J. Appl. Physiol. 1995, 78, 976–989. [Google Scholar] [CrossRef]
- Bell, G.J.; Syrotuik, D.; Martin, T.P.; Burnham, R.; Quinney, H.A. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur. J. Appl. Physiol. 2000, 81, 418–427. [Google Scholar] [CrossRef]
- Hennessy, L.C.; Watson, A.W.S. The Interference Effects of Training for Strength and Endurance Simultaneously. J. Strength Cond. Res. 1994, 8, 12–19. [Google Scholar]
- Fyfe, J.J.; Bartlett, J.D.; Hanson, E.D.; Stepto, N.K.; Bishop, D.J. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training. Front. Physiol. 2016, 7, 487. [Google Scholar] [CrossRef] [Green Version]
- Craig, B.W.; Lucas, J.; Pohlman, R.; Stelling, H. The Effects of Running, Weightlifting and a Combination of Both on Growth Hormone Release. J. Strength Cond. Res. 1991, 5, 198–203. [Google Scholar]
- Häkkinen, K.; Alen, M.; Kraemer, W.J.; Gorostiaga, E.; Izquierdo, M.; Rusko, H.; Mikkola, J.; Häkkinen, A.; Valkeinen, H.; Kaarakainen, E.; et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur. J. Appl. Physiol. 2003, 89, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R.; Oliverson, J.R.; Marshall, G.; Peterson, M.D.; Kenn, J.G.; Ayllón, F.N. Noncompatibility of power and endurance training among college baseball players. J. Strength Cond. Res. 2008, 22, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, G.A.; Djamil, R. Incompatibility of endurance- and strength-training modes of exercise. J. Appl. Physiol. 1985, 59, 1446–1451. [Google Scholar] [CrossRef]
- Lee, M.J.; Ballantyne, J.K.; Chagolla, J.; Hopkins, W.G.; Fyfe, J.J.; Phillips, S.M.; Bishop, D.J.; Bartlett, J.D. Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS ONE 2020, 15, e0233134. [Google Scholar] [CrossRef]
- Kilen, A.; Bay, J.; Bejder, J.; Breenfeldt Andersen, A.; Bonne, T.; Larsen, P.; Carlsen, A.; Egelund, J.; Nybo, L.; Olsen, N.V.; et al. Distribution of concurrent training sessions does not impact endurance adaptation. J. Sci. Med. Sport 2021, 24, 291–296. [Google Scholar] [CrossRef]
- Vechin, F.C.; Conceição, M.S.; Telles, G.D.; Libardi, C.A.; Ugrinowitsch, C. Interference Phenomenon with Concurrent Strength and High-Intensity Interval Training-Based Aerobic Training: An Updated Model. Sports Med. 2021, 51, 599–605. [Google Scholar] [CrossRef]
- Bell, G.; Syrotuik, D.; Socha, T.; Maclean, I.; Quinney, H.A. Effect of Strength Training and Concurrent Strength and Endurance Training on Strength, Testosterone, and Cortisol. J. Strength Cond. Res. 1997, 11, 57–64. [Google Scholar]
- García-Pallarés, J.; Izquierdo, M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011, 41, 329–343. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Santos-Concejero, J.; Grivas, G.V. Effects of Strength Training on Running Economy in Highly Trained Runners: A Systematic Review with Meta-Analysis of Controlled Trials. J. Strength Cond. Res. 2016, 30, 2361–2368. [Google Scholar] [CrossRef] [Green Version]
- Methenitis, S. A Brief Review on Concurrent Training: From Laboratory to the Field. Sports 2018, 6, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddens, L.; van Someren, K.; Howatson, G. The Role of Intra-Session Exercise Sequence in the Interference Effect: A Systematic Review with Meta-Analysis. Sports Med. 2018, 48, 177–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murlasits, Z.; Kneffel, Z.; Thalib, L. The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis. J. Sports Sci. 2018, 36, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Sabag, A.; Najafi, A.; Michael, S.; Esgin, T.; Halaki, M.; Hackett, D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: A systematic review and meta-analysis. J. Sports Sci. 2018, 36, 2472–2483. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J. Statistical Algorithms in Review Manager 5; Statistical Methods Group of The Cochrane Collaboration: Melbourne, VIC, Australia, 2010. [Google Scholar]
- Morris, S.B. Estimating Effect Sizes from Pretest-Posttest-Control Group Designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef]
- Higgins, J.; Thompson, S.G.; Decks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Kotzamanidis, C.; Chatzopoulos, D.; Michailidis, C.; Papaiakovou, G.; Patikas, D. The effect of a combined high-intensity strength and speed training program on the running and jumping ability of soccer players. J. Strength Cond. Res. 2005, 19, 369–375. [Google Scholar]
- Ross, R.E.; Ratamess, N.A.; Hoffman, J.R.; Faigenbaum, A.D.; Kang, J.; Chilakos, A. The effects of treadmill sprint training and resistance training on maximal running velocity and power. J. Strength Cond. Res. 2009, 23, 385–394. [Google Scholar] [CrossRef]
- Makhlouf, I.; Castagna, C.; Manzi, V.; Laurencelle, L.; Behm, D.G.; Chaouachi, A. Effect of Sequencing Strength and Endurance Training in Young Male Soccer Players. J. Strength Cond. Res. 2016, 30, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Robineau, J.; Babault, N.; Piscione, J.; Lacome, M.; Bigard, A.X. Specific Training Effects of Concurrent Aerobic and Strength Exercises Depend on Recovery Duration. J. Strength. Cond. Res. 2016, 30, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Hermassi, S.; Haddad, M.; Bouhafs, E.G.; Laudner, K.G.; Schwesig, R. Comparison of a Combined Strength and Handball-Specific Training vs. Isolated Strength Training in Handball Players Studying Physical Education. Sportverletz.-Sportschaden 2019, 33, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Murach, K.A.; Bagley, J.R. Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect. Sports Med. 2016, 46, 1029–1039. [Google Scholar] [CrossRef]
- Hickson, R.C. Interference of strength development by simultaneously training for strength and endurance. Eur. J. Appl. Physiol. 1980, 45, 255–263. [Google Scholar] [CrossRef]
- Leveritt, M.; Abernethy, P.J.; Barry, B.; Logan, P.A. Concurrent strength and endurance training: The influence of dependent variable selection. J. Strength Cond. Res. 2003, 17, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, J.J.; Loenneke, J.P. Interpreting Adaptation to Concurrent Compared with Single-Mode Exercise Training: Some Methodological Considerations. Sports Med. 2018, 48, 289–297. [Google Scholar] [CrossRef]
- Camera, D.M. Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med. 2022, 52, 441–461. [Google Scholar] [CrossRef]
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef]
- Petré, H.; Hemmingsson, E.; Rosdahl, H.; Psilander, N. Development of Maximal Dynamic Strength During Concurrent Resistance and Endurance Training in Untrained, Moderately Trained, and Trained Individuals: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 991–1010. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G.B.; Bentley, D.J. Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sports Med. 2017, 47, 2187–2200. [Google Scholar] [CrossRef] [PubMed]
- Coffey, V.G.; Pilegaard, H.; Garnham, A.P.; O’Brien, B.J.; Hawley, J.A. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J. Appl. Physiol. 2009, 106, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Afonso, J.; Camões, M.; Sarmento, H.; Sá, M.; Lima, R.; Oliveira, R.; Clemente, F.M. Methodological Characteristics, Physiological and Physical Effects, and Future Directions for Combined Training in Soccer: A Systematic Review. Healthcare 2021, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Apró, W.; Moberg, M.; Hamilton, D.L.; Ekblom, B.; van Hall, G.; Holmberg, H.C.; Blomstrand, E. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E470–E481. [Google Scholar] [CrossRef]
- Helgerud, J.; Rodas, G.; Kemi, O.J.; Hoff, J. Strength and endurance in elite football players. Int. J. Sports Med. 2011, 32, 677–682. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability—Part II: Recommendations for training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Ghigiarelli, J.J.; Sell, K.M.; Shone, E.W.; Kelly, C.F.; Mangine, G.T. Muscle activation during resistance exercise at 70% and 90% 1-repetition maximum in resistance-trained men. Muscle Nerve 2017, 56, 505–509. [Google Scholar] [CrossRef]
- McCaulley, G.O.; McBride, J.M.; Cormie, P.; Hudson, M.B.; Nuzzo, J.L.; Quindry, J.C.; Travis Triplett, N. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur. J. Appl. Physiol. 2009, 105, 695–704. [Google Scholar] [CrossRef]
- Jones, T.W.; Howatson, G.; Russell, M.; French, D.N. Performance and neuromuscular adaptations following differing ratios of concurrent strength and endurance training. J. Strength Cond. Res. 2013, 27, 3342–3351. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, G.S.; Schilling, B.K.; Paquette, M.R.; Murlasits, Z. Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. Eur. J. Appl. Physiol. 2014, 114, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1 alpha and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol.-Reg. I 2011, 300, R1303–R1310. [Google Scholar]
- Jacobs, R.A.; Flück, D.; Bonne, T.C.; Bürgi, S.; Christensen, P.M.; Toigo, M.; Lundby, C. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J. Appl. Physiol. 2013, 115, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, J.D.; Close, G.L.; MacLaren, D.P.; Gregson, W.; Drust, B.; Morton, J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011, 29, 547–553. [Google Scholar] [CrossRef]
- Arampatzis, A.; De Monte, G.; Karamanidis, K.; Morey-Klapsing, G.; Stafilidis, S.; Brüggemann, G.P. Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J. Exp. Biol. 2006, 209, 3345–3357. [Google Scholar] [CrossRef]
Concept Search Strategy | Line No. | Entry |
---|---|---|
Concurrent training | 1 | Concurrent training |
2 | Concurrent exercise | |
3 | Combined training | |
4 | Concurrent strength and endurance training | |
5 | 1 or 2 or 3 or 4 | |
Sports | 6 | Soccer |
7 | Football | |
8 | Association football | |
9 | American football | |
10 | Rugby | |
11 | Basketball | |
12 | Handball | |
13 | Hockey | |
14 | Softball | |
15 | Team sports | |
16 | 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 | |
17 | 5 and 16 |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Balabinis et al., 2003 [9] | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 7 |
Kotzamanidis et al., 2005 [50] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 9 |
Ross et al., 2009 [51] | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 6 |
Makhlouf et al., 2016 [52] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Robineau et al., 2016 [53] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Robineau et al., 2017 [7] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Hermassi et al., 2019 [54] | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Study | Sport | Training Status | Group | N(m/f) | Mean Age (Years) | ET | R E C | ST | Additional Training Except Intervention | Outcome Measure | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protocol | W | F | Protocol | W | F | |||||||||
Balabinis et al. 2003 [9] | Basketball | Trained | ET | 7 (7/0) | 22.4 ± 0.5 | 100 m, 200 m, 300 m, 400 m, 500 m sprints | 7 | 4 | — | — | — | — | Nothing | 1 RM HS CMJ VO2max |
ET + ST | 7 (7/0) | 22.6 ± 0.8 | 7 h | Half squat, Bench press, Leg press, Lateral pull down | 7 | 4 | ||||||||
ST | 7 (7/0) | 22.2 ± 0.4 | — | — | — | — | ||||||||
CON | 5 (5/0) | 22.2 ± 0.5 | — | — | — | — | — | — | — | |||||
Kotzamanidis et al. 2005 [50] | Soccer | Trained | ST + ET | 12 (12/0) | 17.0 ± 1.1 | Maximal intensity repetitions of 30 m | 9 | 2 | 10 min | Backwards lunge, Half squat, Hamstrings kick | 9 | 2 | Only the control group performed some moderate activity per week. | 1 RM HS CMJ 30 m sprint |
ST | 11 (11/0) | 17.1 ± 1.1 | — | — | — | |||||||||
CON | 12 (12/0) | 17.8 ± 0.3 | — | — | — | — | — | — | — | |||||
Ross et al. 2009 [51] | Soccer, American football | Athlete | ET | 6 (6/0) | 19.8 ± 1.8 | 8 to 12 maximal sprints for 40–60 m at 0–25% of each subject’s body mass | 7 | 2 | — | — | — | — | Subjects in all training groups refrained from participating in any type of exercise outside the domain of the study. | 1 RM HS Powerpeak 30 m sprint |
ET + ST | 10 (10/0) | 19.8 ± 1.2 | N/A | Squat, Dead lift, Seated row, Dumbbell biceps curl, Leg extension, Core circuit, standing calf raise, Leg curl, Dumbbell hammer curl | 7 | 2 | ||||||||
ST | 9 (9/0) | 19.8 ± 1.4 | — | — | — | — | ||||||||
Makhlouf et al. 2016 [52] | Soccer | Athlete | ST + ET | 15 (15/0) | 13.7 ± 0.5 | 10 to 16 HIIT running without interruption according to the peak speed of each player | 12 | 2 | 15 min | Bent over row, Push up, Forward lunge, Sit up, Upright row, Biceps curl, Supine leg raise, Front half squat, Stiff leg deadlift, Supine leg lateral twist, Weighted Forward lunge, Plyometrics | 12 | 2 | All players trained 4 times a week with a match. During the remaining weekly training sessions, players performed mainly technical-tactical drills. | 1 RM HS CMJ YYIRT 10 m sprint 30 m sprint |
ET + ST | 14 (14/0) | 13.7 ± 0.5 | ||||||||||||
AES | 14 (14/0) | 13.7 ± 0.5 | 4 | AD | 4 | |||||||||
CON | 14 (14/0) | 13.7 ± 0.5 | — | — | — | — | — | — | — | |||||
Robineau et al. 2016 [53] | Rugby | Trained | ST + ET (0) | 15 (N/A) | 24.3 ± 3.8 | Three 6-min sets at 120% individual maximal aerobic velocity of 15 s/15 s interval training | 7 | 2 | 0 h | Bench row, Leg press, Half squat, Bench press, Plyometrics | 7 | 2 | Nothing | 1 RM HS CMJ VO2peak |
ST + ET (6) | 11 (N/A) | 28.0 ± 4.5 | 6 h | |||||||||||
ST + ET (24) | 12 (N/A) | 24.8 ± 3.9 | 24 h | |||||||||||
ST | 10 (N/A) | 25.2 ± 4.4 | — | — | — | — | ||||||||
CON | 10 (N/A) | 25.2 ± 3.5 | — | — | — | — | — | — | — | |||||
Robineau et al. 2017 [7] | Rugby | Trained | ST + ET (SIT) | 10 (N/A) | 26.4 ± 3.0 | 30 s runs at 100% individual maximal aerobic velocity with 30 s of active recovery, 30 s running all-out efforts with 4 min of passive recovery | 8 | 2 | 24 h | Half squat, Bench row, Deadlift, Leg extension, Bench press | 8 | 2 | Nothing | 1 RM HS CMJ VO2peak |
ST + ET (INT) | 9 (N/A) | 25.0 ± 3.7 | — | — | — | |||||||||
ST | 11 (N/A) | 27.5 ± 2.5 | — | — | — | — | ||||||||
Hermassi et al. 2019 [54] | Handball | Trained | ST + ET | 12 (12/0) | 20.6 ± 0.5 | Sub maximal 30 m shuttle runs, Small-sided games | 10 | 2 | 0 | Half squat, Drop jump, Pull over, Hurdle jumps, Medicine ball throw, Balance training, Bench press. | 10 | 2 | All participants performed their usual physical education training requirements. | 1 RM HS CMJ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Ye, Z.; Yin, X.; Zhou, C.; Gong, B. Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14800. https://doi.org/10.3390/ijerph192214800
Kang J, Ye Z, Yin X, Zhou C, Gong B. Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(22):14800. https://doi.org/10.3390/ijerph192214800
Chicago/Turabian StyleKang, Jian, Zhijing Ye, Xinxing Yin, Changjing Zhou, and Bo Gong. 2022. "Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 22: 14800. https://doi.org/10.3390/ijerph192214800
APA StyleKang, J., Ye, Z., Yin, X., Zhou, C., & Gong, B. (2022). Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(22), 14800. https://doi.org/10.3390/ijerph192214800