Coordinated Evolution and Influencing Factors of Population and Economy in the Yangtze River Economic Belt
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Geographical Concentration
2.2.2. Barycenter Analysis Model
2.2.3. Coupling Coordination Model
2.2.4. Spatial Measurement Model
2.3. Theoretical Analysis and Indicator System
2.4. Data Sources
3. Results and Discussion
3.1. Evolution of the Spatiotemporal Pattern
3.1.1. Population Geographical Concentration
3.1.2. Economic Geographic Concentration
3.2. Spatiotemporal Evolution of Coupling Coordination Degree between Population and Economy
3.2.1. Population and Economic Development Stage Based on the Barycenter Model
3.2.2. Spatiotemporal Evolution of Coupling Coordination Degree
3.3. Analysis Influencing Factors of Population and Economy Coupling Coordination
3.3.1. Model Setting and Testing
3.3.2. Model Regression Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, C.; Zhu, J.; Li, S.; Yang, S.; Chen, M. Assessment and analysis of regional economic collaborative development within an urban agglomeration: Yangtze River Delta as a case study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
- Li, G.; Fang, C. Spatial econometric analysis of urban and county-level economic growth convergence in China. Int. Reg. Sci. Rev. 2018, 41, 410–447. [Google Scholar] [CrossRef]
- Smith, A. The Wealth of Nations; Bantam Classics: New York, NY, USA, 2003. [Google Scholar]
- Anselin, L. Spatial econometrics in RSUE: Retrospect and prospect. Reg. Sci. Urban Econ. 2007, 37, 450–456. [Google Scholar] [CrossRef]
- Kelley, A.C.; Schmidt, R.M. Saving, dependency and development. J. Popul. Econ. 1996, 9, 365–386. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Huang, J.C.; Fang, C.L. Analysis of coupling mechanism and rules between urbanization and eco-environment. Geogr. Res. 2003, 22, 211–220. [Google Scholar]
- Xiong, Y. Uncertainty evaluation of the coordinated development of urban human settlement environment and economy in Changsha city. J. Geogr. Sci. 2011, 21, 1123–1137. [Google Scholar] [CrossRef]
- Graham, E. The past, present and future of population geography: Reflections on Glenn Trewartha’s address fifty years on. Popul. Space Place 2004, 10, 289–294. [Google Scholar] [CrossRef]
- Keyfitz, N.; Caswell, H. Applied Mathematical Demography; Springer: New York, NY, USA, 2005; Volume 47. [Google Scholar]
- Long, H.; Zou, J.; Liu, Y. Differentiation of rural development driven by industrialization and urbanization in eastern coastal China. Habitat Int. 2009, 33, 454–462. [Google Scholar] [CrossRef]
- Hondroyiannis, G.; Papapetrou, E. Demographic changes and economic activity in Greece. Rev. Econ. Househ. 2004, 2, 49–71. [Google Scholar] [CrossRef]
- Sedano, F. Economic implications of Mexico’s sudden demographic transition. Bus. Econ. 2008, 43, 40–54. [Google Scholar] [CrossRef]
- Kaygalak, I.; Reid, N. The geographical evolution of manufacturing and industrial policies in Turkey. Appl. Geogr. 2016, 70, 37–48. [Google Scholar] [CrossRef]
- Matuschewski, A.; Leick, B.; Demuth, M. Growth-based theories for declining regions? A note on conceptualisations of demographic change for regional economic development. Comp. Popul. Stud. 2016, 41, 225–254. [Google Scholar] [CrossRef]
- Headey, D.D.; Hodge, A. The effect of population growth on economic growth: A Meta-Regression Analysis of the Macroeconomic Literature. Popul. Dev. Rev. 2009, 35, 221–248. [Google Scholar] [CrossRef]
- Zhou, L.; Xiong, L.Y. Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Appl. Geogr. 2018, 90, 282–292. [Google Scholar] [CrossRef]
- Amate-Fortes, I.; Guarnido-Rueda, A.; Molina-Morales, A. Economic and social determinants of human development: A new perspective. Soc. Indic. Res. 2017, 133, 561–577. [Google Scholar] [CrossRef]
- Birchenall, J.A. Population and development redux. J. Popul. Econ. 2016, 29, 627–656. [Google Scholar] [CrossRef]
- Yin, X.; Wang, J.; Li, Y.; Feng, Z.; Wang, Q. Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China. Land Use Policy 2021, 109, 105590. [Google Scholar] [CrossRef]
- Wei, Y.D.; Yu, D.; Chen, X. Scale, agglomeration, and regional inequality in provincial China. Tijdschr. Voor Econ. En Soc. Geogr. 2011, 102, 406–425. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Pan, X.; Ma, X.; Tang, M. The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China. Cities 2020, 104, 102801. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-temporal differentiation of the coupling coordinated development of regional energy-economy-ecology system: A case study of the Yangtze River Economic Belt. Ecol. Indic. 2021, 124, 107394. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Y.D.; Chen, W. Spatial proximity, localized assets, and the changing geography of domestic mergers and acquisitions in transitional China. Growth Chang. 2020, 51, 954–976. [Google Scholar] [CrossRef]
- Qi, X.; Huang, X.; Song, Y.; Chuai, X.; Wu, C.; Wang, D. The transformation and driving factors of multi-linkage embodied carbon emission in the Yangtze River Economic Belt. Ecol. Indic. 2021, 126, 107622. [Google Scholar] [CrossRef]
- He, C.; Wei, Y.D.; Pan, F. Geographical concentration of manufacturing industries in China: The importance of spatial and industrial scales. Eurasian Geogr. Econ. 2007, 48, 603–625. [Google Scholar] [CrossRef]
- Braunerhjelm, P.; Borgman, B. Geographical concentration, entrepreneurship and regional growth: Evidence from regional data in Sweden, 1975–1999. Reg. Stud. 2004, 38, 929–947. [Google Scholar] [CrossRef]
- Li, E.L.; Coates, K.; Li, X.J.; Ye, X.Y.; Leipnik, M. Analyzing agricultural agglomeration in China. Sustainability 2017, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Fan, W.; Wang, H.; Liu, Y.; Liu, H. Spatio-temporal variation of the coupling relationship between urbanization and air quality: A case study of Shandong Province. J. Clean. Prod. 2020, 272, 122812. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, K.-T.; Han, F.; Karacsonyi, D.; Qian, Q. Investigating urbanization and its spatial determinants in the central districts of Guangzhou, China. Habitat Int. 2016, 51, 59–69. [Google Scholar] [CrossRef]
- Fang, K.; Wang, T.; He, J.; Wang, T.; Xie, X.; Tang, Y.; Shen, Y.; Xu, A. The distribution and drivers of PM 2.5 in a rapidly urbanizing region: The Belt and Road Initiative in focus. Sci. Total Environ. 2020, 716, 137010. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M.; Carlucci, M. In-between regional disparities and spatial heterogeneity: A multivariate analysis of territorial divides in Italy. J. Environ. Plan. Manag. 2017, 60, 997–1015. [Google Scholar] [CrossRef]
- Yang, J.; Tan, Y.; Xue, D. The impacts of globalization on city environments in developing countries: A case study of 21 cities in Guangdong Province, China. J. Clean. Prod. 2019, 240, 118273. [Google Scholar] [CrossRef]
- Ogunleye, O.O.; Owola, O.A.; Mubarak, M. Population Growth and Economic Growth in Nigeria: An Appraisal. Int. J. Manag. Account. Econ. 2018, 5, 282–299. Available online: https://www.researchgate.net/profile/Olusogo-Ogunleye/publication/325995144_Population_Growth_and_Economic_Growth_in_Nigeria_An_Appraisal/links/5b32317eaca2720785e9421b/Population-Growth-and-Economic-Growth-in-Nigeria-An-Appraisal.pdf (accessed on 3 October 2022).
- Osabohien, R.; Matthew, O.; Ohalete, P.; Osabuohien, E. Population–poverty–inequality nexus and social protection in Africa. Soc. Indic. Res. 2020, 151, 575–598. [Google Scholar] [CrossRef]
- Abd El-khalek, A.M.A. The dynamic relation between population and economic development; a systematic analysis review considering developing countries’ empirical evidence. J. Econ. Financ. 2020, 11, 12–21. [Google Scholar] [CrossRef]
- Becker, G.S.; Glaeser, E.L.; Murphy, K.M. Population and economic growth. Am. Econ. Rev. 1999, 89, 145–149. [Google Scholar] [CrossRef]
- Bawazir, A.A.A.; Aslam, M.; Osman, A.F.B. Demographic change and economic growth: Empirical evidence from the Middle East. Econ. Chang. Restruct. 2020, 53, 429–450. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Lu, J.; Sun, D. The core-periphery structure in the Yangtze River Delta: An enterprise linkage perspective, 1978–2019. Complexity 2021, 2021, 9351741. [Google Scholar] [CrossRef]
- He, S.; Liao, F.H.; Li, G. A spatiotemporal analysis of county economy and the multi-mechanism process of regional inequality in rural China. Appl. Geogr. 2019, 111, 102073. [Google Scholar] [CrossRef]
- Li, Z.; Hu, M.; Wang, Z. The space-time evolution and driving forces of county economic growth in China from 1998 to 2015. Growth Chang. 2020, 51, 1203–1223. [Google Scholar] [CrossRef]
- Liao, F.H.; Wei, Y.D. Dynamics, space, and regional inequality in provincial China: A case study of Guangdong province. Appl. Geogr. 2012, 35, 71–83. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Swerts, E. Spatial inequality in the city-regions in the Yangtze River Valley, China. Urban Stud. 2020, 57, 672–689. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Chen, J.; Cai, Y. Demystifying the geography of income inequality in rural China: A transitional framework. J. Rural Stud. 2019, 93, 398–407. [Google Scholar] [CrossRef]
- Wu, C.; Ren, F.; Ye, X.; Liang, X.; Du, Q. Spatiotemporal analysis of multiscale income mobility in China. Appl. Geogr. 2019, 111, 102060. [Google Scholar] [CrossRef]
- Ma, W.; Tian, W.; Zhou, Q.; Miao, Q. Analysis on the temporal and spatial heterogeneity of factors affecting urbanization development based on the GTWR Model: Evidence from the Yangtze River Economic Belt. Complexity 2021, 2021, 7557346. [Google Scholar] [CrossRef]
- He, S.; Fang, C.; Zhang, W. A geospatial analysis of multi-scalar regional inequality in China and in metropolitan regions. Appl. Geogr. 2017, 88, 199–212. [Google Scholar] [CrossRef]
- Akinbode, S.L.; Okeowo, K.S.; Azeez, A. The dynamics of population and economic growth in Nigeria. J. Econ. Dev. Stud. 2017, 5, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, A.S.; Chua, S.Y. Effects of trade openness, investment and population on the economic growth: A case study of Syria. Hyperion Econ. J. 2015, 2, 14–23. [Google Scholar]
- Jacobs-Crisioni, C.; Koomen, E. Population growth, accessibility spillovers and persistent borders: Historical growth in West-European municipalities. J. Transp. Geogr. 2017, 62, 80–91. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhou, Y.; Zhu, S. Firm dynamics, institutional context, and regional inequality of productivity in China. Geogr. Rev. 2017, 107, 296–316. [Google Scholar] [CrossRef]
- Wei, Y.D. Spatiality of regional inequality. Appl. Geogr. 2015, 61, 1–10. [Google Scholar] [CrossRef]
- Lim, K.F. ‘Emptying the cage, changing the birds’: State rescaling, path-dependency and the politics of economic restructuring in post-crisis Guangdong. New Political Econ. 2016, 21, 414–435. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technol. Forecast. Soc. Chang. 2019, 146, 119–132. [Google Scholar] [CrossRef]
First-Level Index | Second-Level Index | Third-Level Index | Unit |
---|---|---|---|
Population system | Population size | Population | Ten thousand people |
Natural growth rate | % | ||
Population structure | Proportion of non-agricultural employment | % | |
Proportion of working population | % | ||
Population quality | Number of students in general higher education | Ten thousand people | |
Number of college students per 10,000 people | People | ||
Quality of Life | Urban per capita disposable income | CNY | |
Per capita net income of rural residents | CNY | ||
Economic system | Economies of scale | GDP | 100 million CNY |
Total investment in fixed assets | 100 million CNY | ||
Economic level | Per capita GDP | CNY | |
Total retail sales of consumer goods | 100 million CNY | ||
Economic structure | Output value of the secondary and tertiary industries in GDP | 100 million CNY | |
Local fiscal revenue in GDP | % | ||
Economic speed | GDP growth rate | % | |
Growth rate of local revenue | % |
Test | Yangtze River Economic Belt | Upper Reaches | Middle Reaches | Lower Reaches | ||||
---|---|---|---|---|---|---|---|---|
Value | Prob | Value | Prob | Value | Prob | Value | Prob | |
Moran’s I (error) | 4.1601 | 0.0000 | −0.0598 | 0.9523 | 2.7561 | 0.0058 | 2.4147 | 0.0157 |
LM (lag) | 19.5693 | 0.0000 | 0.7873 | 0.3749 | 1.0331 | 0.3094 | 17.0605 | 0.0000 |
RLM (lag) | 9.3518 | 0.0022 | 0.5017 | 0.4787 | 0.0019 | 0.9656 | 14.2621 | 0.0002 |
LM (error) | 11.8401 | 0.0006 | 0.3005 | 0.5835 | 4.1664 | 0.0412 | 3.1550 | 0.0757 |
RLM (error) | 1.6226 | 0.2027 | 0.0150 | 0.9026 | 3.1352 | 0.0766 | 0.3567 | 0.5503 |
Yangtze River Economic Belt | Middle Reaches | Lower Reaches | ||||
---|---|---|---|---|---|---|
OLS | SLM | OLS | SEM | OLS | SLM | |
CONSTANT | −10.0096 *** | −8.5503 *** | −7.4373 *** | −7.1038 *** | −15.0356 *** | −13.9955 *** |
Per capita GDP | 0.6250 *** | 0.5454 *** | 0.5067 *** | 0.4539 *** | 0.4962 | 0.6943 *** |
Employed population | 0.3514 ** | 0.3163 *** | 1.8502 *** | 1.5758 *** | 0.7912 | 1.3246 ** |
Secondary industry | −0.0063 | −0.0078 | −0.0103 | −0.0071 | 0.0445 | 0.0317 ** |
Tertiary industry | 0.0014 | −0.0038 | −0.0022 | −0.0039 | 0.0388 | 0.0379 ** |
Fixed assets investment | 0.0016 | 0.0256 | 0.3152 *** | 0.2254 ** | 0.0080 | 0.2222 ** |
Road area | 0.0369 *** | 0.0334 *** | 0.0218 | 0.0242 * | 0.0432 ** | 0.0698 *** |
College students | −0.0010 | 0.0020 | 0.0035 * | 0.0040 *** | −0.0047 | −0.0121 *** |
Fiscal revenue | 0.2115 *** | 0.1859 *** | 0.0612 | 0.1034 | 0.8907 *** | 0.9628 *** |
Residents deposit balance | 0.2003 ** | −0.1632 ** | −0.0963 | −0.0136 | −0.0259 | −0.1123 |
Foreign investment | −0.0453 * | −0.0619 *** | −0.0788 *** | −0.0791 *** | −0.0328 | 0.0599 * |
R2 | 0.8251 | 0.8532 | 0.8904 | 0.9053 | 0.9738 | 0.9899 |
logL | −26.5947 | −16.4784 | 28.6565 | 31.4108 | 12.1891 | 23.8009 |
AIC | 75.1894 | 56.9568 | −35.3131 | −40.8217 | −2.37813 | −23.6018 |
SC | 106.7321 | 91.3672 | −12.6482 | −18.1568 | 11.0295 | −8.9753 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zou, H.; Duan, X.; Wang, L. Coordinated Evolution and Influencing Factors of Population and Economy in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 14395. https://doi.org/10.3390/ijerph192114395
Wang Y, Zou H, Duan X, Wang L. Coordinated Evolution and Influencing Factors of Population and Economy in the Yangtze River Economic Belt. International Journal of Environmental Research and Public Health. 2022; 19(21):14395. https://doi.org/10.3390/ijerph192114395
Chicago/Turabian StyleWang, Yazhu, Hui Zou, Xuejun Duan, and Lingqing Wang. 2022. "Coordinated Evolution and Influencing Factors of Population and Economy in the Yangtze River Economic Belt" International Journal of Environmental Research and Public Health 19, no. 21: 14395. https://doi.org/10.3390/ijerph192114395