HLS19-NAV—Validation of a New Instrument Measuring Navigational Health Literacy in Eight European Countries
Abstract
:1. Introduction
- How well does a single-factor, as compared to a two-factor confirmatory factor analysis (CFA) model, describe the correlation structure of the HLS19-NAV data?
- To which extent does the data fit the unidimensional Rasch model?
- What is the impact of using dichotomous or polytomous data on the psychometric properties of the NAV-HL scale?
- How well does the instrument fulfil aspects of content and face validity and of construct validity measured as discriminant and concurrent predictive validity?
2. Materials and Methods
2.1. Development of the HLS19-NAV
2.2. Translation Procedure
2.3. Data Collection
2.4. Other Variables Included in the Analysis
2.5. Analysis
3. Results
3.1. Confirmatory Factor Analysis
3.2. Rasch Analyses at the Overall Level
3.3. Rasch Analyses at the Item Level
3.4. Reliability
3.5. Content, Discriminant and Concurrent Predictive Validity
4. Discussion
Strengths and Limitations
5. Conclusions
Instrument Use
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Aa, M.J.; van den Broeke, J.R.; Stronks, K.; Plochg, T. Patients with multimorbidity and their experiences with the healthcare process: A scoping review. J. Comorb. 2017, 7, 11–21. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gui, X.; Chen, Y.; Pine, K.H. Navigating the Healthcare Service “Black Box”. Proc. ACM Hum. Comput. Interact. 2018, 2, 1–26. [Google Scholar] [CrossRef]
- Lee, E.S.; Muthulingam, G.; Chew, E.A.L.; Lee, P.S.S.; Koh, H.L.; Quak, S.X.E.; Ding, Y.Y.; Subramaniam, M.; Vaingankar, J.A. Experiences of older primary care patients with multimorbidity and their caregivers in navigating the healthcare system: A qualitative study protocol. J. Comorb. 2020, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rein, A. Navigating Health Care: Why It’s So Hard and What Can Be Done to Make It Easier for the Average Consumer. Available online: http://www.hcfo.org/files/hcfo/HCFONavigatingHealthCare.pdf (accessed on 17 May 2021).
- Schaeffer, D.; Haslbeck, J. Bewältigung chronischer Krankheit. In Soziologie von Gesundheit und Krankheit; Hurrelmann, K., Richter, M., Eds.; Springer: Berlin, Germany, 2016; pp. 243–257. [Google Scholar]
- Schnitzer, S.; Kohl, R.; Fügemann, H.; Gödde, K.; Stumm, J.; Engelmann, F.; Grittner, U.; Rieckmann, N. Patient Navigation-Who Needs What? Awareness of Patient Navigators and Ranking of Their Tasks in the General Population in Germany. Int. J. Environ. Res. Public Health 2022, 19, 2846. [Google Scholar] [CrossRef] [PubMed]
- Sofaer, S. Navigating poorly charted territory: Patient dilemmas in health care “nonsystems”. Med. Care Res. Rev. 2009, 66, 75–93. [Google Scholar] [CrossRef]
- Bodenheimer, T. Coordinating care-a perilous journey through the health care system. N. Engl. J. Med. 2008, 358, 1064–1071. [Google Scholar] [CrossRef][Green Version]
- Hofmarcher, M.M.; Oxley, H.; Rusticelli, E. Improved Health System Performance through Better Care Coordination: OECD Health Working Papers; OECD Publishing: Paris, France, 2007. [Google Scholar]
- McKenney, K.M.; Martinez, N.G.; Yee, L.M. Patient navigation across the spectrum of women’s health care in the United States. Am. J. Obstet. Gynecol. 2018, 218, 280–286. [Google Scholar] [CrossRef]
- Schaeffer, D.; Hurrelmann, K.; Bauer, U.; Kolpatzik, K. National Action Plan Health Literacy. In Promoting Health Literacy in Germany; KomPart: Berlin, Germany, 2018. [Google Scholar]
- Snelgrove, S.; Liossi, C. Living with chronic low back pain: A metasynthesis of qualitative research. Chronic Illn. 2013, 9, 283–301. [Google Scholar] [CrossRef]
- Schwarz, T.; Schmidt, A.E.; Bobek, J.; Ladurner, J. Barriers to accessing health care for people with chronic conditions: A qualitative interview study. BMC Health Serv. Res. 2022, 22, 1037. [Google Scholar] [CrossRef]
- Sachverständigenrat zur Begutachtung der Entwicklung im Gesundheitswesen. In Bedarfsgerechte Steuerung der Gesundheitsversorgung; SVR: Berlin, Germany, 2018.
- Schaeffer, D.; Pelikan, J.M. Health Literacy: Begriff, Konzept, Relevanz. In Health Literacy: Forschungsstand und Perspektiven; Schaeffer, D., Pelikan, J.M., Eds.; Hogrefe: Bern, Switzerland, 2017; pp. 11–18. [Google Scholar]
- Schaeffer, D. Chronische Krankheit und Health Literacy. In Health Literacy: Forschungsstand und Perspektiven; Schaeffer, D., Pelikan, J.M., Eds.; Hogrefe: Bern, Switzerland, 2017; pp. 53–70. [Google Scholar]
- The HLS19 Consortium of the WHO Action Network M-POHL. International Report on the Methodology, Results, and Recommendations of the European Health Literacy Population Survey 2019–2021 (HLS19) of M-POHL; Austrian National Public Health Institute: Vienna, Austria, 2021. [Google Scholar]
- HLS-EU Consortium. Comparative Report of Health Literacy in Eight EU Member States. The European Health Literacy Survey HLS-EU. The HLS-EU Consortium. 2012. Available online: https://cdn1.sph.harvard.edu/wp-content/uploads/sites/135/2015/09/neu_rev_hls-eu_report_2015_05_13_lit.pdf (accessed on 24 October 2022).
- Schaeffer, D.; Berens, E.-M.; Vogt, D.; Gille, S.; Griese, L.; Klinger, J.; Hurrelmann, K. Health literacy in Germany-findings of a representative follow-up survey. Dtsch. Arztebl. Int. 2021, 118, 723–729. [Google Scholar] [CrossRef]
- Speros, C.I. More than words: Promoting health literacy in older adults. Online J. Issues Nurs. 2009, 14, 6. [Google Scholar] [CrossRef]
- Bargfrede, A. Patienten auf der Suche: Orientierungsarbeit im Gesundheitswesen; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2011. [Google Scholar]
- Robinson, K.M.; Christensen, K.B.; Ottesen, B.; Krasnik, A. Diagnostic delay, quality of life and patient satisfaction among women diagnosed with endometrial or ovarian cancer: A nationwide Danish study. Qual. Life Res. 2012, 21, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Storla, D.G.; Yimer, S.; Bjune, G.A. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health 2008, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Griese, L.; Berens, E.-M.; Nowak, P.; Pelikan, J.M.; Schaeffer, D. Challenges in Navigating the Health Care System: Development of an Instrument Measuring Navigation Health Literacy. Int. J. Environ. Res. Public Health 2020, 17, 5731. [Google Scholar] [CrossRef]
- Corbin, J.; Strauss, A. Unending Work and Care: Managing Chronic Illness at Home; Jossey-Bass: San Francisco, CA, USA, 1988. [Google Scholar]
- Corbin, J.; Strauss, A. Weiterleben Lernen: Verlauf und Bewältigung Chronischer Krankheit, 3rd ed.; Huber: Bern, Switzerland, 2010. [Google Scholar]
- Nolte, E.; McKee, M. Caring for people with chronic conditions: An introduction. In Caring for People with Chronic Conditions. A Health System Perspective; Nolte, E., McKee, M., Eds.; Open University Press: Maidenhead, UK, 2008; pp. 1–14. [Google Scholar]
- Schaeffer, D. Der Patient als Nutzer: Krankheitsbewältigung und Versorgungsnutzung im Verlauf Chronischer Krankheit; Huber: Bern, Switzerland, 2004. [Google Scholar]
- Schaeffer, D. Bewältigung chronischer Krankheit im Lebenslauf—Einleitung. In Bewältigung Chronischer Krankheit im Lebenslauf; Schaeffer, D., Ed.; Huber: Bern, Switzerland, 2009; pp. 7–12. [Google Scholar]
- Griese, L.; Schaeffer, D.; Berens, E.-M. Navigational health literacy among people with chronic illness. Chronic Illn. 2022. [Google Scholar] [CrossRef]
- Ellen, M.E.; Wilson, M.G.; Vélez, M.; Shach, R.; Lavis, J.N.; Grimshaw, J.M.; Moat, K.A. Addressing overuse of health services in health systems: A critical interpretive synthesis. Health Res. Policy Syst. 2018, 16, 48. [Google Scholar] [CrossRef][Green Version]
- Rasu, R.S.; Bawa, W.A.; Suminski, R.; Snella, K.; Warady, B. Health Literacy Impact on National Healthcare Utilization and Expenditure. Int. J. Health Policy Manag. 2015, 4, 747–755. [Google Scholar] [CrossRef][Green Version]
- Parker, R.; Ratzan, S.C. Health literacy: A second decade of distinction for Americans. J. Health Commun. 2010, 15, 20–33. [Google Scholar] [CrossRef][Green Version]
- Kakar, R.; Combs, R.M.; Young, M.H.; Ali, N.; Muvuka, B. Health Insurance Literacy Perceptions and the Needs of a Working-Class Community. HLRP Health Lit. Res. Pract. 2022, 6, e62–e69. [Google Scholar] [CrossRef]
- Schmidt-Kaehler, S.; Schaeffer, D.; Pelikan, J. Transfer zu einem nutzerfreundlichen und gesundheitskompetenten Gesundheitssystem. Monit. Versorg. 2019, 12, 49–53. [Google Scholar] [CrossRef]
- Rudd, R.E. Navigating Hospitals. Lit. Harvest 2004, 11, 19–24. [Google Scholar]
- Rudd, R.; Kirsch, I.; Yamamoto, K. Literacy and Health in America; Educational Testing Service: Lawrence Township, NJ, USA, 2004. [Google Scholar]
- Rudd, E.R. Health Literacy Developments, Corrections, and Emerging Themes. In Health Literacy: Forschungsstand und Perspektiven, 1st ed.; Schaeffer, D., Pelikan, J.M., Eds.; Hogrefe: Bern, Switzerland, 2017; pp. 19–31. [Google Scholar]
- van der Heide, I.; Uiters, E.; Sørensen, K.; Röthlin, F.; Pelikan, J.; Rademakers, J.; Boshuizen, H. Health literacy in Europe: The development and validation of health literacy prediction models. Eur. J. Public Health 2016, 26, 906–911. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Osborne, R.; Batterham, R.W.; Elsworth, G.R.; Hawkins, M.; Buchbinder, R. The grounded psychometric development and initial validation of the Health Literacy Questionnaire (HLQ). BMC Public Health 2013, 13, 658. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sørensen, K.; van den Broucke, S.; Fullam, J.; Doyle, G.; Pelikan, J.; Slonska, Z.; Brand, H. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health 2012, 12, 80. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Finbråten, H.S.; Nowak, P.; Griebler, R.; Bíró, É.; Vrdelja, M.; Charafeddine, R.; Griese, L.; Bøggild, H.; Schaeffer, D.; Link, T.; et al. The HLS19-COM-P, a New Instrument for Measuring Communicative Health Literacy in Interaction with Physicians: Development and Validation in Nine European Countries. Int. J. Environ. Res. Public Health 2022, 19, 11592. [Google Scholar] [CrossRef]
- Schaeffer, D.; Berens, E.-M.; Gille, S.; Griese, L.; Klinger, J.; de Sombre, S.; Vogt, D.; Hurrelmann, K. Gesundheitskompetenz der Bevölkerung in Deutschland vor und Während der Corona Pandemie: Ergebnisse des HLS-GER 2; Universität Bielefeld: Bielefeld, Germany, 2021. [Google Scholar]
- Adler, N.E.; Epel, E.S.; Castellazzo, G.; Ickovics, J.R. Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, white women. Health Psychol. 2000, 19, 586–592. [Google Scholar] [CrossRef]
- Schneider, S.L. The Conceptualisation, Measurement, and Coding of Education in German and Cross-National Surveys. GESIS Survey Guidelines; GESIS Leibniz Institute for the Social Sciences: Mannheim, Germany, 2016. [Google Scholar]
- UNECSCO. International Standard Classification of Education; UNESCO Institute for Statistics: Montreal, QC, Canada, 2012. [Google Scholar]
- Guttersrud, Ø.; Le, C.; Pettersen, K.S.; Finbråten, H.S. Rasch Analyses of Data Collected in 17 Countries—A Technical Report to Support Decision-Making within the M-POHL Consortium: International Population Health Literacy Survey 2019–2021 (HLS19). Available online: https://m-pohl.net/sites/m-pohl.net/files/inline-files/Guttersrud%20et%20al_Rasch%20analyses%20of%20data%20colllected%20in%2017%20countries_2021_0.pdf (accessed on 25 September 2022).
- Sørensen, K.; van den Broucke, S.; Pelikan, J.; Fullam, J.; Doyle, G.; Slonska, Z.; Kondilis, B.; Stoffels, V.; Osborne, R.H.; Brand, H. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health 2013, 13, 948. [Google Scholar] [CrossRef][Green Version]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef][Green Version]
- Beaujean, A.A. Latent Variable Modeling Using R; Routledge: Oxfordshire, UK, 2014. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Rosseel, Y. The Lavaan Tutorial. Available online: https://lavaan.ugent.be/tutorial/tutorial.pdf (accessed on 21 July 2022).
- Prudon, P. Confirmatory factor analysis: A brief introduction and critique. Compr. Psychol. 2015, 4, 1–18. [Google Scholar] [CrossRef][Green Version]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Andrich, D.; Sheridan, B. RUMM2030 Plus; Rumm Laboratory Pty Ltd.: Duncraig, WA, Australia, 2019. [Google Scholar]
- Adams, R.J.; Wu, M.L.; Cloney, D.; Wilson, M.R. ACER ConQuest; Version 5; Generalised Item Response Modelling Software; Australian Council for Educational Research: Camberwell, Victoria, Australia, 2020. [Google Scholar]
- Masters, G.N. Partial credit model. In Handbook of Item Response Theory; van der Linden, W.J., Ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; pp. 109–123. [Google Scholar]
- Smith, E.V. Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. J. Appl. Meas. 2002, 3, 205–231. [Google Scholar] [PubMed]
- Lamoureux, E.L.; Pesudovs, K.; Pallant, J.F.; Rees, G.; Hassell, J.B.; Caudle, L.E.; Keeffe, J.E. An evaluation of the 10-item vision core measure 1 (VCM1) scale (the Core Module of the Vision-Related Quality of Life scale) using Rasch analysis. Ophthalmic Epidemiol. 2008, 15, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Tennant, A.; Conaghan, P.G. The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Rheum. 2007, 57, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.D.; Linacre, J.M.; Gustafson, J.E.; Martin-Lof, P. Reasonable mean-square fit values. Rasch Meas. Trans. 1994, 8, 370. [Google Scholar]
- Andrich, D.; Marais, I. A Course in Rasch Measurement Theory; Springer Singapore: Singapore, 2019. [Google Scholar]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Marais, I. Local Dependence. In Rasch Models in Health; Christensen, K.B., Kreiner, S., Mesbah, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 111–130. [Google Scholar]
- Ahmad, S.; Zulkurnain, N.; Khairushalimi, F. Assessing the Validity and Reliability of a Measurement Model in Structural Equation Modeling (SEM). J. Adv. Math. Comput. Sci. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Hubley, A.M. Discriminant Validity. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 1664–1667. [Google Scholar]
- Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1993; pp. 136–162. [Google Scholar]
- Knekta, E.; Runyon, C.; Eddy, S. One Size Doesn’t Fit All: Using Factor Analysis to Gather Validity Evidence When Using Surveys in Your Research. CBE Life Sci. Educ. 2019, 18, rm1. [Google Scholar] [CrossRef][Green Version]
- Finger, R.P.; Fenwick, E.; Pesudovs, K.; Marella, M.; Lamoureux, E.L.; Holz, F.G. Rasch analysis reveals problems with multiplicative scoring in the macular disease quality of life questionnaire. Ophthalmology 2012, 119, 2351–2357. [Google Scholar] [CrossRef]
- Organisation for economic cooperation and development (OECD). Waiting Times for Health Services; OECD: Paris, France, 2020. [Google Scholar]
- Holland, P.W.; Wainer, H. Differential Item Functioning; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1993. [Google Scholar]
- Allalouf, A.; Hambleton, R.K.; Sireci, S.G. Identifying the causes of translation DIF on verbal items. J. Educ. Meas. 1999, 36, 185–198. [Google Scholar] [CrossRef]
- Teresi, J.A.; Fleishman, J.A. Differential item functioning and health assessment. Qual. Life Res. 2007, 16, 33–42. [Google Scholar] [CrossRef]
- Weiber, R.; Mühlhaus, D. Strukturgleichungsmodellierung; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Fedorov, V.; Mannino, F.; Zhang, R. Consequences of dichotomization. Pharm. Stat. 2009, 8, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.R.; McClelland, G.H. Negative Consequences of Dichotomizing Continuous Predictor Variables. J. Mark. Res. 2003, 40, 366–371. [Google Scholar] [CrossRef]
- Carter, N.; Valaitis, R.K.; Lam, A.; Feather, J.; Nicholl, J.; Cleghorn, L. Navigation delivery models and roles of navigators in primary care: A scoping literature review. BMC Health Serv. Res. 2018, 18, 96. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rowlands, G.; Shaw, A.; Jaswal, S.; Smith, S.; Harpham, T. Health literacy and the social determinants of health: A qualitative model from adult learners. Health Promot. Int. 2015, 32, 130–138. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Marmot, M. Health equity in England: The Marmot review 10 years on. BMJ 2020, 368, m693. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO)—Regional Office for Europe. Health Literacy. In The Solid Facts; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
On a Scale from Very Easy to Very Difficult, How Easy Would You Say It Is to… | |
---|---|
HLS19-NAV1 | …understand information on how the health care system works [e.g., which type of health services are available] |
HLS19-NAV2 | …judge which type of health service you need in case of a health problem |
HLS19-NAV3 | …judge to what extent your health insurance covers a particular health service [e.g., are there any co-payments] |
HLS19-NAV4 | …understand information on ongoing health care reforms that might affect your health care |
HLS19-NAV5 | …find out about your rights as a patient or user of the health care system |
HLS19-NAV6 | …decide for a particular health service [e.g., choose from different hospitals] |
HLS19-NAV7 | …find information on the quality of a particular health service |
HLS19-NAV8 | …judge if a particular health service will meet your expectations and wishes on health care |
HLS19-NAV9 | …understand how to get an appointment with a particular health service |
HLS19-NAV10 | …find out about support options that may help you to orientate yourself in the health care system |
HLS19-NAV11 | …locate the right contact person for your concern within a health care institution [e.g., in a hospital] |
HLS19-NAV12 | …stand up for yourself if your health care does not meet your needs |
Country | Sampling Procedure | Mode of Data Collection | Data Collection Period | Total Sample Size |
---|---|---|---|---|
AT | Multi-stage random sampling | CATI | 16 March 2020–26 May 2020 | 2967 |
BE | Quota sampling | CAWI | 30 January 2020–28 February 2020 and 1 October 2020–26 October 2020 | 1000 |
CH | Multi-stage random sampling | CAWI, CATI | 5.March 2020–29 April 2020 | 2502 |
CZ | Random quota sampling (CAWI), Random digital procedure (CATI) | CAWI, CATI | 10 November 2020–24 November 2020 | 1599 |
DE | Multi-stage random and quota sampling | PAPI | 13 December 2019–27 January 2020 | 2143 |
FR | Quota sampling | CAWI | 27 May 2020–5 June 2020 and 8 January 2021–18 January 2021 | 2003 |
PT | Random stratified sampling procedure | CATI | 10 December 2020–13 January 2021 | 1247 |
SI | Multi-stage random sampling | CAWI, CAPI, Paper and pencil, self-administered | 9 March 2020–15 March 2020 and 9 June 2020–10 August 2020 | 3360 |
Characteristic | AT (CATI) | BE (CAWI) | CH (CAWI) | CH (CATI) | CZ (CAWI) | CZ (CATI) | DE (PAPI) | FR (CAWI) | PT (CATI) | SI (CAWI) | SI (CAPI) |
---|---|---|---|---|---|---|---|---|---|---|---|
n | 2967 | 1000 | 2310 | 192 | 1067 | 532 | 2143 | 2003 | 1247 | 1488 | 1860 |
Characteristic mean | |||||||||||
Self-perceived social status (1–10) | 6.3 | 6.5 | 5.9 | 5.6 | 5.7 | 5.6 | 6.0 | 5.7 | 5.4 | 5.7 | 5.2 |
Q25/Q75 | 5/7 | 6/7 | 5/7 | 5/7 | 5/7 | 5/7 | 5/7 | 5/7 | 6/7 | 5/7 | 4/6 |
Characteristic (in %) | |||||||||||
Gender | |||||||||||
Male | 44.2 | 49.6 | 49.5 | 39.1 | 51.4 | 40.8 | 49.5 | 49.2 | 48.4 | 45.4 | 47.0 |
Female | 55.9 | 50.4 | 50.4 | 60.9 | 48.6 | 59.2 | 50.3 | 50.8 | 51.6 | 54.6 | 53.0 |
Missing | / | / | 0.1 | / | / | / | 0.2 | / | / | / | / |
Age | |||||||||||
18–25 | 6.8 | 9.0 | 10.6 | 0.5 | 12.8 | 1.7 | 9.3 | 12.0 | 13.2 | 11.5 | 5.3 |
26–35 | 12.1 | 20.7 | 15.8 | 1.6 | 22.5 | 12.8 | 13.8 | 17.7 | 14.5 | 19.0 | 9.4 |
36–45 | 15.1 | 14.2 | 17.3 | 4.2 | 21.7 | 4.1 | 15.2 | 19.0 | 20.5 | 21.4 | 13.8 |
46–55 | 23.7 | 22.1 | 21.5 | 8.3 | 17.9 | 8.7 | 16.4 | 19.7 | 18.6 | 18.2 | 16.5 |
56–65 | 19.3 | 17.7 | 16.9 | 15.1 | 14.2 | 24.3 | 19.8 | 18.5 | 17.6 | 17.1 | 22.3 |
66–75 | 13.3 | 13.5 | 11.7 | 35.4 | 9.4 | 35.2 | 13.7 | 13.2 | 10.2 | 8.9 | 19.0 |
76 and older | 9.6 | 2.8 | 6.1 | 34.9 | 1.6 | 13.4 | 10.9 | / | 3.9 | 4.0 | 13.7 |
Missing | 0.1 | / | 0.2 | / | / | 0.9 | / | 1.5 | / | / | |
Level of education | |||||||||||
Lower secondary education or below | 10.5 | 3.0 | 12.1 | 23.4 | 37.6 | 62.8 | 9.3 | 3.6 | 40.5 | 15.6 | 45.8 |
Higher secondary education | 51.5 | 11.7 | 46.2 | 62.0 | 34.2 | 23.9 | 45.0 | 14.3 | 30.5 | 38.7 | 35.1 |
Above secondary education | 38.0 | 84.1 | 41.3 | 14.6 | 28.2 | 13.2 | 43.6 | 82.1 | 29.0 | 45.7 | 19.1 |
Missing | / | 1.2 | 0.3 | / | / | 0.2 | 2.1 | / | / | / | / |
Employment | |||||||||||
Employed or Self- Employed | 56.7 | 53.2 | 65.2 | 24.0 | 65.7 | 32.1 | 56.0 | 61.7 | 61.0 | 62.6 | 42.3 |
Unemployed or unable to work | 4.2 | 10.0 | 4.3 | 4.7 | 5.7 | 2.1 | 4.2 | 8.2 | 9.1 | 6.5 | 8.0 |
Other | 38.8 | 33.0 | 30.1 | 71.4 | 28.6 | 65.8 | 38.7 | 30.0 | 29.5 | 30.9 | 49.7 |
Missing | 0.2 | 3.8 | 0.4 | / | / | / | 1.2 | 0.2 | 0.3 | 0.1 | 0.2 |
Paying bills | |||||||||||
(Very) easy | 85.7 | 62.4 | 70.8 | 75.0 | 67.4 | 81.4 | 73.6 | 74.6 | 56.7 | 61.2 | 56.2 |
(Very) difficult | 13.4 | 37.6 | 28.6 | 24.0 | 32.6 | 18.2 | 22.5 | 25.4 | 40.7 | 38.7 | 42.5 |
Missing | 0.9 | / | 0.6 | 1.0 | / | 0.4 | 3.8 | / | 2.7 | 0.1 | 1.3 |
Health in general | |||||||||||
Very good | 35.3 | 9.0 | 26.0 | 24.0 | 20.9 | 13.4 | 11.9 | 15.4 | 11.4 | 21.3 | 19.4 |
Good | 46.3 | 48.7 | 55.4 | 49.0 | 42.6 | 35.3 | 49.5 | 48.6 | 51.1 | 50.7 | 42.9 |
Fair (i.e., neither good nor bad) | 15.4 | 34.4 | 15.6 | 19.8 | 28.0 | 36.8 | 31.7 | 28.6 | 32.2 | 24.3 | 28.0 |
Bad | 2.46 | 7.0 | 2.5 | 5.7 | 7.8 | 10.9 | 5.9 | 6.7 | 5.1 | 3.2 | 8.1 |
Very bad | 0.4 | 0.9 | 0.4 | 1.0 | 0.8 | 3.4 | 1.0 | 0.7 | 0.2 | 0.4 | 1.5 |
Missing | 0.1 | / | 0.1 | 0.5 | / | 0.2 | 0.1 | / | / | 0.1 | 0.1 |
AT (CATI) | BE (CAWI) | CH (CAWI) | CH (CATI) | CZ (CAWI) | CZ (CATI) | DE (PAPI) | FR (CAWI) | PT (CATI) | SI (CAWI) | SI (CAPI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SRMR | dichotomous | 0.05 | 0.06 | 0.07 | 0.06 | 0.03 | 0.05 | 0.07 | 0.05 | 0.06 | 0.05 | 0.05 |
polytomous | 0.04 | 0.06 | 0.07 | 0.07 | 0.03 | 0.04 | 0.07 | 0.05 | 0.06 | 0.05 | 0.05 | |
RMSEA | dichotomous | 0.05 | 0.07 | 0.07 | 0.00 | 0.02 | 0.00 | 0.06 | 0.06 | 0.07 | 0.05 | 0.05 |
polytomous | 0.07 | 0.12 | 0.12 | 0.07 | 0.04 | 0.04 | 0.10 | 0.10 | 0.13 | 0.10 | 0.09 | |
RMSEA (p value) | dichotomous | 0.48 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.01 | 0.00 | 0.13 | 0.30 |
polytomous | 0.00 | 0.00 | 0.00 | 0.11 | 0.96 | 0.93 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CFI | dichotomous | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 0.99 | 0.99 |
polytomous | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | |
TLI | dichotomous | 0.99 | 0.99 | 0.98 | 1.00 | 1.00 | 1.00 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 |
polytomous | 0.99 | 0.99 | 0.98 | 0.99 | 1.00 | 1.00 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 | |
GFI | dichotomous | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.98 | 1.00 | 0.99 | 0.99 | 0.99 |
polytomous | 1.00 | 0.99 | 0.99 | 0.98 | 1.00 | 1.00 | 0.98 | 1.00 | 0.99 | 0.99 | 1.00 | |
AGFI | dichotomous | 0.99 | 0.98 | 0.98 | 0.99 | 1.00 | 0.99 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 |
polytomous | 0.99 | 0.98 | 0.98 | 0.97 | 1.00 | 0.99 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 |
AT (CATI) | BE (CAWI) | CH (CAWI) | CH (CATI) | CZ (CAWI) | CZ (CATI) | DE (PAPI) | FR (CAWI) | PT (CATI) | SI (CAWI) | SI (CAPI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SRMR | dichotomous | 0.04 | 0.05 | 0.06 | 0.05 | 0.03 | 0.05 | 0.06 | 0.04 | 0.04 | 0.04 | 0.04 |
polytomous | 0.03 | 0.04 | 0.05 | 0.06 | 0.02 | 0.04 | 0.06 | 0.04 | 0.04 | 0.04 | 0.03 | |
RMSEA | dichotomous | 0.04 | 0.05 | 0.06 | 0.00 | 0.00 | 0.00 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 |
polytomous | 0.05 | 0.10 | 0.11 | 0.06 | 0.03 | 0.04 | 0.09 | 0.09 | 0.10 | 0.08 | 0.06 | |
RMSEA (p value) | dichotomous | 0.94 | 0.39 | 0.00 | 1.00 | 1.00 | 1.00 | 0.01 | 0.32 | 0.88 | 0.98 | 1.00 |
polytomous | 0.38 | 0.00 | 0.00 | 0.35 | 1.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CFI | dichotomous | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 |
polytomous | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | |
TLI | dichotomous | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 |
polytomous | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | |
GFI | dichotomous | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 |
polytomous | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | |
AGFI | dichotomous | 0.99 | 0.99 | 0.98 | 0.99 | 1.00 | 0.99 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 |
polytomous | 1.00 | 0.99 | 0.98 | 0.98 | 1.00 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 1.00 |
AT (CATI) | BE (CAWI) | CH (CAWI) | CH (CATI) | CZ (CAWI) | CZ (CATI) | DE (PAPI) | FR (CAWI) | PT (CATI) | SI (CAWI) | SI (CAPI) | |
---|---|---|---|---|---|---|---|---|---|---|---|
χ2 (p) | 59.3 (0.130) | 107.3 (<0.001 **) | 74.3 (0.010 *) | 75.37 (0.010 *) | 73.4 (0.010 *) | 80.5 (<0.00 **) | 73.8 (0.010 *) | 165.2 (<0.001 **) | 122.9 (<0.001 **) | 137.5 (<0.001 **) | 105.0 (<0.001 **) |
Mean person location | 0.91 | −0.07 | 0.04 | 0.54 | −0.15 | 0.52 | −0.31 | 0.11 | 0.21 | 0.96 | 0.63 |
Dimensionality, % sign. tests | 9.6 | 11.5 | 9.7 | 7.4 | 5.3 | 4.2 | 12.2 | 8.3 | 9.3 | 9.2 | 10.3 |
AT (CATI) | BE (CAWI) | CH (CAWI) | CH (CATI) | CZ (CAWI) | CZ (CATI) | DE (PAPI) | FR (CAWI) | PT (CATI) | SI (CAWI) | SI (CAPI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alpha | dichotomous | 0.88 | 0.90 | 0.88 | 0.89 | 0.90 | 0.87 | 0.83 | 0.91 | 0.92 | 0.90 | 0.90 |
polytomous | 0.92 | 0.93 | 0.92 | 0.88 | 0.93 | 0.91 | 0.88 | 0.94 | 0.94 | 0.94 | 0.93 | |
PSI | dichotomous | 0.68 | 0.80 | 0.78 | 0.68 | 0.77 | 0.70 | 0.73 | 0.81 | 0.73 | 0.74 | 0.73 |
polytomous | 0.90 | 0.92 | 0.91 | 0.83 | 0.92 | 0.88 | 0.88 | 0.93 | 0.88 | 0.92 | 0.91 | |
Omega | dichotomous | 0.88 | 0.91 | 0.89 | 0.90 | 0.91 | 0.88 | 0.84 | 0.92 | 0.93 | 0.91 | 0.91 |
polytomous | 0.92 | 0.94 | 0.92 | 0.88 | 0.93 | 0.91 | 0.89 | 0.94 | 0.94 | 0.94 | 0.93 | |
AVE | dichotomous | 0.59 | 0.66 | 0.61 | 0.63 | 0.65 | 0.57 | 0.49 | 0.71 | 0.76 | 0.69 | 0.68 |
polytomous | 0.58 | 0.63 | 0.61 | 0.49 | 0.63 | 0.55 | 0.48 | 0.67 | 0.72 | 0.66 | 0.65 |
AT (CATI) | BE (CAWI) | CH (CAWI) | CH (CATI) | CZ (CAWI) | CZ (CATI) | DE (PAPI) | FR (CAWI) | PT (CATI) | SI (CAWI) | SI (CAPI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NAV-HL and GEN-HL | dichotomous | 0.56 | 0.41 | 0.56 | 0.52 | 0.53 | 0.57 | 0.60 | 0.63 | 0.53 | 0.60 | 0.64 |
polytomous | 0.59 | 0.42 | 0.63 | 0.49 | 0.56 | 0.61 | 0.64 | 0.70 | 0.58 | 0.65 | 0.69 |
AT | BE | CH | CZ | DE | FR | PT | SI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b | β | b | β | b | β | b | β | b | β | b | β | b | β | b | β | |
Intercept | 88.28 | 28.56 | 58,98 | 58.79 | 31.32 | 65.81 | 66.81 | 77.14 | ||||||||
Gender female | −1.00 | −0.02 | −3.38 | −0.05 | −2.60 | −0.04 | 1.59 | 0.02 | −0.32 | −0.01 | −4.44 | −0.07 | −0.26 | −0.00 | 0.51 | 0.01 |
Age in years | −0.14 | −0.07 | −0.05 | −0.02 | 0.02 | 0.01 | 0.04 | −0.02 | −0.14 | −0.09 | −0.29 | −0.13 | −0.20 | −0.10 | −0.17 | −0.09 |
Education | −1.02 | −0.06 | −0.51 | −0.03 | −2.22 | −0.13 | −2.58 | −0.14 | 1.69 | 0.10 | −2.24 | −0.10 | −1.27 | −0.08 | −0.45 | −0.02 |
Self-perceived social status | 0.09 | 0.00 | 4.71 | 0.22 | 2.58 | 0.14 | 2.59 | 0.12 | 2.80 | 0.15 | 3.74 | 0.17 | 4.19 | 0.18 | 2.38 | 0.12 |
Financial deprivation | −7.01 | −0.18 | −0.27 | −0.01 | −4.72 | −0.17 | −7.89 | −0.25 | −3.10 | −0.11 | −3.08 | −0.09 | −6.19 | −0.23 | −5.88 | −0.23 |
R2 | 0.04 | 0.05 | 0.07 | 0.1 | 0.09 | 0.06 | 0.13 | 0.11 | ||||||||
Valid count | 2587 | 988 | 1983 | 1523 | 1845 | 2003 | 1012 | 3160 | ||||||||
Total count | 2967 | 1000 | 2502 | 1599 | 2143 | 2003 | 1247 | 3360 |
AT | BE | CH | CZ | DE | FR | PT | SI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b | β | b | β | b | β | b | β | b | β | b | β | b | β | b | β | |
Intercept | 1.81 | 3.41 | 2.10 | 1.96 | 1.78 | 2.29 | 1.71 | 1.50 | ||||||||
NAV-HL | −0.00 | −0.13 | −0.00 | −0.10 | −0.00 | −0.1 | −0.00 | −0.07 | −0.00 | −0.13 | −0.00 | −0.06 | −0.00 | −0.01 | −0.00 | −0.12 |
gender | −0.03 | −0.02 | 0.06 | 0.04 | −0.07 | −0.05 | −0.05 | −0.03 | −0.05 | −0.03 | −0.03 | −0.02 | 0.13 | 0.09 | 0.04 | 0.02 |
Age in years | 0.01 | 0.24 | 0.00 | 0.07 | 0.01 | 0.22 | 0.02 | 0.35 | 0.02 | 0.41 | 0.01 | 0.23 | 0.01 | 0.33 | 0.02 | 0.37 |
Education | −0.03 | −0.06 | −0.03 | −0.08 | −0.02 | −0.04 | −0.06 | −0.11 | −0.01 | −0.03 | 0.01 | 0.02 | −0.05 | −0.13 | −0.03 | −0.08 |
Self-perceived social status | −0.06 | −0.11 | −0.14 | −0.28 | −0.08 | −0.18 | −0.08 | −0.13 | −0.04 | −0.08 | −0.12 | −0.23 | −0.06 | −0.11 | −0.04 | −0.07 |
Financial deprivation | 0.16 | 0.16 | −0.02 | −0.04 | 0.10 | 0.16 | 0.13 | 0.15 | 0.11 | 0.13 | 0.10 | 0.12 | 0.11 | 0.18 | 0.13 | 0.19 |
R2 | 0.15 | 0.12 | 0.15 | 0.25 | 0.26 | 0.15 | 0.32 | 0.3 | ||||||||
Valid count | 2584 | 988 | 1982 | 1523 | 1843 | 2003 | 1012 | 3157 | ||||||||
Total count | 2967 | 1000 | 2502 | 1599 | 2143 | 2003 | 1247 | 3360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griese, L.; Finbråten, H.S.; Francisco, R.; De Gani, S.M.; Griebler, R.; Guttersrud, Ø.; Jaks, R.; Le, C.; Link, T.; Silva da Costa, A.; et al. HLS19-NAV—Validation of a New Instrument Measuring Navigational Health Literacy in Eight European Countries. Int. J. Environ. Res. Public Health 2022, 19, 13863. https://doi.org/10.3390/ijerph192113863
Griese L, Finbråten HS, Francisco R, De Gani SM, Griebler R, Guttersrud Ø, Jaks R, Le C, Link T, Silva da Costa A, et al. HLS19-NAV—Validation of a New Instrument Measuring Navigational Health Literacy in Eight European Countries. International Journal of Environmental Research and Public Health. 2022; 19(21):13863. https://doi.org/10.3390/ijerph192113863
Chicago/Turabian StyleGriese, Lennert, Hanne S. Finbråten, Rita Francisco, Saskia M. De Gani, Robert Griebler, Øystein Guttersrud, Rebecca Jaks, Christopher Le, Thomas Link, Andreia Silva da Costa, and et al. 2022. "HLS19-NAV—Validation of a New Instrument Measuring Navigational Health Literacy in Eight European Countries" International Journal of Environmental Research and Public Health 19, no. 21: 13863. https://doi.org/10.3390/ijerph192113863