Association between Handgrip Strength and the Systemic Immune-Inflammation Index: A Nationwide Study, NHANES 2011–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedures
2.2.1. Blood Extraction
2.2.2. Handgrip Strength
2.2.3. Covariates
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. The Association between the SII and Handgrip Strength
3.3. Analysis of Restricted Cubic Spline Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Chen, Z.; Zhang, W.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S.; Rong, D.; Reiter, F.P.; et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther. 2020, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Kunnumakkara, A.B.; Aggarwal, S.; Aggarwal, B.B. Inflammation, a Double-Edge Sword for Cancer and Other Age-Related Diseases. Front. Immunol. 2018, 9, 2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K. Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Shi, G. Editorial: Regulation of Inflammation in Chronic Disease. Front. Immunol. 2019, 10, 737. [Google Scholar] [CrossRef] [Green Version]
- Afzali, A.M.; Müntefering, T.; Wiendl, H.; Meuth, S.G.; Ruck, T. Skeletal muscle cells actively shape (auto)immune responses. Autoimmun. Rev. 2018, 17, 518–529. [Google Scholar] [CrossRef]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug. Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef]
- Fu, H.; Zheng, J.; Cai, J.; Zeng, K.; Yao, J.; Chen, L.; Li, H.; Zhang, J.; Zhang, Y.; Zhao, H.; et al. Systemic Immune-Inflammation Index (SII) is Useful to Predict Survival Outcomes in Patients After Liver Transplantation for Hepatocellular Carcinoma within Hangzhou Criteria. Cell. Physiol. Biochem. 2018, 47, 293–301. [Google Scholar] [CrossRef]
- Chen, J.-H.; Zhai, E.-T.; Yuan, Y.J.; Wu, K.-M.; Xu, J.-B.; Peng, J.-J.; Chen, C.-Q.; He, Y.-L.; Cai, S.-R. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J. Gastroenterol. 2017, 23, 6261–6272. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Liu, Q.; Zhu, L.; Zhang, Y.; Lu, X.; Wu, Y.; Liu, L. Prognostic Value of Preoperative Systemic Immune-Inflammation Index in Patients with Cervical Cancer. Sci. Rep. 2019, 9, 3284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Feng, Y.; Liu, Y.-H.; Tan, H.-Y.; Dai, G.-H.; Liu, S.-Q.; Li, B.; Feng, H.-G. The Systemic Immune-Inflammation Index May Be a Novel and Strong Marker for the Accurate Early Prediction of Acute Kidney Injury in Severe Acute Pancreatitis Patients. J. Investig. Surg. 2022, 35, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Zaldivar, F.; Cooper, D.M.; Adams, G.R. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 2005, 98, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.-Y.; Zhang, Y.; Hou, L.-S.; Xia, X.; Ge, M.-L.; Liu, X.-L.; Yue, J.-R.; Dong, B.-R. The association between systemic inflammatory markers and sarcopenia: Results from the West China Health and Aging Trend Study (WCHAT). Arch. Gerontol. Geriatr. 2021, 92, 104262. [Google Scholar] [CrossRef]
- Ethgen, O.; Beaudart, C.; Buckinx, F.; Bruyere, O.; Reginster, J.Y. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif. Tissue Res. 2017, 100, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Forrest, K.Y.Z.; Williams, A.M.; Leeds, M.J.; Robare, J.F.; Bechard, T.J. Patterns and Correlates of Grip Strength in Older Americans. Curr. Aging Sci. 2018, 11, 63–70. [Google Scholar] [CrossRef]
- Iconaru, E.I.; Ciucurel, M.M.; Georgescu, L.; Ciucurel, C. Hand grip strength as a physical biomarker of aging from the perspective of a Fibonacci mathematical modeling. BMC Geriatr. 2018, 18, 296. [Google Scholar] [CrossRef]
- Nacul, L.C.; Mudie, K.; Kingdon, C.C.; Clark, T.G.; Lacerda, E.M. Hand Grip Strength as a Clinical Biomarker for ME/CFS and Disease Severity. Front. Neurol. 2018, 9, 992. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Sayer, A.A.; Kirkwood, T.B. Grip strength and mortality: A biomarker of ageing? Lancet 2015, 386, 226–227. [Google Scholar] [CrossRef]
- Bohannon, R.W. Hand-Grip Dynamometry Predicts Future Outcomes in Aging Adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-R.; Jung, S.M.; Bang, H.; Kim, H.S.; Kim, Y.B. The association between muscular strength and depression in Korean adults: A cross-sectional analysis of the sixth Korea National Health and Nutrition Examination Survey (KNHANES VI) 2014. BMC Public Health 2018, 18, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Deng, Y.; Yan, H.; Li, B.; Wang, Z.; Liao, J.; Cai, X.; Zhou, L.; Tan, W.; Rong, S. Association Between Grip Strength and Cognitive Function in US Older Adults of NHANES 2011–2014. J. Alzheimer’s Dis. 2022, 89, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Parra-Soto, S.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Absolute and relative grip strength as predictors of cancer: Prospective cohort study of 445 552 participants in UK Biobank. J. Cachexia Sarcopenia Muscle 2022, 13, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Leong, D.P.; Hu, B.; AhTse, L.; Rangarajan, S.; Wang, Y.; Wang, C.; Lu, F.; Li, Y.; Yusuf, S.; et al. The association of grip strength with cardiovascular diseases and all-cause mortality in people with hypertension: Findings from the Prospective Urban Rural Epidemiology China Study. J. Sport Health Sci. 2021, 10, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Musalek, C.; Kirchengast, S. Grip Strength as an Indicator of Health-Related Quality of Life in Old Age-A Pilot Study. Int. J. Environ. Res. Public Health 2017, 14, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Son, D.-H.; Song, S.-A.; Lee, Y.-J. Association Between C-Reactive Protein and Relative Handgrip Strength in Postmenopausal Korean Women Aged 45–80 Years: A Cross-Sectional Study. Clin. Interv. Aging 2022, 17, 971–978. [Google Scholar] [CrossRef]
- Yi, D.W.; Khang, A.R.; Lee, H.W.; Son, S.M.; Kang, Y.H. Relative handgrip strength as a marker of metabolic syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014–2015). Diabetes Metab. Syndr. Obes. 2018, 11, 227–240. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, S.H.; Kwak, M.K.; Isales, C.M.; Koh, J.-M.; Hamrick, M.W. Inverse relationship between serum hsCRP concentration and hand grip strength in older adults: A nationwide population-based study. Aging 2018, 10, 2051–2061. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Guo, G.; Xia, L.; Yang, X.; Zhang, B.; Liu, F.; Ma, J.; Hu, Z.; Li, Y.; Li, W.; et al. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China. Front. Physiol. 2018, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Gil, J.F.; Ramírez-Vélez, R.; Izquierdo, M.; García-Hermoso, A. Handgrip Strength and Its Relationship with White Blood Cell Count in U.S. Adolescents. Biology 2021, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Peng, L.-N.; Chiou, S.-T.; Chen, L.-K. Relative Handgrip Strength Is a Simple Indicator of Cardiometabolic Risk among Middle-Aged and Older People: A Nationwide Population-Based Study in Taiwan. PLoS ONE 2016, 11, e0160876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkley, T.E.; Leng, X.; Miller, M.E.; Kitzman, D.W.; Pahor, M.; Berry, M.J.; Marsh, A.P.; Kritchevsky, S.B.; Nicklas, B.J. Chronic Inflammation Is Associated with Low Physical Function in Older Adults across Multiple Comorbidities. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Schaap, L.A.; Pluijm, S.M.; Deeg, D.J.; Visser, M. Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. Am. J. Med. 2006, 119, 526.e9-17. [Google Scholar] [CrossRef]
- Alemán, H.; Esparza, J.; Ramirez, F.A.; Astiazaran, H.; Payette, H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing 2011, 40, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Xie, W.; Hu, P.; Tang, K.; Wang, X.; Wu, Y.; He, M.; Yu, D.; Li, Y. The role of melatonin in sarcopenia: Advances and application prospects. Exp. Gerontol. 2021, 149, 111319. [Google Scholar] [CrossRef]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaper, F.; Rose-John, S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015, 26, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Canoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.; Hellsten, Y.; Steensberg, A.; Pedersen, B.K. Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells. Cytokine 2006, 36, 141–147. [Google Scholar] [CrossRef]
- Serrano, A.L.; Baeza-Raja, B.; Perdiguero, E.; Jardí, M.; Muñoz-Cánoves, P. Interleukin-6 Is an Essential Regulator of Satellite Cell-Mediated Skeletal Muscle Hypertrophy. Cell Metab. 2008, 7, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Domingues-Faria, C.; Vasson, M.-P.; Goncalves-Mendes, N.; Boirie, Y.; Walrand, S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res. Rev. 2016, 26, 22–36. [Google Scholar] [CrossRef]
- Saini, J.; McPhee, J.S.; Al-Dabbagh, S.; Stewart, C.E.; Al-Shanti, N. Regenerative function of immune system: Modulation of muscle stem cells. Ageing Res. Rev. 2016, 27, 67–76. [Google Scholar] [CrossRef]
- Nielsen, A.R.; Mounier, R.; Plomgaard, P.; Mortensen, O.H.; Penkowa, M.; Speerschneider, T.; Pilegaard, H.; Pedersen, B.K. Expression of interleukin-15 in human skeletal muscle—Effect of exercise and muscle fibre type composition. J. Physiol. 2007, 584, 305–312. [Google Scholar] [CrossRef]
- Yang, H.; Chang, J.; Chen, W.; Zhao, L.; Qu, B.; Tang, C.; Qi, Y.; Zhang, J. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high-fat diet rats. Endocrine 2013, 43, 579–585. [Google Scholar] [CrossRef]
- Conlon, K.C.; Lugli, E.; Welles, H.C.; Rosenberg, S.A.; Fojo, A.T.; Morris, J.C.; Fleisher, T.A.; Dubois, S.P.; Perera, L.P.; Stewart, D.M.; et al. Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients with Cancer. J. Clin. Oncol. 2015, 33, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, Y.; Watanabe, K.; Kantani, T.; Hayashi, J.; Ishida, N.; Kaneki, M. Upregulation of circulating IL-15 by treadmill running in healthy individuals: Is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr. J. 2011, 58, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Kjøbsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.-N.; Pehmøller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2018, 32, 1741–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res. Rev. 2016, 28, 15–26. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Value |
---|---|---|---|---|---|---|
N | 8232 | 2058 | 2058 | 2058 | 2058 | |
HGS, mean (SE) | 2.64 (0.02) | 2.80 (0.03) | 2.71 (0.02) | 2.64 (0.03) | 2.43 (0.03) | <0.0001 |
SII, mean (SE) | 528.93 (7.29) | 243.93 (1.48) | 382.67 (0.81) | 529.65 (1.16) | 915.28 (8.39) | <0.0001 |
Sex(%) | <0.0001 | |||||
Female | 4100 | 896 (44.72) | 1011 (49.49) | 1061 (49.29) | 1132 (56.04) | |
Male | 4132 | 1162 (55.28) | 1047 (50.51) | 997 (50.71) | 926 (43.96) | |
Age (%) | 0.02 | |||||
<20 | 250 | 59 (1.70) | 75 (2.18) | 56 (1.47) | 60 (1.89) | |
20–29 | 1409 | 380 (21.31) | 357 (18.21) | 351 (18.67) | 321 (15.85) | |
30–39 | 1388 | 345 (17.65) | 365 (18.16) | 356 (15.26) | 322 (15.00) | |
40–49 | 1350 | 299 (16.03) | 345 (17.41) | 363 (20.38) | 343 (18.79) | |
50–59 | 1320 | 341 (18.99) | 316 (18.24) | 336 (20.11) | 327 (18.42) | |
≥60 | 2515 | 634 (24.32) | 600 (25.80) | 596 (24.11) | 685 (30.04) | |
Race (%) | <0.0001 | |||||
mexican | 921 | 203 (7.89) | 223 (7.25) | 258 (8.04) | 237 (7.62) | |
white | 3563 | 675 (61.38) | 885 (69.97) | 965 (71.46) | 1038 (73.34) | |
black | 1825 | 723 (18.42) | 425 (9.45) | 347 (7.71) | 330 (7.17) | |
other | 1923 | 457 (12.31) | 525 (13.33) | 488 (12.78) | 453 (11.88) | |
BMI (%) | <0.0001 | |||||
<25 | 2560 | 705 (33.75) | 674 (32.28) | 609 (27.43) | 572 (27.41) | |
25–29.9 | 2627 | 679 (34.18) | 690 (35.25) | 651 (33.88) | 607 (29.42) | |
≥30 | 3045 | 674 (32.07) | 694 (32.47) | 798 (38.69) | 879 (43.17) | |
Edu (%) | 0.03 | |||||
Below | 1661 | 439 (15.94) | 418 (13.47) | 390 (13.00) | 414 (14.86) | |
High school | 1838 | 483 (22.39) | 433 (18.87) | 451 (21.29) | 471 (21.97) | |
Above | 4733 | 1136 (61.67) | 1207 (67.67) | 1217 (65.71) | 1173 (63.17) | |
PIR (%) | 0.92 | |||||
<1.3 | 2765 | 673 (22.45) | 696 (23.21) | 684 (22.33) | 712 (23.64) | |
1.3–3.49 | 2858 | 733 (36.13) | 710 (34.45) | 719 (34.49) | 696 (34.72) | |
≥3.5 | 2609 | 652 (41.42) | 652 (42.35) | 655 (43.17) | 650 (41.64) | |
Smoke status (%) | 0.03 | |||||
former | 1891 | 459 (23.03) | 453 (22.98) | 470 (24.42) | 509 (25.89) | |
never | 4681 | 1199 (58.40) | 1213 (58.41) | 1185 (57.11) | 1084 (51.93) | |
current | 1660 | 400 (18.57) | 392 (18.61) | 403 (18.47) | 465 (22.18) | |
Alcohol status (%) | 0.03 | |||||
former | 1348 | 343 (13.27) | 314 (11.61) | 309 (13.57) | 382 (16.49) | |
never | 1218 | 339 (12.66) | 306 (11.09) | 283 (10.15) | 290 (11.21) | |
mild | 2765 | 691 (35.56) | 714 (39.59) | 683 (35.29) | 677 (33.92) | |
moderate | 1277 | 291 (17.42) | 328 (17.25) | 352 (19.44) | 306 (16.78) | |
heavy | 1624 | 394 (21.10) | 396 (20.46) | 431 (21.55) | 403 (21.60) | |
Diabetes (%) | < 0.001 | |||||
no | 6783 | 1721 (89.03) | 1720 (87.40) | 1720 (86.36) | 1622 (83.02) | |
yes | 1449 | 337 (10.97) | 338 (12.60) | 338 (13.64) | 436 (16.98) | |
Hypertension (%) | < 0.001 | |||||
no | 4837 | 1236 (65.97) | 1280 (64.82) | 1223 (61.64) | 1098 (55.55) | |
yes | 3395 | 822 (34.03) | 778 (35.18) | 835 (38.36) | 960 (44.45) | |
Hyperlipidemia (%) | 0.03 | |||||
no | 2575 | 720 (33.58) | 649 (31.43) | 629 (29.86) | 577 (28.13) | |
yes | 5657 | 1338 (66.42) | 1409 (68.57) | 1429 (70.14) | 1481 (71.87) |
Model I | Model II | Model III | |
---|---|---|---|
β (95%CI) p-Value | β (95%CI) p-Value | β (95%CI) p-Value | |
Grip Strength (Quartile) | |||
Quartile 1 | Ref | Ref | Ref |
Quartile 2 | −49.36 (−71.89, −26.84) <0.0010 | −38.96 (−65.17, −12.76) 0.0100 | −35.75 (−66.93, −4.56) 0.0300 |
Quartile 3 | −94.28 (−120.53, −68.03) <0.0001 | −83.86 (−114.97, −52.76) <0.0001 | −79.49 (−115.44, −43.55) <0.0010 |
Quartile 4 | −103.61 (−126.53, −80.68) <0.0001 | −85.88 (−130.09, −41.67) <0.0010 | −77.31 (−129.58, −25.04) 0.0100 |
p for trend | <0.0001 | <0.0010 | <0.0100 |
Stratified by sex | |||
Male | |||
Quartile 1 | Ref | Ref | Ref |
Quartile 2 | −75.83 (−112.64, −39.02) <0.0010 | −61.09 (−95.12, −27.06) <0.0100 | −61.03 (−101.14, −20.92) 0.0100 |
Quartile 3 | −81.01 (−121.86, −40.16) <0.0010 | −64.36 (−112.23, −16.49) 0.0100 | −61.28 (−116.71, −5.86) 0.0400 |
Quartile 4 | −96.36 (−137.41, −55.31) <0.0001 | −65.42 (−111.47, −19.36) 0.0100 | −64.36 (−118.25, −10.46) 0.0300 |
p for trend | <0.0010 | 0.0200 | 0.0400 |
Female | |||
Quartile 1 | Ref | Ref | Ref |
Quartile 2 | −39.41 (−76.26, −2.56) 0.0400 | −33.2 (−77.23, 10.82) 0.1300 | −24.91 (−73.03, 23.20) 0.2500 |
Quartile 3 | −86.3 (−119.82, −52.79) <0.0001 | −72.68 (−121.73, −23.63) 0.0100 | −62.01 (−117.07, −6.94) 0.0300 |
Quartile 4 | −95.1 (−131.09, −59.11) <0.0001 | −86.56 (−143.18, −29.95) 0.0100 | −74.94 (−137.21, −12.66) 0.0300 |
p for trend | <0.0001 | <0.0100 | 0.0100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Gao, X.; Shi, Y.; Wang, H.; Wang, W.; Li, Y.; Zheng, Z. Association between Handgrip Strength and the Systemic Immune-Inflammation Index: A Nationwide Study, NHANES 2011–2014. Int. J. Environ. Res. Public Health 2022, 19, 13616. https://doi.org/10.3390/ijerph192013616
Wu D, Gao X, Shi Y, Wang H, Wang W, Li Y, Zheng Z. Association between Handgrip Strength and the Systemic Immune-Inflammation Index: A Nationwide Study, NHANES 2011–2014. International Journal of Environmental Research and Public Health. 2022; 19(20):13616. https://doi.org/10.3390/ijerph192013616
Chicago/Turabian StyleWu, Dongzhe, Xiaolin Gao, Yongjin Shi, Hao Wang, Wendi Wang, Yanbin Li, and Zicheng Zheng. 2022. "Association between Handgrip Strength and the Systemic Immune-Inflammation Index: A Nationwide Study, NHANES 2011–2014" International Journal of Environmental Research and Public Health 19, no. 20: 13616. https://doi.org/10.3390/ijerph192013616