Levels of Trace Elements in Erythrocytes as Endocrine Disruptors in Obese and Nonobese Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric and Biochemical Assessments
2.3. Sample Analysis
2.4. Chemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Differences in Hormonal Profile between Obese and Nonobese Women with PCOS
4.2. Relationships between Trace Elements and Hormonal Profile in Obese and Nonobese Women with PCOS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Norman, R.J.; Davies, M.; Moran, L.J. The effect of obesity on polycystic ovary syndrome: A systematic review and meta-analysis. Obes. Rev. 2012, 14, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Essah, P.A.; Nestler, J.E. The metabolic syndrome in polycystic ovary syndrome. J. Endocrinol. Investig. 2006, 29, 270–280. [Google Scholar] [CrossRef]
- Sachdeva, G.; Gainder, S.; Suri, V.; Sachdeva, N.; Chopra, S. Obese and non-obese polycystic ovarian syndrome: Comparison of clinical, metabolic, hormonal parameters, and their differential response to clomiphene. Indian J. Endocr. Metab. 2019, 23, 257–262. [Google Scholar]
- Ehrmann, D.A. Polycystic ovary syndrome. N. Engl. J. Med. 2005, 352, 1223–1226. [Google Scholar] [CrossRef] [PubMed]
- Prodarchuk, M.G.; Tatarchuk, T.F.; Gunkov, S.V.; Zhminko, P.G.; Regeda, S.I.; Rymarchuk, M.I. The role of macro- and microelements in the pathogenesis of polycystosis of the ovaries. HERO 2019, 4, 22–25. [Google Scholar] [CrossRef]
- Demerdash, H.M. Obesity and Trace Elements. Obes. Res. Open J. 2015, 2, 98–100. [Google Scholar] [CrossRef]
- Cena, H.; Chiovato, L.; E Nappi, R. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2695–e2709. [Google Scholar] [CrossRef]
- Saadia, Z. Follicle Stimulating Hormone (LH: FSH) Ratio in Polycystic Ovary Syndrome (PCOS)—Obese vs. Non- Obese Women. Med. Arch. 2020, 74, 289–293. [Google Scholar] [CrossRef]
- Polak, A.M.; Krentowska, A.; Łebkowska, A.; Buczyńska, A.; Adamski, M.; Adamska-Patruno, E.; Fiedorczuk, J.; Krętowski, A.J.; Kowalska, I.; Adamska, A. The Association of Serum Levels of Leptin and Ghrelin with the Dietary Fat Content in Non-Obese Women with Polycystic Ovary Syndrome. Nutrients 2020, 12, 2753. [Google Scholar] [CrossRef] [PubMed]
- Kurdoglu, M.; Demir, H.; Sahin, H. Serum trace elements and heavy metals in polycystic ovary syndrome. Hum. Exp. Toxicol. 2011, 31, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Wactawski-Wende, J.; Michels, K.A.; Schliep, K.C.; Plowden, T.C.; Chaljub, E.N.; Mumford, S.L. Dietary minerals, reproductive hormone levels and sporadic anovulation: Associations in healthy women with regular menstrual cycles. Br. J. Nutr. 2018, 120, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.A.; Elobeid, M.; Ruden, D.M.; Allison, D.B. An examination of the association of selected toxic metals with total and central obesity indices. Int. J. Environ. Res. Public Health 2010, 7, 3332–3347. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Hatch, E.E.; Nelson, J.W.; Stahlhut, R.; Webster, T. Association of endocrine disruptors and obesity: Perspectives from epidemiological studies. Int. J. Androl. 2010, 33, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Kirmizi, D.A.; Baser, E.; Turksoy, V.A.; Kara, M.; Yalvac, E.S.; Gocmen, A.Y. Are heavy metal exposure and trace element levels related to metabolic and endocrine problems in polycystic ovary syndrome? Biol. Trace Elem. Res. 2020, 198, 77–86. [Google Scholar] [CrossRef]
- Amato, M.; Vesco, R.; Vigneri, E.; Ciresi, A.; Giordano, C. Hyperinsulinism and polycystic ovary syndrome (PCOS): Role of insulin clearance. J. Endocrinol. Investig. 2015, 38, 1319–1326. [Google Scholar] [CrossRef]
- Rotterdam ESHRE/ASRM-sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and logterm health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [Green Version]
- WHO. Obesity. Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organization Technical Report Series 894: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Fraser, M.; Farrokh, S. Free Androgen Index; University of Rochester Medical Center: Rochester, NY, USA, 2014. [Google Scholar]
- WHO. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and o-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Ferriman, D.; Gallwey, J.D. Clinical assessment of body hair growth in women. J. Clin. Endocrinol. Metab. 1961, 21, 1440–1447. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta 1999, 391, 105–126. [Google Scholar] [CrossRef]
- Moran, C.; Arriaga, M.; Rodriguez, G.; Moran, S. Obesity differentially affects phenotypes of polycystic ovary syndrome. Int. J. Endocrinol. 2012, 2012, 317241. [Google Scholar] [CrossRef]
- Ersoy, A.O.; Tokmak, A.; Ozler, S.; Oztas, E.; Ersoy, E.; Celik, H.T. Are progranulin levels associated with polycystic ovary syndrome and its possible metabolic effects in adolescents and young women? Arch. Gynecol. Obstet. 2016, 294, 403–409. [Google Scholar] [CrossRef]
- Christodoulaki, C.; Trakakis, E.; Pergialiotis, V.; Panagopoulos, P.; Chrelias, C.; Kassanos, D.; Sioutis, D.; Papantoniou, N.; Xirofotos, D. Dehydroepiandrosterone-Sulfate, Insulin Resistance and Ovarian Volume Estimation in Patients With Polycystic Ovarian Syndrome. J. Fam. Reprod. Health 2017, 11, 24–29. [Google Scholar]
- Dunaif, A.; Mandeli, J.; Fluhr, H.; Dobrjansky, A. The impact of obesity andchronic hyperinsulinemia on gonadotropin release and gonadal steroidsecretion in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1988, 66, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Schwetz, V.; Rabe, T.; Giuliani, A.; Obermayer-Pietsch, B. Hyperandrogenemia in Polycystic Ovary Syndrome: Exploration of the Role of Free Testosterone and Androstenedione in Metabolic Phenotype. PLoS ONE 2014, 9, e108263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homer, M.V.; Rosencrantz, M.A.; Shayya, R.F.; Chang, R.J. The effect of estradiol on granulosa cell responses to FSH in women with polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2017, 15, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-L.; Deng, S.-L.; Lian, Z.-X.; Yu, K. Estrogen Receptors in Polycystic Ovary Syndrome. Cells 2021, 10, 459. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef]
- Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: Structure, function, and regulation of secretion. Physiol. Rev. 2000, 80, 1523–1631. [Google Scholar] [CrossRef] [PubMed]
- Štelcl, M.; Vrublovský, P.; Machač, Š. Prolactin and alteration of fertility. Ceska. Gynekol. 2018, 83, 232–235. [Google Scholar] [PubMed]
- Guler, I.; Himmetoglu, O.; Turp, A.; Erdem, A.; Erdem, M.; Onan, M.A.; Taskiran, C.; Taslipinar, M.Y.; Guner, H. Zinc and Homocysteine Levels in Polycystic Ovarian Syndrome Patients with Insulin Resistance. Biol. Trace Elem. Res. 2014, 158, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Wang, L.; Guo, Z.; Sun, L.; Wang, L.; Wang, C.; Zuo, Z.; Qiu, H. Association of Serum Heavy Metals and Trace Element Concentrations with Reproductive Hormone Levels and Polycystic Ovary Syndrome in a Chinese Population. Biol. Trace Elem. Res. 2015, 167, 1–10. [Google Scholar] [CrossRef]
- ChaChakraborty, P.; Ghosh, S.; Goswami, S.; Kabir, S.N.; Chakravarty, B.; Jana, K. Altered Trace Mineral Milieu Might Play An Aetiological Role in the Pathogenesis of Polycystic Ovary Syndrome. Biol. Trace Elem. Res. 2013, 152, 9–15. [Google Scholar] [CrossRef]
- Tatarchuk, T.F.; Kosei, N.V.; Vetokh, H.V.; Gunkov, S.V. Serum micro- and macroelements levels in women with polycystic ovary syndrome associated with pelvic inflammatory disease. Reprod. Endocrinol. 2016, 1, 26–29. [Google Scholar] [CrossRef]
- Nasiadek, M.; Stragierowicz, J.; Klimczak, M.; Kilanowicz, A. The role of zinc in selected female reproductive system disorders. Nutrients 2020, 12, 2464. [Google Scholar] [CrossRef]
- Yang, H.; Di, J.; Pan, J.; Yu, R.; Teng, Y.; Cai, Z.; Deng, X. The association between prolactin and metabolic parameters in pcos women: A retrospective analysis. Front. Endocrinol. 2020, 11, 263. [Google Scholar] [CrossRef]
- Fitzgerald, P.; Dinan, T.G. Prolactin and dopamine: What is the connection? A review article. J. Psychopharmacol. 2008, 22, 12–19. [Google Scholar] [CrossRef]
- Gragnoli, C.; Reeves, G.; Reazer, J.; Postolache, T.T. Dopamine–prolactin pathway potentially contributes to the schizophrenia and type 2 diabetes comorbidity. Transl. Psychiatry 2016, 6, 785. [Google Scholar] [CrossRef]
- Spritzer, P.M.; Lecke, S.B.; Fabris, V.C. Blood trace element concentrations in polycystic ovary syndrome: Systematic review and meta-analysis. Biol. Trace Elem. Res. 2017, 175, 254–262. [Google Scholar] [CrossRef]
- Forgacs, Z.; Massányi, P.; Lukac, N.; Somosy, Z. Reproductive toxicology of nicke—Review. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2012, 47, 1249–1260. [Google Scholar] [CrossRef]
- Gunkov, S.; Tatarchuk, T.; Zhminko, P.; Regeda, S. Effect of manganese and nickel on prolactin levels in women with polycystic ovary syndrome. Georgian Med. News 2019, 289, 21–25. (In Russian) [Google Scholar]
- Balahoroglu, R.; Zirek, A.K.; Cokluk, E.; Atmaca, M.; Sekeroglu, M.R.; Huyut, Z. The relationship between insulin resistance and trace elements in patients with polycystic ovary syndrome. Online Türk Sağlık Bilimleri Derg. 2020, 5, 375–382. [Google Scholar] [CrossRef]
- Khalaf, B.H.; Ouda, M.H.; Alghurabi, H.S.; Shubbar, A.S. Zinc and copper levels and their correlation with polycystic ovary syndrome biochemical changes. Int. J. Pharm. Sci. Res. 2018, 9, 3036–3041. [Google Scholar] [CrossRef]
- Baillargeon, J.-P.; Iuorno, M.J.; Nestler, J.E. Insulin sensitizers for polycystic ovary syndrome. Clin. Obstet. Gynecol. 2003, 46, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M. Oxidative stress and polycystic ovary syndrome: A brief review. Int. J. Prev. Med. 2019, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Huerta, M.G.; Roemmich, J.N.; Kington, M.L.; Bovbjerg, V.E.; Weltman, A.L.; Holmes, V.F.; Patrie, J.T.; Rogol, A.D.; Nadler, J.L. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care 2005, 28, 1175–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhanghi, M.A.; Mahboob, S.; Ostadrahimi, A. Induced magnesium deficiency can be treated by vitamin D supplementation. JPMA 2009, 59, 258–261. [Google Scholar]
- Bremer, A.A. Polycystic ovary syndrome in the pediatric population. Metab. Syndr. Relat. Disord. 2010, 8, 375–394. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, F.; Mazloomi, S.; Hajihosseini, R.; Mazloomzadeh, S. Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance. Gynecol. Endocrinol. 2012, 28, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.B.S.; Severo, J.S.; Alencar, G.R.R.; Oliveira, A.R.S.; Cruz, K.J.C.; Marreiro, D.D.N.; Freitas, B.J.E.; Carvalho, C.M.R.; Martins, M.D.C.; Frota, K.M.G. Effect of magnesium supplementation on insulin resistance in humans: A systematic review. Nutrition 2017, 38, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Babapour, M.; Mohammadi, H.; Kazemi, M.; Hadi, A.; Rezazadegan, M.; Askari, G. Associations between serum magnesium concentrations and polycystic ovary syndrome status: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2020, 199, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
Parameters | Nonobese (PCOS with BMI < 30) n = 23 | Obese (PCOS with BMI ≥ 30) n = 24 | Control Group (CG) n = 16 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | BMI < 30 vs. BMI ≥ 30 | BMI ≥ 30 vs. CG | BMI < 30 vs. CG | |
Body height (m) | 1.67 | 0.06 | 1.65 | 0.06 | 1.66 | 0.06 | 0.31118 | 0.88195 | 0.60858 |
Body weight (kg) | 70.3 | 8.2 | 96.1 | 13.3 | 65.06 | 6.28 | 0.00012 | 0.00012 | 0.24821 |
BM (kcal) | 1421.7 | 82.2 | 1612.6 | 179.0 | 1407.2 | 98.3 | 0.00020 | 0.00018 | 0.93642 |
TM (kcal) | 2061.1 | 134.5 | 2274.7 | 237.9 | 2040.6 | 82.3 | 0.00084 | 0.00056 | 0.92731 |
TBW (L) | 33.6 | 3.3 | 39.9 | 4.6 | 32.1 | 2.4 | 0.00013 | 0.00012 | 0.41378 |
TBW IN (L) | 18.9 | 8.1 | 22.0 | 4.3 | 17.1 | 1.6 | 0.21225 | 0.03559 | 0.59377 |
TBW EX (L) | 16.4 | 1.9 | 17.9 | 3.2 | 15.6 | 1.8 | 0.13149 | 0.01841 | 0.58027 |
Fat mass (%) | 35.3 | 8.3 | 42.9 | 5.6 | 27.2 | 2.9 | 0.00157 | 0.00012 | 0.00100 |
Fat mass (kg) | 24.5 | 5.7 | 41.6 | 9.7 | 20.3 | 3.5 | 0.00012 | 0.00012 | 0.17126 |
BCM (kg) | 23.2 | 2.8 | 29.1 | 7.8 | 23.1 | 3.9 | 0.00349 | 0.00544 | 0.99969 |
BCM (%) | 50.5 | 3.3 | 54.7 | 7.6 | 51.1 | 3.3 | 0.03979 | 0.12107 | 0.92069 |
Muscle mass (kg) | 32.2 | 7.7 | 38.1 | 9.0 | 30.9 | 4.6 | 0.05220 | 0.02123 | 0.86335 |
Muscle mass (%) | 45.68 | 11.05 | 39.19 | 9.04 | 47.7 | 3.6 | 0.07270 | 0.02000 | 0.77245 |
Waist circumference (cm) | 88.53 | 8.86 | 112.88 | 10.80 | 74.0 | 2.56 | 0.00010 | 0.00012 | 0.00013 |
Hip circumference (cm) | 103.10 | 6.27 | 116.03 | 7.96 | 95.06 | 2.59 | 0.00012 | 0.00012 | 0.00087 |
BMI (kg/m2) | 25.2 | 2.8 | 35.3 | 4.4 | 23.57 | 0.9 | 0.00102 | 0.00102 | 0.00183 |
WHR | 0.86 | 0.05 | 0.97 | 0.06 | 0.80 | 0.020 | 0.00012 | 0.00012 | 0.00068 |
PCOS | Nonobese (PCOS with BM 0) n = 23 | Obese (PCOS with BMI ≥ 30) n = 24 | Total PCOS Patients n = 47 | p-Value | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | BMI < 30 vs. BMI ≥ 30 | |
DHEA-SO4 (μg/d) | 248.6 | 74.2 | 250.6 | 102.6 | 249.5 | 87.1 | 0.94763 |
Androstenedione (ng/mL) | 3.94 | 1.69 | 3.56 | 1.30 | 3.77 | 1.52 | 0.47922 |
TSH (mIU/mL) | 1.77 | 0.53 | 1.75 | 0.39 | 1.76 | 0.46 | 0.88547 |
LH (mIU/mL) | 7.47 | 1.81 | 7.26 | 2.71 | 7.37 | 2.24 | 0.79246 |
FSH (mIU/mL) | 5.34 | 1.10 | 5.24 | 1.06 | 5.29 | 1.07 | 0.78837 |
Estradiol (pg/mL) | 37.93 | 28.81 | 49.81 | 9.86 | 43.39 | 22.74 | 0.02253 |
SHBG (nmol/L) | 39.25 | 17.53 | 29.80 | 10.53 | 34.79 | 15.22 | 0.06900 |
Testosterone (ng/mL) | 0.544 | 0.234 | 0.598 | 0.198 | 0.569 | 0.217 | 0.46825 |
FAI (%) Prolactin (ng/mL) | 1.38 18.12 | 1.11 5.02 | 2.01 16.49 | 0.89 6.81 | 1.64 17.37 | 1.03 5.88 | 0.14834 0.42696 |
Insulin test 0 (mU/L) | 10.42 | 13.00 | 17.14 | 5.17 | 13.51 | 10.61 | 0.06287 |
Insulin test after 2 h (mU/L) | 54.30 | 37.82 | 118.14 | 87.54 | 83.63 | 72.12 | 0.00750 |
Glucose test 0 (mg/dL) | 88.7 | 9.3 | 94.0 | 11.6 | 91.1 | 10.6 | 0.14817 |
Glucose test after 2 h (mg/L) | 105.8 | 24.3 | 129.9 | 33.3 | 116.8 | 30.9 | 0.01969 |
HOMA-IR (mg/dL) Total cholesterol (mg/dL) | 2.26 188.6 | 1.61 23.8 | 3.98 185.4 | 2.02 29.5 | 3.04 187.1 | 1.78 26.4 | 0.04571 0.73124 |
LDL (mg/dL) | 105.9 | 19.7 | 126.1 | 29.7 | 115.7 | 26.7 | 0.02440 |
HDL (mg/dL) | 65.63 | 19.81 | 48.23 | 12.91 | 57.18 | 18.77 | 0.00504 |
TG (mg/dL) | 104.0 | 54.5 | 129.6 | 77.7 | 116.4 | 67.0 | 0.271147 |
Minerals (µg/mL) | Non-Obese (PCOS with BMI < 30) n = 23 | Obese (PCOS with BMI ≥ 30) n = 24 | Control Group (CG) n = 16 | p-Value | p-Value | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | BMI < 30 vs. CG | BMI ≥ 30 vs. CG | BMI < 30 vs. BMI ≥ 30 | |
(range) | (range) | (range) | |||||||
Zn | 10.62 | 1.40 | 10.35 | 1.29 | 10.50 | 1.34 | 0.94965 | 0.98104 | 0.83979 |
(8.49–14.47) | (8.056–12.9) | (8.47–12.99) | |||||||
Ni | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.00512 | 0.69120 | 0.01782 |
(<LOD–0.002) | (<LOD–0.003) | (<LOD–0.002) | |||||||
Fe | 861.0 | 164.9 | 910.4 | 56.4 | 845.8 | 84.9 | 0.94258 | 0.35126 | 0.44680 |
(545.8–1333.7) | (812.0–1022.3) | (718.7–978.7) | |||||||
Mn | 0.019 | 0.006 | 0.017 | 0.004 | 0.021 | 0.007 | 0.75677 | 0.31455 | 0.66500 |
(<LOD–0.029) | (0.011–0.023) | (0.015–0.036) | |||||||
Cu | 0.73 | 0.13 | 0.71 | 0.07 | 0.78 | 0.14 | 0.53749 | 0.28812 | 0.86097 |
(0.33–0.94) | (0.632–0.847) | (0.57–1.10) | |||||||
Mg | 49.86 | 8.15 | 51.63 | 5.99 | 50.68 | 7.20 | 0.65630 | 0.30992 | 0.77232 |
(31.22–66.82) | (42.49–64.64) | (28.44–56.81) |
Parameter | Zn | Ni | Fe | Mn | Cu | Mg |
---|---|---|---|---|---|---|
DHEA-SO4 (μg/d) | −0.020 | 0.028 | −0.338 | 0.456 | 0.265 | −0.189 |
Androstenedione (ng/mL) | 0.021 | 0.285 | 0.016 | 0.513 | −0.188 | 0.162 |
TSH (mIU/mL) | −0.069 | 0.361 | 0.237 | 0.150 | 0.288 | 0.289 |
LH (mIU/mL) | 0.034 | 0.587 | 0.325 | 0.113 | −0.244 | 0.419 |
FSH (mIU/mL) | −0.143 | 0.248 | 0.142 | −0.023 | −0.170 | 0.459 |
Estradiol (pg/mL) | −0.300 | 0.506 | −0.313 | −0.005 | −0.267 | −0.580 |
SHBG (nmol/L) | 0.291 | −0.131 | 0.345 | −0.418 | −0.080 | 0.035 |
Testosterone (pg/mL) FAI | 0.504 −0.197 | 0.340 0.034 | 0.365 −0.240 | 0.309 0.413 | 0.189 −0.059 | −0.014 −0.292 |
Prolactin (pg/mL) | 0.133 | −0.240 | −0.445 | −0.204 | 0.241 | −0.181 |
Parameter | Zn | Ni | Fe | Mn | Cu | Mg |
---|---|---|---|---|---|---|
DHEA-SO4 (μg/d) | −0.018 | −0.287 | 0.357 | −0.239 | −0.322 | −0.062 |
Androstenedione (ng/mL) | −0.045 | −0.166 | 0.062 | −0.266 | −0.369 | 0.243 |
TSH (mIU/mL) | −0.420 | −0.454 | −0.012 | −0.517 | −0.270 | −0.067 |
LH (mIU/mL) | −0.147 | 0.048 | 0.294 | −0.318 | 0.038 | 0.064 |
FSH (mIU/mL) | −0.478 | 0.112 | −0.104 | −0.421 | −0.413 | −0.242 |
Estradiol (pg/mL) | 0.078 | −0.208 | 0.233 | 0.224 | −0.050 | −0.093 |
SHBG (nmol/L) | −0.207 | −0.022 | −0.188 | 0.179 | 0.058 | −0.028 |
Testosterone (pg/mL) FAI | −0.145 0.244 | −0.034 0.111 | 0.097 0.370 | −0.059 −0.063 | −0.023 −0.106 | 0.593 0.360 |
Prolactin (pg/mL) | 0.613 | 0.174 | 0.071 | 0.298 | 0.128 | 0.266 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorska-Niewiada, K.; Brodowska, A.; Brodowski, J.; Szczuko, M. Levels of Trace Elements in Erythrocytes as Endocrine Disruptors in Obese and Nonobese Women with Polycystic Ovary Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 976. https://doi.org/10.3390/ijerph19020976
Pokorska-Niewiada K, Brodowska A, Brodowski J, Szczuko M. Levels of Trace Elements in Erythrocytes as Endocrine Disruptors in Obese and Nonobese Women with Polycystic Ovary Syndrome. International Journal of Environmental Research and Public Health. 2022; 19(2):976. https://doi.org/10.3390/ijerph19020976
Chicago/Turabian StylePokorska-Niewiada, Kamila, Agnieszka Brodowska, Jacek Brodowski, and Małgorzata Szczuko. 2022. "Levels of Trace Elements in Erythrocytes as Endocrine Disruptors in Obese and Nonobese Women with Polycystic Ovary Syndrome" International Journal of Environmental Research and Public Health 19, no. 2: 976. https://doi.org/10.3390/ijerph19020976
APA StylePokorska-Niewiada, K., Brodowska, A., Brodowski, J., & Szczuko, M. (2022). Levels of Trace Elements in Erythrocytes as Endocrine Disruptors in Obese and Nonobese Women with Polycystic Ovary Syndrome. International Journal of Environmental Research and Public Health, 19(2), 976. https://doi.org/10.3390/ijerph19020976