Metal Content in Textile and (Nano)Textile Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Samples
2.3. Reagents
2.4. Microwave-Assisted Acid Digestion
2.5. Total Metal Determination by ICP-MS
3. Results
3.1. Microwave-Assisted Acid Digestion
3.2. Limit of Detection, Precision, and Analytical Recovery Assays
3.3. Metal Content in the Analysed Textiles
4. Discussion
4.1. Metals Used in the Dyeing Process
4.2. Metals Used in the Bleaching Process
4.3. Metallic NPs in the Textile Industry
4.4. Other Uses of Metals in the Textile Industry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderie, I.; Schulte, K. Chromate Testing in Leather: EN ISO 17075. In Metal Allergy. From Dermatitis to Implant and Device Failure; Chen, J.K., Thyssen, J.P., Eds.; Springer International Publishing AG: Gewerbestrasse, Switzerland, 2018; pp. 31–38. [Google Scholar]
- Zhang, J.; Chen, W. A faster and more effective chrome tanning process assisted by microwave. RSC Adv. 2020, 10, 23503–23509. [Google Scholar] [CrossRef]
- Chakraborty, J.N. Metal-complex dyes. In Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Clark, M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; Volume 1, pp. 446–463. [Google Scholar]
- Shahid, M.; Shahid-ul-Islam; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Yu, D.; Wu, M.; Lin, J. Establishment of an effective activated peroxide system for low-temperature cotton bleaching using synthesized tetramido macrocyclic iron complex. Fiber. Polym. 2017, 18, 1741–1748. [Google Scholar] [CrossRef]
- Hage, R.; de Boer, J.W.; Gaulard, F.; Maaijen, K. Chapter Three—Manganese and Iron Bleaching and Oxidation Catalysts. In Advances in Inorganic Chemistry, Homogeneous Catalysis; van Eldik, R., Hubbard, C.D., Eds.; Academic Press: Cambridge, UK, 2013; Volume 65, pp. 85–116. [Google Scholar]
- Gaan, S.; Salimova, V.; Rupper, P.; Ritter, A.; Schmid, H. Flame retardant functional textiles. In Functional Textiles for Improved Performance, Protection and Health; Pan, N., Sun, G., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 98–130. [Google Scholar]
- Schindler, W.D.; Hauser, P.J. Flame-retardant finishes. In Chemical Finishing of Textiles; Woodhead Publishing: Cambridge, UK, 2004; pp. 98–116. [Google Scholar]
- Kozłowski, R.M.; Muzyczek, M. Improving the flame retardancy of natural fibres. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Cambridge, UK, 2020; Volume 2, pp. 355–391. [Google Scholar]
- Biver, M.; Turner, A.; Filella, M. Antimony release from polyester textiles by artificial sweat solutions: A call for a standardized procedure. Regul. Toxicol. Pharmacol. 2021, 119, 104824. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R.; Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano 2016, 10, 3042–3068. [Google Scholar] [CrossRef]
- Montazer, M.; Harifi, T. Introduction: Textile finishing. In Nanofinishing of Textile Materials; Woodhead Publishing: Cambridge, UK, 2018; pp. 1–17. [Google Scholar]
- Montazer, M.; Harifi, T. Nanobleaching. In Nanofinishing of Textile Materials; Woodhead Publishing: Cambridge, UK, 2018; pp. 51–64. [Google Scholar]
- Montazer, M.; Harifi, T. Nanoscouring. In Nanofinishing of Textile Materials; Woodhead Publishing: Cambridge, UK, 2018; pp. 35–50. [Google Scholar]
- Zhu, C.; Shi, J.; Xu, S.; Ishimori, M.; Sui, J.; Morikawa, H. Design and characterization of self-cleaning cotton fabrics exploiting zinc oxide nanoparticle-triggered photocatalytic degradation. Cellulose 2017, 24, 2657–2667. [Google Scholar] [CrossRef]
- Tung, W.S.; Daoud, W.A. Self-cleaning fibers via nanotechnology: A virtual reality. J. Mater. Chem. 2011, 21, 7858–7869. [Google Scholar] [CrossRef]
- Montazer, M.; Harifi, T. Water-repellent textile nanofinishes. In Nanofinishing of Textile Materials; Woodhead Publishing: Cambridge, UK, 2018; pp. 183–195. [Google Scholar]
- Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Arregui, F.J. Nanomaterials for Functional Textiles and Fibers. Nanoscale Res. Lett. 2015, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surfaces B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Fu, F.; Liu, X. Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 2016, 23, 2791–2808. [Google Scholar] [CrossRef]
- Montazer, M.; Harifi, T. Nanofinishes for protective textiles. In Nanofinishing of Textile Materials; Woodhead Publishing: Cambridge, UK, 2018; pp. 265–294. [Google Scholar]
- EU, European Union. Regulation (EU) N° 1007/2011 of the European Parliament and of the Council of 27 September 2011 on textile fibre names and related labelling and marking of the fibre composition of textile products and repealing Council Directive 73/44/EEC and Directives 96/73/EC and 2008/121/EC of the European Parliament and of the Council. Off. J. 2013, L272, 1–64. [Google Scholar]
- EU, European Union. Regulation (EC) N° 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) N° 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. 2021, 02006R1907-20210705, 1–552. [Google Scholar]
- EU, European Union. Commission Decision of 9 July 2009 establishing the ecological criteria for the award of the Community Ecolabel for textile products. Off. J. 2009, L197, 70–86. [Google Scholar]
- Hostynek, J.J. Factors determining percutaneous metal absorption. Food Chem. Toxicol. 2003, 41, 327–345. [Google Scholar] [CrossRef]
- Larese Filon, F.; D’Agostin, F.; Crosera, M.; Adami, G.; Bovenzi, M.; Maina, G. In vitro absorption of metal powders through intact and damaged human skin. Toxicol. Vitr. 2009, 23, 574–579. [Google Scholar] [CrossRef]
- Kraeling, M.E.K.; Topping, V.D.; Keltner, Z.M.; Belgrave, K.R.; Bailey, K.D.; Gao, X.; Yourick, J.J. In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regul. Toxicol. Pharmacol. 2018, 95, 314–322. [Google Scholar] [CrossRef]
- Filon Larese, F.; D’Agostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009, 255, 33–37. [Google Scholar] [CrossRef]
- Benn, T.M.; Westerhoff, P. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ. Sci. Technol. 2008, 42, 4133–4139. [Google Scholar] [CrossRef]
- Geranio, L.; Heuberger, M.; Nowack, B. The Behavior of Silver Nanotextiles during Washing. Environ. Sci. Technol. 2009, 43, 8113–8118. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, C.; Windler, L.; von Goetz, N.; Lehmann, R.P.; Schuppler, M.; Hungerbühler, K.; Heuberger, M.; Nowack, B. Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 2012, 89, 817–824. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Rimmele, E.; Wichser, A.; Erni, R.; Height, M.; Nowack, B. Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles. ACS Nano 2014, 8, 7208–7219. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Lombi, E.; Arroyo Rojas Dasilva, Y.; Nowack, B. Unraveling the Complexity in the Aging of Nanoenhanced Textiles: A Comprehensive Sequential Study on the Effects of Sunlight and Washing on Silver Nanoparticles. Environ. Sci. Technol. 2016, 50, 5790–5799. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Arroyo Rojas Dasilva, Y.; Nowack, B. Effect of Variations of Washing Solution Chemistry on Nanomaterial Physicochemical Changes in the Laundry Cycle. Environ. Sci. Technol. 2015, 49, 9665–9673. [Google Scholar] [CrossRef]
- Gallo, J.M.; Almirall, J.R. Elemental analysis of white cotton fiber evidence using solution ICP-MS and laser ablation ICP-MS (LA-ICP-MS). Forensic Sci. Int. 2009, 190, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Doğan, M.; Soylak, M.; Elçi, L.; von Bohlen, A. Application of Total Reflection X-Ray Fluorescence Spectrometry in the Textile Industry. Mikrochim. Acta 2002, 138, 77–82. [Google Scholar] [CrossRef]
- Menezes, E.A.; Carapelli, R.; Bianchi, S.R.; Souza, S.N.P.; Matos, W.O.; Pereira-Filho, E.R.; Nogueira, A.R.A. Evaluation of the mineral profile of textile materials using inductively coupled plasma optical emission spectrometry and chemometrics. J. Hazard. Mat. 2010, 182, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Rezić, I.; Steffan, I. ICP-OES determination of metals present in textile materials. Microchem. J. 2007, 85, 46–51. [Google Scholar] [CrossRef]
- Rezić, I.; Zeiner, M.; Steffan, I. Determination of 28 selected elements in textiles by axially viewed inductively coupled plasma optical emission spectrometry. Talanta 2011, 83, 865–871. [Google Scholar] [CrossRef]
- Matoso, E.; Cadore, S. Determination of inorganic contaminants in polyamide textiles used for manufacturing sport T-shirts. Talanta 2012, 88, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Saleh, M.A. Exposure of women to trace elements through the skin by direct contact with underwear clothing. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.N. Dyeing with oxidation black. In Fundamentals and Practices in Colouration of Textiles; Woodhead Publishing India: New Delhi, India, 2010; pp. 151–158. [Google Scholar]
- Fortoul, T.I.; Rojas-Lemus, M.; Rodriguez-Lara, V.; Gonzalez-Villalva, A.; Ustarroz-Cano, M.; Cano-Gutierrez, G.; Gonzalez-Rendon, S.E.; Montaño, L.F.; Altamirano-Lozano, M. Overview of environmental and occupational vanadium exposure and associated health outcomes: An article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15–18, 2012. J. Immunotoxicol. 2014, 11, 13–18. [Google Scholar]
- Sekar, N. Acid dyes. In Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Clark, M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 486–514. [Google Scholar]
- Gürses, A.; Güneş, K.; Şahin, E. Chapter 5—Removal of dyes and pigments from industrial effluents. In Green Chemistry and Water Remediation: Research and Applications; Sharma, S.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 135–187. [Google Scholar]
- Feiz, M.; Norouzi, H. Dyeing studies of wool fibers with madder (Rubia tinctorum) and effect of different mordants and mordanting procedures on color characteristics of dyed samples. Fiber. Polym. 2014, 15, 2504–2514. [Google Scholar] [CrossRef]
- Manickam, P.; Vijay, D. Chemical hazards in textiles. In Chemical Management in Textiles and Fashion; Muthu, S.S., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 19–52. [Google Scholar]
- Burkinshaw, S.M.; Kumar, N. The mordant dyeing of wool using tannic acid and FeSO4, Part 1: Initial findings. Dye. Pigment. 2009, 80, 53–60. [Google Scholar] [CrossRef]
- Richards, A.F. Nylon fibres. In Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin; McIntyre, J.E., Ed.; Woodhead Publishing: Cambridge, UK, 2005; pp. 20–94. [Google Scholar]
- Joseph, P.; Tretsiakova-McNally, S. Chemical modification of natural and synthetic textile fibres to improve flame retardancy. In Handbook of Fire Resistant Textiles; Kilinc, F.S., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 37–67. [Google Scholar]
- Cheng, X.W.; Guan, J.P.; Yang, X.H.; Tang, R.C. Improvement of flame retardancy of silk fabric by bio-based phytic acid, nano-TiO2, and polycarboxylic acid. Prog. Org. Coat. 2017, 112, 18–26. [Google Scholar] [CrossRef]
- Montazer, M.; Harifi, T. Flame-retardant textile nanofinishes. In Nanofinishing of Textile Materials; Woodhead Publishing: Cambridge, UK, 2018; pp. 163–181. [Google Scholar]
- Sadr, F.A.; Montazer, M. In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason. Sonochem. 2014, 21, 681–691. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Guasaquillo, I.; Laub, D.; Kiwi, J. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J. Photochem. Photobiol. A Chem. 2005, 174, 156–164. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A Chem. 2005, 172, 27–34. [Google Scholar] [CrossRef]
- Rashid, M.M.; Simonĉiĉ, B.; Tomŝiĉ, B. Recent advances in TiO2-functionalized textile surfaces. Surf. Interfaces 2021, 22, 100890. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Shaheen, T.I.; Zaghloul, S.; El-Rafie, M.H.; Hebeish, A. Antibacterial Activities and UV Protection of the in Situ Synthesized Titanium Oxide Nanoparticles on Cotton Fabrics. Ind. Eng. Chem. Res. 2016, 55, 2661–2668. [Google Scholar] [CrossRef]
- Kowal, K.; Cronin, P.; Dworniczek, E.; Zeglinski, J.; Tiernan, P.; Wawrzynska, M.; Podbielska, H.; Tofail, S.A.M. Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections. RSC Adv. 2014, 4, 19945–19952. [Google Scholar] [CrossRef]
- Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10, 679–689. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Posner, S. Developments in flame retardants for interior materials and textiles. In Interior Textiles Design and Developments; Rowe, T., Ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 211–228. [Google Scholar]
- Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R. Presence of Organoarsenicals Used in Cotton Production in Agricultural Water and Soil of the Southern United States. J. Agric. Food Chem. 2002, 50, 7340–7344. [Google Scholar] [CrossRef] [PubMed]
Code | Subsamples | Type | Manufacturing | Composition |
---|---|---|---|---|
T1 | T1-1; T1-2 | Long sleeve shirt | Bangladesh | 70% Viscose, 30% Cotton; with SOLARSHIELD ZnO® (UPF Index: 40+) |
T2 | T2-1; T2-2; T2-3 | Long sleeve shirt | Bangladesh | 65% Polyester, 35% Cotton; with SOLARSHIELD ZnO® (UPF Index: 40+) |
T3 | T3-1; T3-2; T3-3 | Long sleeve shirt | Bangladesh | 65% Polyester, 35% Cotton; with SOLARSHIELD ZnO® (UPF Index: 40+) |
T4 | -- (a) | Socks | Unknown (Europe) | 80% Cotton, 13% Polyamide, 5% Silver, 2% Elastane |
T5 | -- (a) | Men’s T-shirt | Spain | 100% Polyester with silver ions |
T6 | -- (a) | Men’s cycling culotte | Romania | 82% Polyester, 18% Elastane; product treated with silver chloride (antibacterial biocide) |
T7 | -- (a) | Children’s T-shirt | Germany | 50% Cotton, 50% Cellulose (ModalSun) (UPF Index: 30) |
T8 | -- (a) | Children’s T-shirt | Germany | 46% Cotton, 46% Cellulose (ModalSun), 8% Elasthane (UPF Index: 50+) |
T9 | -- (a) | Socks | Spain | 66% Polyamide, 10% Polyamide with silver ions, 24% Elastane |
T10 | -- (a) | Headband | Czech Republic | 60% Cotton, 32% Polyester (Nanosilver®), 8% Elastane (Lycra®) |
T11 | -- (a) | Women’s underwear | Czech Republic | 52% Polyester (COOLMAX®), 48% Polyester (Nanosilver®) |
T12 | -- (a) | Men’s underwear | Czech Republic | 60% Cotton, 32% Polyester (Nanosilver®), 8% Elastane (Lycra®) |
T13 | -- (a) | Men’s undershirt | Czech Republic | 52% Polyester (COOLMAX®), 44% Polyester (Nanosilver®), 4% Elastane (Lycra®) |
T14 | T14-1; T14-2; T14-3 | Socks | Czech Republic | 49% BIO Cotton, 19% Polypropylene, 20% Polyamide, 10% Polyester (Nanosilver®), 2% Elastane (Lycra®) |
Time (min) | Temperature (°C) |
---|---|
0–2 | Room temperature–150 |
2–7 | 150 |
7–9 | 150–170 |
9–19 | 170 |
19–20 | 170–200 |
20–40 | 200 |
Operating Parameters | |
Radiofrequency power (W) | 1600 |
Plasma gas flow (L min−1) | 16 |
Auxiliary gas flow (L min−1) | 1.2 |
Nebulisation gas flow (L min−1) | 0.9–1.1 |
Collision cell gas | He |
Acquisition Parameters | |
Replicates | 3 |
Sweeps/Reading | 20 |
Dwell time per AMU (ms) | 50 (200 for As) |
Integration time (ms) | 1000 (4000 for As) |
Monitored Ions (m/z) | |
1 mL min−1 He | 7Li, 9Be, 55Mn, 63Cu, 98Mo, 107Ag, 111Cd, 138Ba, 202Hg, 208Pb |
4 mL min−1 He | 49Ti, 51V, 53Cr, 57Fe, 59Co, 60Ni, 66Zn, 75As, 118Sn, 121Sb |
Internal standards | 74Ge, 89Y, 103Rh, 115In |
LODmethod (µg g−1) | LOQmethod (µg g−1) | (Concentration)added (µg L−1) | Analytical Recovery (%) | RSD (%) | |
---|---|---|---|---|---|
Li | 0.00324 | 0.0108 | 0.25, 0.5, 1 | 90 ± 3 | 1 |
Be | 0.00128 | 0.00427 | 0.25, 0.5, 1 | 103 ± 6 | 2 |
Ti | 1.90 | 6.33 | 1, 5, 10 | 92 ± 6 | 1 |
V | 0.00322 | 0.0107 | 0.25, 0.5, 1 | 97 ± 4 | 2 |
Cr | 0.0176 | 0.0588 | 0.25, 0.5, 1 | 95 ± 6 | 3 |
Mn | 0.00236 | 0.00788 | 0.5, 1, 5 | 91 ± 5 | 1 |
Fe | 0.136 | 0.455 | 12.5, 25, 50 | 91 ± 6 | 1 |
Co | 0.00151 | 0.00505 | 0.25, 0.5, 1 | 96 ± 4 | 1 |
Ni | 0.0107 | 0.0356 | 0.25, 0.5, 1 | 97 ± 5 | 2 |
Cu | 0.00977 | 0.0326 | 5, 10, 25 | 97 ± 2 | 1 |
Zn | 0.138 | 0.459 | 1, 5, 10 | 96 ± 4 | 1 |
As | 0.0143 | 0.0476 | 0.25, 0.5, 1 | 94 ± 6 | 2 |
Mo | 0.00249 | 0.00829 | 0.25, 0.5, 1 | 99 ± 3 | 1 |
Ag | 0.0119 | 0.0397 | 25, 50 | 106 ± 4 | 1 |
Cd | 0.00383 | 0.0128 | 0.25, 0.5, 1 | 101 ± 3 | 1 |
Sn | 0.0101 | 0.0335 | 1, 5, 10 | 104 ± 4 | 1 |
Sb | 0.0134 | 0.0447 | 10, 25, 50 | 95 ± 3 | 3 |
Ba | 0.00567 | 0.0189 | 1, 5, 10 | 101 ± 4 | 1 |
Hg | 0.0240 | 0.0800 | 1, 5, 10 | 107 ± 6 | 2 |
Pb | 0.00479 | 0.0160 | 0.25, 0.5, 1 | 99 ± 2 | 1 |
Sample Code | Li | Be | Ti | V | Cr | Mn | ||||||
T1-1 | 0.699 ± 0.114 | <LOQ | <LOD | 0.0687 ± 0.00612 | <LOQ | 5.82 ± 0.143 | ||||||
T1-2 | <LOD | <LOQ | 156 ± 11.8 | 0.0613 ± 0.00897 | 0.272 ± 0.0206 | 4.25 ± 0.106 | ||||||
T2-1 | <LOD | 0.0112 ± 0.000754 | <LOD | <LOD | 0.189 ± 0.0193 | 4.00 ± 0.216 | ||||||
T2-2 | <LOD | <LOD | 1020 ± 9.127 | 0.0859 ± 0.0136 | 0.156 ± 0.00830 | 1.56 ± 0.0612 | ||||||
T2-3 | <LOD | 0.00789 ± 0.00128 | 1085 ± 16.01 | 0.0609 ± 0.00913 | 0.528 ± 0.000931 | 6.17 ± 0.634 | ||||||
T3-1 | <LOD | 0.0108 ± 0.000574 | <LOD | 0.0491 ± 0.00500 | 0.369 ± 0.0600 | 7.20 ± 0.0225 | ||||||
T3-2 | <LOD | <LOD | 1154 ± 57.01 | 0.0518 ± 0.00281 | 0.363 ± 0.0229 | 3.02 ± 0.0876 | ||||||
T3-3 | 0.422 ± 0.0842 | 0.0237 ± 0.00400 | 1262 ± 24.85 | 0.0366 ± 0.00356 | 0.369 ± 0.0266 | 5.24 ± 0.300 | ||||||
T4 | <LOD | <LOD | 567 ± 31.1 | 0.123 ± 0.0167 | 1.03 ± 0.00260 | 25.0 ± 1.10 | ||||||
T5 | <LOD | <LOD | 1706 ± 5.244 | 0.0603 ± 0.00956 | 0.451 ± 0.0507 | 0.243 ± 0.0323 | ||||||
T6 | <LOD | 0.0101 ± 0.000414 | 6223 ± 12.07 | 0.256 ± 0.0294 | 1.03 ± 0.0983 | 85.1 ± 3.76 | ||||||
T7 | <LOD | <LOD | 2590 ± 20.28 | <LOD | 0.318 ± 0.0154 | 0.171 ± 0.0269 | ||||||
T8 | <LOD | <LOD | 2949 ± 67.23 | 0.0525 ± 0.000177 | 0.359 ± 0.0165 | 0.187 ± 0.0112 | ||||||
T9 | <LOD | <LOQ | 2946 ± 50.77 | 0.143 ± 0.0000797 | 974 ± 6.01 | 1.93 ± 0.0188 | ||||||
T10 | 0.109 ± 0.0122 | <LOD | 464 ± 4.31 | 0.0325 ± 0.00263 | 0.995 ± 0.0323 | 0.726 ± 0.0336 | ||||||
T11 | 0.186 ± 0.0255 | <LOQ | 1501 ± 24.28 | 0.0160 ± 0.00161 | 0.469 ± 0.0357 | 0.186 ± 0.0207 | ||||||
T12 | 0.628 ± 0.102 | 0.0164 ± 0.000190 | 781 ± 11.6 | 0.0574 ± 0.0102 | 0.480 ± 0.0266 | 0.451 ± 0.0608 | ||||||
T13 | 0.401 ± 0.0851 | <LOD | 2018 ± 57.69 | 0.0452 ± 0.00349 | 0.698 ± 0.0568 | 2.97 ± 0.0231 | ||||||
T14-1 | 0.344 ± 0.0352 | 0.0235 ± 0.00459 | 887 ± 4.74 | 0.0471 ± 0.00227 | 0.358 ± 0.0233 | 3.97 ± 0.0658 | ||||||
T14-2 | 0.263 ± 0.0618 | 0.0250 ± 0.000731 | 937 ± 10.1 | 0.0427 ± 0.00368 | 0.253 ± 0.0214 | 3.90 ± 0.00414 | ||||||
T14-3 | 0.425 ± 0.0651 | 0.0202 ± 0.000320 | 426 ± 14.8 | 0.0486 ± 0.00737 | 0.206 ± 0.0104 | 0.823 ± 0.00837 | ||||||
Sample Code | Fe | Co | Ni | Cu | Zn | As | Mo | |||||
T1-1 | 28.8 ± 1.49 | 0.0521 ± 0.00355 | 0.341 ± 0.0456 | 0.970 ± 0.00471 | 835 ± 27.3 | <LOD | 0.441 ± 0.0848 | |||||
T1-2 | 30.7 ± 2.24 | 0.532 ± 0.00365 | 0.202 ± 0.0159 | 0.832 ± 0.0381 | 741 ± 12.7 | <LOD | <LOD | |||||
T2-1 | 28.5 ± 0.0131 | 0.0143 ± 0.00143 | 0.265 ± 0.0147 | 0.818 ± 0.0470 | 458 ± 5.59 | <LOQ | 0.332 ± 0.0282 | |||||
T2-2 | 27.7 ± 3.56 | 0.0572 ± 0.00801 | 0.142 ± 0.0224 | 2.75 ± 0.539 | 280 ± 0.591 | <LOD | <LOD | |||||
T2-3 | 30.8 ± 3.91 | 0.496 ±0.0400 | 0.152 ± 0.0107 | 0.870 ± 0.106 | 518 ± 24.4 | 0.143 ± 0.0159 | <LOD | |||||
T3-1 | 20.6 ± 1.38 | 0.0615 ± 0.00735 | 0.321 ± 0.0534 | 1.15 ± 0.127 | 873 ± 1.54 | <LOD | 0.306 ± 0.00300 | |||||
T3-2 | 18.4 ± 0.0570 | 0.0825 ± 0.00596 | <LOQ | 15.6 ± 0.953 | 556 ± 5.06 | 0.0556 ± 0.0103 | 0.454 ± 0.0888 | |||||
T3-3 | 31.7 ± 3.21 | 0.246 ± 0.0225 | 0.262 ± 0.0173 | 15.6 ± 0.619 | 713 ± 0.763 | 0.162 ± 0.00802 | 0.428 ± 0.0832 | |||||
T4 | 57.1 ± 3.67 | <LOD | 0.334 ± 0.0454 | 41.1 ± 1.47 | 5.19 ± 0.368 | 15.8 ± 0.920 | 0.564 ± 0.0365 | |||||
T5 | 15.3 ± 2.14 | 0.0583 ± 0.00152 | <LOQ | 0.373 ± 0.0375 | 1.01 ± 0.0974 | <LOD | <LOQ | |||||
T6 | 27.8 ± 2.95 | ND | 0.262 ± 0.000818 | 0.747 ± 0.0609 | 5.68 ± 0.931 | <LOD | <LOD | |||||
T7 | 5.20 ± 0.0757 | 0.00561 ±0.0000629 | <LOQ | 0.474 ± 0.00851 | <LOD | <LOD | <LOD | |||||
T8 | 8.58 ± 0.23 | <LOQ | 0.166 ± 0.0246 | 2.46 ± 0.0794 | ND | <LOD | 0.257 ± 0.0516 | |||||
T9 | 17.4 ± 2.36 | 0.127 ± 0.0129 | 0.179 ± 0.00262 | 1.61 ± 0.0418 | 5.45 ± 0.0912 | <LOD | <LOD | |||||
T10 | 11.7 ± 0.0844 | 0.0846 ± 0.00339 | <LOD | 0.547 ± 0.0439 | 0.668 ± 0.00414 | <LOD | 0.223 ± 0.0205 | |||||
T11 | 7.85 ± 1.12 | 3.21 ± 0.0895 | 0.0383 ± 0.000555 | 0.361 ± 0.0392 | 1.65 ± 0.0297 | 0.250 ± 0.00116 | 0.558 ± 0.0749 | |||||
T12 | 25.6 ± 2.54 | 0.0275 ± 0.00144 | 0.151 ± 0.0252 | 0.415 ± 0.0256 | <LOD | <LOD | 0.0782 ± 0.0141 | |||||
T13 | 18.7 ± 3.17 | 0.989 ± 0.0127 | 0.142 ± 0.00306 | 0.475 ± 0.0571 | <LOD | <LOQ | 0.266 ± 0.0224 | |||||
T14-1 | 10.4 ± 0.371 | 0.0309 ± 0.00266 | <LOD | 0.559 ± 0.00213 | 1.73 ± 0.198 | 0.159 ± 0.0219 | 0.136 ± 0.0160 | |||||
T14-2 | 14.2 ± 2.64 | 0.0328 ± 0.00407 | <LOD | 0.441 ± 0.0386 | 1.62 ± 0.0920 | <LOD | <LOD | |||||
T14-3 | 11.9 ± 0.462 | 0.0233 ± 0.00183 | <LOD | 5.39 ± 0.146 | 0.819 ± 0.124 | 0.250 ± 0.0133 | <LOD | |||||
Sample Code | Ag | Cd | Sn | Sb | Ba | Hg | Pb | |||||
T1-1 | 0.960 ± 0.154 | 0.301 ± 0.0120 | <LOQ | 0.649 ± 0.0181 | 3.20 ± 0.350 | <LOD | 1.04 ± 0.0584 | |||||
T1-2 | <LOD | 0.276 ± 0.0130 | <LOQ | 22.0 ± 0.619 | 12.2 ± 0.498 | 0.375 ± 0.0462 | 1.20 ± 0.179 | |||||
T2-1 | 0.959 ± 0.0906 | 0.189 ± 0.00272 | <LOQ | 0.463 ± 0.00564 | 5.90 ± 0.327 | <LOQ | 0.618 ± 0.0273 | |||||
T2-2 | <LOD | 0.120 ± 0.00787 | <LOQ | 118 ± 1.61 | 1.28 ± 0.119 | <LOD | 0.552 ± 0.0490 | |||||
T2-3 | ND | 0.244 ± 0.0260 | 0.162 ± 0.00119 | 133 ± 2.86 | 53.9 ± 4.82 | <LOD | 0.971 ± 0.0747 | |||||
T3-1 | <LOD | 0.319 ± 0.00241 | <LOQ | 0.301 ± 0.0261 | 6.53 ± 0.334 | <LOQ | 0.888 ± 0.0415 | |||||
T3-2 | <LOD | 0.186 ± 0.0104 | 0.0568 ± 0.00345 | 139 ± 4.86 | 1.92 ± 0.00587 | <LOD | 0.967 ± 0.0853 | |||||
T3-3 | <LOD | 0.247 ± 0.00951 | 0.199 ± 0.0242 | 148 ± 1.70 | 6.45 ± 0.143 | <LOD | 1.39 ± 0.0751 | |||||
T4 | 7.48 ± 0.235 | <LOD | 5.34 ± 0.199 | 8.12 ± 0.557 | 5.47 ± 0.698 | <LOD | <LOD | |||||
T5 | 31.2 ± 1.64 | 0.103 ± 0.00833 | 0.105 ± 0.00907 | 109 ± 0.458 | 1.15 ± 0.149 | 0.0818 ± 0.00544 | <LOD | |||||
T6 | 0.489 ± 0.0236 | <LOQ | 0.179 ± 0.0185 | 218 ± 15.9 | ND | 0.157 ± 0.00597 | ND | |||||
T7 | <LOD | <LOD | 0.125 ± 0.000988 | <LOD | ND | <LOD | <LOD | |||||
T8 | <LOD | <LOD | 0.255 ± 0.0482 | <LOD | 2.02 ± 0.357 | <LOD | 0.184 ± 0.0140 | |||||
T9 | 5.83 ± 0.0668 | <LOQ | 1.26 ± 0.0630 | 16.1 ± 0.288 | <LOD | <LOD | <LOD | |||||
T10 | 1.52 ± 0.0665 | <LOQ | 0.104 ± 0.00110 | 63.5 ± 0.961 | <LOD | <LOD | <LOD | |||||
T11 | 0.436 ± 0.0260 | <LOD | 0.0556 ± 0.00472 | 143 ± 1.43 | 4.50 ± 0.511 | <LOQ | 0.657 ± 0.0237 | |||||
T12 | 1.20 ± 0.171 | <LOQ | 0.0571 ± 0.00882 | 67.3 ± 2.80 | ND | <LOQ | <LOD | |||||
T13 | 8.31 ± 0.137 | <LOQ | 0.0680 ± 0.00948 | 130 ± 0.935 | 0.758 ± 0.117 | <LOD | <LOD | |||||
T14-1 | 6.40 ± 0.466 | <LOD | 0.136 ± 0.00799 | 33.7 ± 0.300 | 4.65 ± 0.766 | <LOD | 0.489 ± 0.0647 | |||||
T14-2 | 6.02 ± 0.929 | <LOD | 0.133 ± 0.00236 | 34.3 ± 0.573 | 0.816 ± 0.142 | <LOD | 0.165 ± 0.0138 | |||||
T14-3 | 3.47 ± 0.138 | <LOQ | 0.0760 ± 0.00782 | 15.3 ± 0.313 | 4.29 ± 0.568 | <LOD | <LOD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rujido-Santos, I.; Herbello-Hermelo, P.; Barciela-Alonso, M.C.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Metal Content in Textile and (Nano)Textile Products. Int. J. Environ. Res. Public Health 2022, 19, 944. https://doi.org/10.3390/ijerph19020944
Rujido-Santos I, Herbello-Hermelo P, Barciela-Alonso MC, Bermejo-Barrera P, Moreda-Piñeiro A. Metal Content in Textile and (Nano)Textile Products. International Journal of Environmental Research and Public Health. 2022; 19(2):944. https://doi.org/10.3390/ijerph19020944
Chicago/Turabian StyleRujido-Santos, Iria, Paloma Herbello-Hermelo, María Carmen Barciela-Alonso, Pilar Bermejo-Barrera, and Antonio Moreda-Piñeiro. 2022. "Metal Content in Textile and (Nano)Textile Products" International Journal of Environmental Research and Public Health 19, no. 2: 944. https://doi.org/10.3390/ijerph19020944