Determinants of Nutrition Facts Table Use by Chinese Consumers for Nutritional Value Comparisons
Abstract
:1. Introduction
2. Methods and Materials
2.1. Methods
2.2. Data Collection Data
3. Results
3.1. Sample Characteristics
3.2. Chi-Square Test Result
3.3. CHAID Algorithm Analysis
4. Discussion
5. Conclusions
6. Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius Commission. Codex Guidelines on Nutrition Labeling; CACGL 2-1985; Codex Alimentarius Commission: Roman, Italy, 1985. [Google Scholar]
- World Health Organization. Global Strategy on Diet, Physical Activity and Health; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Ministry of Health (MoH), PRC. General Rules for Nutrition Labeling of Pre-Packaged Food; GB28050-2011; Ministry of Health (MoH), PRC: Beijing, China, 2011.
- He, Y.; Huang, L.; Yan, S.; Li, Y.; Lu, L.; Wang, H.; Niu, W.; Zhang, P. Awareness, understanding and use of sodium information labelled on pre-packaged food in Beijing: A cross-sectional study. BMC Public Health 2018, 18, 509. [Google Scholar] [CrossRef] [Green Version]
- Chinese Nutrition Society. Scientific Research Report of Dietary Guidelines for Chinese Residents. 2021. Available online: http://dg.cnsoc.org/upload/affix/20210301174345895.pdf (accessed on 21 March 2021).
- Cha, E.; Kim, K.H.; Lerner, H.M.; Dawkins, C.R.; Bello, M.K.; Umpierrez, G.; Dunbar, S.B. Health literacy, self-efficacy, food label use, and diet in young adults. Am. J. Health Behav. 2014, 38, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Huang, J.; Chen, Y.; Zhu, Y.; Li, H.; Wen, Y.; Yuan, H.; Liang, Y. The understanding, attitude and use of nutrition label among consumers (China). Nutrición Hospitalaria 2015, 31, 2703–2710. [Google Scholar]
- Liu, R.; Hoefkens, C.; Verbeke, W. Chinese consumers’ understanding and use of a food nutrition label and their determinants. Food Qual. Prefer. 2015, 41, 103–111. [Google Scholar] [CrossRef]
- Cheong, S.M.; Jasvindar, K.; Lim, K.H.; Ho, B.K.; Mohmad, S. Use and understanding of nutritional labeling among elderly men and women in Malaysia. Malays. J. Nutr. 2013, 19, 353–362. [Google Scholar]
- Nianogo, R.A.; Kuo, T.; Smith, L.V.; Arah, O.A. Associations between self-perception of weight, food choice intentions, and consumer response to calorie information: A retrospective investigation of public health center clients in Los Angeles County before the implementation of menu-labeling regulation. BMC Public Health 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kass, G.V. An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 1980, 29, 119–127. [Google Scholar] [CrossRef]
- Murphy, E.L.; Comiskey, C.M. Using chi-squared automatic interaction detection (CHAID) modelling to identify groups of methadone treatment clients experiencing significantly poorer treatment outcomes. J. Subst. Abuse Treat. 2013, 45, 343–349. [Google Scholar] [CrossRef]
- Sasaki, N.; Groenewoud, S.; Kunisawa, S.; Westert, G.; Imanaka, Y. Public needs for information disclosure on healthcare performance: Different determinants between Japan and the Netherlands. Medicine 2019, 98, e17690. [Google Scholar] [CrossRef]
- Michael, J.A.; Gordon, S.L. Data Mining Technique: For Marketing, Sales and Customer Support; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Galguera, L.; Luna, D.; Méndez, M.P. Predictive segmentation in action: Using CHAID to segment loyalty card holders. Int. J. Market Res. 2006, 48, 459–479. [Google Scholar] [CrossRef]
- Ho, S.H.; Jee, S.E.; Lee, J.E.; Park, J.S. Analysis on risk factors for cervical cancer using induction technique. Expert Syst. Appl. 2004, 27, 97–105. [Google Scholar] [CrossRef]
- Ture, M.; Tokatli, F.; Kurt, I. Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Syst. Appl. 2009, 36, 2017–2026. [Google Scholar]
- Webb, D. Dressing up salads in fancy flavors: Label reading required. Env. Nutri. 1999, 22, 5. [Google Scholar]
- Gupta, K.; Dharni, K. Use and influence of nutrition labeling: An emerging market experience. Nutr. Food Sci. 2016, 46, 441–456. [Google Scholar] [CrossRef]
- Govindasamy, R.; Italia, J. The influence of consumer demographic characteristics on nutritional label usage. J. Food Prod. Mark. 2000, 5, 55–68. [Google Scholar] [CrossRef]
- McLean-Meyinsse, P.E. An analysis of nutritional label use in the southern united states. J. Food Distr. Res. 2001, 3, 110–114. [Google Scholar]
- Krešić, G.; Mrduljaš, N. The relationship between knowledge and the use of nutrition information on food package. Acta Aliment. 2016, 45, 36–44. [Google Scholar]
- Department of Disease Control, Ministry of Health, PRC. Guidelines for the Prevention and Control of Overweight and Obesity in Chinese Adults; People’s Medical Publishing House: Beijing, China, 2006.
- Zhang, Y.; Chen, J.T.; Wang, S.; Andrews, J.C.; Levy, A. How do consumers use nutrition labels on food products in the United States? Top. Clin. Nutr. 2017, 32, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Christoph, M.J.; An, R.; Ellison, B. Correlates of nutrition label use among college students and young adults: A review. Public Health Nutri. 2015, 19, 2135–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, R.; Papadaki, A. Nutrition label use mediates the positive relationship between nutrition knowledge and attitudes towards healthy eating with dietary quality among university students in the UK. Appetite 2014, 83, 297–303. [Google Scholar] [CrossRef]
- Frieden, T.R.; Dietz, W.; Collins, J. Reducing childhood obesity through policy change: Acting now to prevent obesity. Health Aff. 2010, 29, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Hobin, E.; Shen-Tu, G.; Sacco, J.; White, C.; Bowman, C.; Sheeshka, J.; Hammond, D. Comprehension and use of nutrition facts tables among adolescents and young adults in Canada. Can. J. Diet. Pract. Res. 2016, 77, 59–65. [Google Scholar] [CrossRef]
- Sun, P.; Huang, H.; Chu, F. Factors instead of demographic characteristics related to nutrition label use. Brit. Food J. 2015, 117, 3024–3038. [Google Scholar] [CrossRef]
- Rose, T.M.; Unni, E.J.; Jones, G.J. Factors influencing nutrition label reading behavior in individuals with selected chronic diseases. Am. J. Health Educ. 2018, 49, 296–304. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents; People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- Yee, N.S.; Shao, Q.; Uraipong, C.; Shoji, M.; Lee, N.A. Comprehensive survey of allergen labeling on pre-packaged food products imported from Mainland China. Food Control. 2020, 123, 107749. [Google Scholar] [CrossRef]
- Wang, O.; Somogyi, S. Consumer adoption of online food shopping in China. Brit. Food J. 2018, 120, 2868–2884. [Google Scholar] [CrossRef]
- Hess, S.; Yanes, M.; Jourdan, P.; Edelstein, S. Trans fat knowledge is related to education level and nutrition facts label use in health-conscious adults. Top. Clin. Nutr. 2005, 20, 109–117. [Google Scholar] [CrossRef]
- Kaplan, G.; Baron-Epel, O. What lies behind the subjective evaluation of health status? Soc. Sci. Med. 2003, 56, 1669–1676. [Google Scholar] [CrossRef]
- Allison, D.B.; Gadbury, G.; Schwartz, L.G.; Murugesan, R.; Kraker, J.L.; Heshka, S.; Fontaine, K.R.; Heymsfield, S.B. A novel soy-based meal replacement formula for weight loss among obese individuals: A randomized controlled clinical trial. Eur. J. Clin. Nutr. 2003, 57, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.K.; Titchenal, C.A.; Stewart, M.L.; Dobbs, J. Can you trust nutrition facts from meat-alternative food products? J. Am. Diet Assoc. 2011, 111, 46. [Google Scholar] [CrossRef]
- Lucas, P. Bayesian analysis, pattern analysis, and data mining in health care. Curr. Opin. Crit. Care 2004, 10, 399–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Definition | Samples | Percentage% | References |
---|---|---|---|---|
Comparison of nutritional value | No | 914 | 60.93 | Webb [18] |
Yes | 586 | 39.07 | ||
Gender | Male | 629 | 41.93 | Gupta & Dharni [19] |
Female | 817 | 58.07 | ||
Age | 17 years old or below | 300 | 20.00 | Govindasamy & Italia [20] |
18–44 years old | 1002 | 66.80 | ||
45–59 years old | 189 | 12.60 | ||
60 years old or above | 9 | 0.60 | ||
Marriage | Unmarried | 693 | 46.20 | McLean-Meyinsse [21] |
Married | 807 | 53.80 | ||
Education | Primary school or below | 3 | 0.20 | Krešić & Mrduljaš [22] |
Junior school | 36 | 42.40 | ||
Senior school | 373 | 34.87 | ||
Junior college or undergraduate | 992 | 18.13 | ||
Postgraduate or above | 96 | 4.40 | ||
BMI a | Underweight (<18.5) | 275 | 18.33 | Department of Disease Control, Ministry of Health, PRC [23] |
Normal (18.5–23.9) | 939 | 62.60 | ||
Overweight (24–28) | 211 | 14.07 | ||
Obese (>28) | 75 | 0.05 | ||
Annual household incomeafter-tax (Yuan) b | <10,000 | 127 | 8.47 | McLean-Meyinsse [21] |
10,000–49,999 | 319 | 21.27 | ||
50,000–99,999 | 315 | 21.00 | ||
100,000–149,999 | 299 | 19.92 | ||
150,000–199,999 | 226 | 15.07 | ||
≥200,000 | 214 | 14.27 | ||
Live in urban areas | No | 450 | 30 | Govindasamy & Italia [20] |
Yes | 1050 | 70 | ||
Health self-rating | Very poor | 5 | 0.34 | Zhang et al., [24] |
Poor | 23 | 1.53 | ||
General | 317 | 21.13 | ||
Good | 772 | 51.47 | ||
Very good | 383 | 25.53 | ||
Nutrition knowledge level c | Low | 106 | 7.07 | Christoph et al., [25] |
Medium | 970 | 64.67 | ||
High | 397 | 26.47 | ||
Very high | 27 | 1.80 | ||
Whether to focus on an individual healthy diet | No | 124 | 8.27 | Cooke & Papadak [26] |
Yes | 1376 | 91.73 | ||
Whether to have limited foods to prevent obesity | No | 1069 | 71.27 | Frieden et al., [27] |
Yes | 431 | 28.73 | ||
Comprehension of nutrition facts table | Very low | 40 | 2.67 | Hobin et al., [28] |
Low | 144 | 9.60 | ||
General | 925 | 61.67 | ||
High | 314 | 20.93 | ||
Very high | 77 | 5.13 | ||
Whether nutrition facts table is helpful in healthy food choice | No | 66 | 4.40 | Sun et al., [29] |
Yes | 1434 | 95.60 | ||
Whether friends and relatives use the nutrition facts table | No | 1194 | 79.60 | Rose et al., [30] |
Yes | 306 | 20.40 |
Yes = 1 [n (%)] | No = 0 [n (%)] | Chi-Square | p-Value | |
---|---|---|---|---|
Male (n = 629) | 237 (37.68) | 392 (62.32) | 0.876 | 0.349 |
Female (n = 871) | 349 (40.07) | 522 (59.93) | ||
≤17 years old (n = 300) | 226 (75.33) | 74 (24.67) | 5.842 | 0.120 |
18–44 years old (n = 1002) | 280 (27.94) | 722 (72.06) | ||
45–59 years old (n = 189) | 79 (41.80) | 110 (58.20) | ||
≥60 years old (n = 9) | 1 (11.11) | 8 (88.89) | ||
Unmarried (n = 693) | 257 (37.09) | 436 (62.91) | 2.125 | 0.145 |
Married (n = 807) | 329 (40.77) | 478 (59.23) | ||
Primary school or below (n = 3) | 0 (0) | 3 (100) | 15.081 | 0.005 |
Junior school (n = 36) | 5 (13.89) | 31 (86.11) | ||
Senior school (n = 373) | 31 (8.31) | 342 (91.69) | ||
Junior college or undergraduate (n = 992) | 527 (53.12) | 465 (46.88) | ||
Postgraduate or above (n = 96) | 23 (23.96) | 73 (76.04) | ||
Underweight (n = 275) | 93 (33.82) | 182 (66.18) | 8.176 | 0.043 |
Normal (n = 939) | 392 (41.75) | 547 (58.25) | ||
Overweight (n = 211) | 77 (36.49) | 134 (63.51) | ||
Obese (n = 75) | 24 (32.00) | 51 (68.00) | ||
Annual household income after tax | ||||
<10,000 Yuan (n = 127) | 29 (22.83) | 98 (77.17) | 6.389 | 0.270 |
10,000–49,999 Yuan (n = 319) | 92 (28.84) | 227 (71.16) | ||
50,000–99,999 Yuan (n = 315) | 109 (34.60) | 206 (65.40) | ||
100,000–149,999 Yuan (n = 299) | 117 (39.13) | 182 (60.87) | ||
150,000–199,999 Yuan (n = 226) | 147 (65.04) | 79 (34.96) | ||
≥200,000 Yuan (n = 214) | 92 (42.99) | 122 (57.01) | ||
Live in rural areas (n = 450) | 170 (20.44) | 280 (79.56) | 0.449 | 0.503 |
Live in urban areas (n = 1050) | 416 (28.44) | 634 (71.56) | ||
Health self-rating | ||||
Very poor (n = 5) | 1 (20.00) | 4 (80.00) | 38.780 | 0.000 |
Poor (n = 23) | 4 (17.39) | 19 (82.61) | ||
Average (n = 317) | 93 (29.34) | 224 (70.66) | ||
Good (n = 772) | 295 (38.21) | 477 (61.79) | ||
Very good (n = 383) | 193 (50.39) | 190 (49.61) | ||
Nutrition knowledge level | ||||
Low (n = 106) | 31 (29.25) | 75 (70.75) | 64.342 | 0.000 |
Medium (n = 970) | 324 (33.40) | 646 (66.60) | ||
High (n = 397) | 211 (53.15) | 186 (46.85) | ||
Very high (n = 27) | 20 (74.07) | 7 (25.93) | ||
Whether to focus on an individual healthy diet | ||||
No (n = 124) | 103 (83.06) | 21 (16.94) | 27.813 | 0.000 |
Yes (n = 1376) | 811 (58.94) | 565 (41.06) | ||
Whether to have limited foods to prevent obesity | ||||
No (n = 1069) | 696 (65.11) | 373 (34.89) | 27.232 | 0.000 |
Yes (n = 431) | 218 (50.58) | 213 (49.42) | ||
Comprehension of nutrition facts table | ||||
Very low (n = 40) | 34 (85.00) | 6 (15.00) | 238.093 | 0.000 |
Low (n = 144) | 127 (88.19) | 17 (11.81) | ||
Average (n = 925) | 636 (68.76) | 289 (31.24) | ||
High (n = 314) | 89 (28.34) | 225 (71.66) | ||
Very high (n = 77) | 28 (36.36) | 49 (63.64) | ||
Whether nutrition facts table is helpful in healthy food choice | ||||
No (n = 66) | 51 (77.27) | 15 (22.73) | 7.743 | 0.005 |
Yes (n = 1434) | 863 (60.18) | 571 (39.82) | ||
Whether friends and relatives usenutrition facts table | ||||
No (n = 1194) | 804 (67.34) | 390 (32.66) | 100.816 | 0.000 |
Yes (n = 306) | 110 (35.95) | 196 (64.05) |
Model | Model Attributes | Details |
---|---|---|
Initial model before CHAID algorithm use | Independent variables to be selected | Education |
BMI | ||
Health self-rating | ||
Nutrition knowledge level | ||
Whether to focus on an individual healthy diet | ||
Whether to have limited foods to prevent obesity | ||
Comprehension of nutrition facts table | ||
Whether nutrition facts table is helpful in healthy food choice | ||
Whether friends and relatives use nutrition facts table | ||
Maximum tree depth | 3 | |
Minimum cases in the parent node | 119 | |
Minimum cases in the child node | 8 | |
Outcomes | Independent variables selected | Nutrition knowledge level Whether to focus on an individual healthy diet Comprehension of nutrition facts table Whether friends and relatives use the nutrition facts table |
Number of nodes | 12 | |
Number of terminal nodes | 7 | |
Depth | 3 |
Terminal Nodes | Comparison of Nutritional Value | Chi-Square | p-Value | ||
---|---|---|---|---|---|
Yes | No | Total | |||
Very low or low level of comprehension of nutrition facts table | 23 (1.53) | 161 (10.73) | 184 | 236.288 | 0.000 |
Friends and relatives use the nutrition facts table | 53 (3.53) | 66 (4.40) | 119 | 11.236 | 0.001 |
Focus on an individual healthy diet | 228 (15.20) | 516 (34.40) | 744 | 8.700 | 0.003 |
Not focus on an individual healthy diet | 8 (0.53) | 54 (3.60) | 62 | 8.700 | 0.003 |
Very high or high level of nutrition knowledge | 129 (8.60) | 30 (2.00) | 159 | 15.619 | 0.001 |
Friends and relatives use the nutrition facts table | 76 (5.07) | 24 (1.60) | 100 | 13.667 | 0.000 |
Friends and relatives do not use the nutrition facts table | 69 (4.60) | 63 (4.20) | 132 | 13.667 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Li, H.; Huang, J. Determinants of Nutrition Facts Table Use by Chinese Consumers for Nutritional Value Comparisons. Int. J. Environ. Res. Public Health 2022, 19, 673. https://doi.org/10.3390/ijerph19020673
Huang Z, Li H, Huang J. Determinants of Nutrition Facts Table Use by Chinese Consumers for Nutritional Value Comparisons. International Journal of Environmental Research and Public Health. 2022; 19(2):673. https://doi.org/10.3390/ijerph19020673
Chicago/Turabian StyleHuang, Zeying, Haijun Li, and Jiazhang Huang. 2022. "Determinants of Nutrition Facts Table Use by Chinese Consumers for Nutritional Value Comparisons" International Journal of Environmental Research and Public Health 19, no. 2: 673. https://doi.org/10.3390/ijerph19020673