Nontyphoidal Salmonella Infection Associated with Subsequent Risk of Hematological Malignancies: A Nationwide Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design and Population
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Strength and Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asgari, M.M.; Kiviat, N.B.; Critchlow, C.W.; Stern, J.E.; Argenyi, Z.B.; Raugi, G.J.; Berg, D.; Odland, P.B.; Hawes, S.E.; de Villiers, E.M. Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J. Investig. Dermatol. 2008, 128, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Hasche, D.; Stephan, S.; Braspenning-Wesch, I.; Mikulec, J.; Niebler, M.; Gröne, H.J.; Flechtenmacher, C.; Akgül, B.; Rösl, F.; Vinzón, S.E. The interplay of UV and cutaneous papillomavirus infection in skin cancer development. PLoS Pathog. 2017, 13, e1006723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacqueline, C.; Tasiemski, A.; Sorci, G.; Ujvari, B.; Maachi, F.; Missé, D.; Renaud, F.; Ewald, P.; Thomas, F.; Roche, B. Infections and cancer: The “fifty shades of immunity” hypothesis. BMC Cancer 2017, 17, 257. [Google Scholar] [CrossRef] [Green Version]
- Berger, H.; Marques, M.S.; Zietlow, R.; Meyer, T.F.; Machado, J.C.; Figueiredo, C. Gastric cancer pathogenesis. Helicobacter 2016, 21 (Suppl. S1), 34–38. [Google Scholar] [CrossRef]
- Scanu, T.; Spaapen, R.M.; Bakker, J.M.; Pratap, C.B.; Wu, L.E.; Hofland, I.; Broeks, A.; Shukla, V.K.; Kumar, M.; Janssen, H.; et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 2015, 17, 763–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnaire, A.; Nadel, B.; Raoult, D.; Neefjes, J.; Gorvel, J.P. Collateral damage: Insights into bacterial mechanisms that predispose host cells to cancer. Nat. Rev. Microbiol. 2017, 15, 109–128. [Google Scholar] [CrossRef]
- Rochford, R.; Moormann, A.M. Burkitt’s lymphoma. Curr. Top. Microbiol. Immunol. 2015, 390, 267–285. [Google Scholar] [CrossRef]
- Cook, L.; Melamed, A.; Yaguchi, H.; Bangham, C.R. The impact of HTLV-1 on the cellular genome. Curr. Opin. Virol. 2017, 26, 125–131. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Typhoid Fever and Paratyphoid Fever. Available online: https://www.cdc.gov/typhoid-fever/health-professional.html (accessed on 25 August 2022).
- Centers for Disease Control and Prevention. Salmonella. Available online: https://www.cdc.gov/salmonella/general/technical.html#one (accessed on 25 August 2022).
- Chen, P.L.; Li, C.Y.; Hsieh, T.H.; Chang, C.M.; Lee, H.C.; Lee, N.Y.; Wu, C.J.; Lee, C.C.; Shih, H.I.; Ko, W.C. Epidemiology, disease spectrum and economic burden of non-typhoidal Salmonella infections in Taiwan, 2006–2008. Epidemiol. Infect. 2012, 140, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Wu, S.; Zhang, Y.G.; Xia, Y.; Liu, X.; Zheng, Y.; Chen, H.; Schaefer, K.L.; Zhou, Z.; Bissonnette, M.; et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 2014, 3, e105. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Schaapveld, M.; Kramers, J.; Mooij, S.; Neefjes-Borst, E.A.; Pelt, W.V.; Neefjes, J. Increased colon cancer risk after severe Salmonella infection. PLoS ONE 2018, 13, e0189721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, P.; Barreto, S.G.; Sahoo, B.; Chandrani, P.; Ramadwar, M.R.; Shrikhande, S.V.; Dutt, A. Non-typhoidal Salmonella DNA traces in gallbladder cancer. Infect. Agents Cancer 2016, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.; Wei, J.C.; Lin, M.C.; Hung, Y.M. The potential role of nontyphoidal salmonellosis in gastric cancer: A nationwide matched cohort study. Gastric Cancer 2021, 24, 292–301. [Google Scholar] [CrossRef]
- Darwin, K.H.; Miller, V.L. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 1999, 12, 405–428. [Google Scholar] [CrossRef] [Green Version]
- Stapels, D.A.C.; Hill, P.W.S.; Westermann, A.J.; Fisher, R.A.; Thurston, T.L.; Saliba, A.E.; Blommestein, I.; Vogel, J.; Helaine, S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 2018, 362, 1156–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehler, C.I.; Mues, M.B.; Dienes, H.P.; Kriegsmann, J.; Schirmacher, P.; Odenthal, M. Helicobacter pylori genotyping in gastric adenocarcinoma and MALT lymphoma by multiplex PCR analyses of paraffin wax embedded tissues. Mol. Pathol. 2003, 56, 36–42. [Google Scholar] [CrossRef]
- Bascuas, T.; Moreno, M.; Grille, S.; Chabalgoity, J.A. Salmonella immunotherapy improves the outcome of CHOP chemotherapy in non-hodgkin lymphoma-bearing mice. Front. Immunol. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.C. 2021–2022 National Health Insurance Annual Report; National Health Insurance Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2021; pp. 17–19.
- Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Murata, M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int. J. Mol. Sci. 2017, 18, 1080. [Google Scholar] [CrossRef] [Green Version]
- Thorley-Lawson, D.A.; Gross, A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 2004, 350, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M. Molecular mechanism of Helicobacter pylori-induced gastric cancer. J. Gastrointest. Cancer 2021, 52, 23–30. [Google Scholar] [CrossRef]
- Buchwald, D.S.; Blaser, M.J. A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev. Infect. Dis. 1984, 6, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Marzel, A.; Desai, P.T.; Goren, A.; Schorr, Y.I.; Nissan, I.; Porwollik, S.; Valinsky, L.; McClelland, M.; Rahav, G.; Gal-Mor, O. Persistent infections by nontyphoidal Salmonella in humans: Epidemiology and genetics. Clin. Infect. Dis. 2016, 62, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Qazi, I.H.; Wang, L.; Zhou, G.; Han, H. Salmonella virulence and immune escape. Microorganisms 2020, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Harrell, J.E.; Hahn, M.M.; D’Souza, S.J.; Vasicek, E.M.; Sandala, J.L.; Gunn, J.S.; McLachlan, J.B. Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract. Front. Cell. Infect. Microbiol. 2020, 10, 624622. [Google Scholar] [CrossRef]
- Zha, L.; Garrett, S.; Sun, J. Salmonella Infection in Chronic Inflammation and Gastrointestinal Cancer. Diseases 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal. Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Gal-Mor, O. Persistent infection and long-term carriage of typhoidal and nontyphoidal salmonellae. Clin. Microbiol. Rev. 2019, 32, e00088-18. [Google Scholar] [CrossRef] [Green Version]
- Seretis, A.; Cividini, S.; Markozannes, G.; Tseretopoulou, X.; Lopez, D.S.; Ntzani, E.E.; Tsilidis, K.K. Association between blood pressure and risk of cancer development: A systematic review and meta-analysis of observational studies. Sci. Rep. 2019, 9, 8565. [Google Scholar] [CrossRef] [PubMed]
Variables | Non-NTS, n (%) | NTS, n (%) | p-Value | SMD |
---|---|---|---|---|
All | 55,160 (100) | 13,790 (100) | ||
Sex | 0.7519 | 0.003 | ||
Female | 27,583 (50.01) | 6875 (49.85) | ||
Male | 27,577 (49.99) | 6915 (50.15) | ||
Age (year) | 0.9593 | |||
<40 | 41,970 (76.09) | 10,487 (76.05) | 0.001 | |
≥60 | 5696 (10.33) | 1435 (10.41) | 0.001 | |
40–59 | 7494 (13.59) | 1868 (13.55) | 0.003 | |
Mean ± SD | 22.40 ± 23.58 | 22.12 ± 23.93 | 0.2097 | 0.012 |
Insurance premium level (NTD) | 0.9754 | |||
<20,000 | 33,772 (61.23) | 8455 (61.31) | 0.002 | |
20,000–39,999 | 15,192 (27.54) | 3785 (27.45) | 0.002 | |
≥40,000 | 6196 (11.23) | 1550 (11.24) | <0.0001 | |
Urbanization | <0.0001 | |||
1 (most urbanized) | 30,979 (56.16) | 7428 (53.87) | 0.046 | |
2 | 19,161 (34.74) | 4584 (33.24) | 0.032 | |
3 | 5020 (9.10) | 1778 (12.89) | 0.121 | |
Comorbidities | ||||
Hypertension | 6102 (11.06) | 1526 (11.07) | 0.9903 | <0.0001 |
Diabetes | 3376 (6.12) | 856 (6.21) | 0.7034 | 0.004 |
Hyperlipidemia | 4315 (7.82) | 1070 (7.76) | 0.8038 | 0.002 |
Autoimmune disease | 1190 (2.16) | 303 (2.20) | 0.7735 | 0.003 |
HCV | 424 (0.77) | 113 (0.82) | 0.5442 | 0.006 |
HIV | 148 (0.27) | 45 (0.33) | 0.2488 | 0.011 |
Infectious mononucleosis | 63 (0.11) | 20 (0.15) | 0.3505 | 0.009 |
Medication | ||||
PPI | 439 (0.80) | 260 (1.89) | <0.0001 | 0.095 |
Sucralfate | 30 (0.05) | 24 (0.17) | <0.0001 | 0.035 |
NSAIDs | 8070 (14.63) | 3153 (22.86) | <0.0001 | 0.212 |
Aspirin | 1564 (2.84) | 405 (2.94) | 0.5220 | 0.006 |
Statin | 1195 (2.17) | 309 (2.24) | 0.5930 | 0.005 |
Metformin | 1383 (2.51) | 325 (2.36) | 0.3092 | 0.010 |
Follow-up time | 12.85 ± 4.27 | 12.74 ± 4.52 | 0.0062 | 0.026 |
Variables | Event | Crude | Adjusted | ||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
NTS | |||||
No | 81 | 1 (Reference) | 1 (Reference) | ||
Yes | 27 | 1.35 (0.87, 2.08) | 0.1791 | 1.42 (0.91, 2.20) | 0.1189 |
Sex | |||||
Female | 48 | 1 (Reference) | 1 (Reference) | ||
Male | 60 | 1.26 (0.86, 1.84) | 0.2388 | 1.51 (1.03, 2.21) | 0.0367 |
Age (year) | |||||
<40 | 42 | 1 (Reference) | 1 (Reference) | ||
40–59 | 34 | 5.51 (3.50, 8.67) | <0.0001 | 5.20 (3.21, 8.42) | <0.0001 |
≥60 | 32 | 10.13 (6.35, 16.16) | <0.0001 | 8.44 (4.64, 15.35) | <0.0001 |
Insurance premium level (NTD) | |||||
<20,000 | 72 | 1 (Reference) | 1 (Reference) | ||
20,000–39,999 | 26 | 0.78 (0.50, 1.22) | 0.2764 | 0.92 (0.58, 1.45) | 0.7165 |
≥40,000 | 10 | 0.75 (0.39, 1.46) | 0.3983 | 0.72 (0.37, 1.40) | 0.3279 |
Urbanization | |||||
1 (most urbanized) | 67 | 1 (Reference) | 1 (Reference) | ||
2 | 34 | 0.83 (0.55, 1.25) | 0.3738 | 0.81 (0.53, 1.22) | 0.3096 |
3 | 7 | 0.59 (0.27, 1.29) | 0.1869 | 0.54 (0.25, 1.18) | 0.1204 |
Comorbidities | |||||
Hypertension | 32 | 5.71 (3.75, 8.70) | <0.0001 | 1.54 (0.88, 2.72) | 0.1340 |
Diabetes | 13 | 3.54 (1.97, 6.36) | <0.0001 | 0.53 (0.21, 1.31) | 0.1674 |
Hyperlipidemia | 16 | 3.28 (1.92, 5.60) | <0.0001 | 0.75 (0.38, 1.49) | 0.4074 |
Autoimmune disease | 6 | 4.20 (1.84, 9.61) | 0.0007 | 1.74 (0.74, 4.12) | 0.2061 |
HCV | 4 | 8.79 (3.22, 23.94) | <0.0001 | 3.03 (1.09, 8.42) | 0.0340 |
HIV | 0 | NA | NA | NA | NA |
Infectious mononucleosis | 0 | NA | NA | NA | NA |
Medication | |||||
PPI | 3 | 5.35 (1.69, 16.90) | 0.0043 | 1.46 (0.45, 4.74) | 0.5300 |
Sucralfate | 0 | NA | NA | NA | NA |
NSAIDs | 23 | 1.54 (0.97, 2.44) | 0.0677 | 0.98 (0.60, 1.59) | 0.9191 |
Aspirin | 6 | 3.30 (1.45, 7.55) | 0.0046 | 0.66 (0.27, 1.62) | 0.3681 |
Statin | 7 | 5.79 (2.67, 12.54) | <0.0001 | 1.77 (0.68, 4.58) | 0.2425 |
Metformin | 8 | 5.48 (2.65, 11.32) | <0.0001 | 2.19 (0.75, 6.41) | 0.1511 |
Subgroup | Non-NTS | NTS | NTS Cohort vs. Non-NTS Cohort | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Crude | Adjusted | |||||||||
n | PY | IR | n | PY | IR | HR (95% CI) | p | HR (95% CI) | p | |
Overall | 81 | 708,842 | 1.14 | 27 | 175,657 | 1.54 | 1.35 (0.87, 2.08) | 0.1791 | 1.42 (0.91, 2.20) | 0.1189 |
Sex | ||||||||||
Female | 37 | 355,235 | 1.04 | 11 | 88,121 | 1.25 | 1.20 (0.61, 2.35) | 0.5937 | 1.21 (0.61, 2.39) | 0.5780 |
Male | 44 | 353,608 | 1.24 | 16 | 87,536 | 1.83 | 1.47 (0.83, 2.61) | 0.1854 | 1.66 (0.93, 2.97) | 0.0853 |
Age (year) | ||||||||||
<40 | 36 | 576,820 | 0.62 | 6 | 144,337 | 0.42 | 0.67 (0.28, 1.58) | 0.3595 | 0.69 (0.29, 1.64) | 0.3964 |
40–59 | 25 | 86,076 | 2.90 | 9 | 21,065 | 4.27 | 1.47 (0.69, 3.14) | 0.3233 | 1.36 (0.63, 2.95) | 0.4334 |
≥60 | 20 | 45,947 | 4.35 | 12 | 10,255 | 11.70 | 2.70 (1.32, 5.52) | 0.0066 | 3.04 (1.46, 6.34) | 0.0030 |
Insurance premium level (NTD) | ||||||||||
<20,000 | 56 | 430,604 | 1.30 | 16 | 105,900 | 1.51 | 1.16 (0.67, 2.03) | 0.5925 | 1.18 (0.67, 2.06) | 0.5636 |
20,000–39,999 | 19 | 199,216 | 0.95 | 7 | 49,545 | 1.41 | 1.49 (0.62, 3.53) | 0.3702 | 1.84 (0.75, 4.50) | 0.1848 |
≥40,000 | 6 | 79,022 | 0.76 | 4 | 20,213 | 1.98 | 2.58 (0.73, 9.15) | 0.1420 | 3.38 (0.89, 12.80) | 0.0725 |
Comorbidities | ||||||||||
Hypertension | 18 | 50,484 | 3.57 | 14 | 11,433 | 12.24 | 3.45 (1.72, 6.94) | 0.0005 | 4.06 (1.99, 8.31) | 0.0001 |
Hyperlipidemia | 13 | 36,090 | 3.60 | 3 | 8352 | 3.59 | 1.00 (0.28, 3.50) | 0.9959 | 1.27 (0.36, 4.54) | 0.7126 |
HIV | 0 | 872 | 0.00 | 0 | 219 | 0.00 | NA | NA | NA | NA |
Infectious mononucleosis | 0 | 647 | 0.00 | 0 | 199 | 0.00 | NA | NA | NA | NA |
Medication | ||||||||||
Sucralfate | 0 | 285 | 0.00 | 0 | 197 | 0.00 | NA | NA | NA | NA |
NSAIDs | 15 | 95,843 | 1.57 | 8 | 36,103 | 2.22 | 1.41 (0.60, 3.33) | 0.4295 | 1.44 (0.61, 3.43) | 0.4073 |
Aspirin | 3 | 12,641 | 2.37 | 3 | 2680 | 11.19 | 4.84 (0.98, 23.98) | 0.0537 | 4.31 (0.78, 23.72) | 0.0932 |
Metformin | 5 | 10,450 | 4.78 | 3 | 2159 | 13.90 | 3.00 (0.72, 12.55) | 0.1329 | 3.61 (0.76, 17.21) | 0.1077 |
Subgroup | Non-NTS | NTS | NTS Cohort vs. Non-NTS Cohort | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Crude | Adjusted | |||||||||
n | PY | IR | n | PY | IR | HR (95% CI) | p | HR (95% CI) | p | |
Follow-up time (year) | ||||||||||
<3 | 7 | 15,808 | 4.43 | 3 | 3605 | 8.32 | 1.90 (0.49, 7.33) | 0.3537 | 1.92 (0.49, 7.57) | 0.3520 |
≥3 | 13 | 30,139 | 4.31 | 9 | 6650 | 13.53 | 3.14 (1.34, 7.34) | 0.0084 | 3.93 (1.60, 9.65) | 0.0029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, C.-H.; Kao, W.-C.; Hsu, C.Y.; Chang, R.; Cheng, M.-F.; Hung, Y.-M. Nontyphoidal Salmonella Infection Associated with Subsequent Risk of Hematological Malignancies: A Nationwide Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 12943. https://doi.org/10.3390/ijerph191912943
Yun C-H, Kao W-C, Hsu CY, Chang R, Cheng M-F, Hung Y-M. Nontyphoidal Salmonella Infection Associated with Subsequent Risk of Hematological Malignancies: A Nationwide Population-Based Cohort Study. International Journal of Environmental Research and Public Health. 2022; 19(19):12943. https://doi.org/10.3390/ijerph191912943
Chicago/Turabian StyleYun, Chih-Hui, Wei-Chun Kao, Chung Y. Hsu, Renin Chang, Ming-Fang Cheng, and Yao-Min Hung. 2022. "Nontyphoidal Salmonella Infection Associated with Subsequent Risk of Hematological Malignancies: A Nationwide Population-Based Cohort Study" International Journal of Environmental Research and Public Health 19, no. 19: 12943. https://doi.org/10.3390/ijerph191912943
APA StyleYun, C.-H., Kao, W.-C., Hsu, C. Y., Chang, R., Cheng, M.-F., & Hung, Y.-M. (2022). Nontyphoidal Salmonella Infection Associated with Subsequent Risk of Hematological Malignancies: A Nationwide Population-Based Cohort Study. International Journal of Environmental Research and Public Health, 19(19), 12943. https://doi.org/10.3390/ijerph191912943