Functional Diversity and CO2 Emission Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation in the Yellow River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Determination of Soil Environmental Factors
2.3. Laboratory Experiments for CO2 Measurement
2.4. DNA Extraction and High-Throughput Sequencing
2.5. Data Analyses
3. Results
3.1. Soil Chemical Factors
3.2. The Composition of Soil Bacterial Communities
3.3. Differences in the Distribution of Soil Bacterial Communities
3.4. Predictive Functional Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation
3.5. Characteristics of Soil CO2 Emissions during the Succession of Halophyte Vegetation
3.6. The Main Factors Influencing the Rate of Soil CO2 Emissions
4. Discussion
4.1. The Process of Halophyte Vegetation Succession Improves Soil Quality
4.2. Halophyte Vegetation Succession Alters Bacterial Community Structure
4.3. Halophyte Vegetation Succession Alters the Functional Structure of Soil Bacteria
4.4. Characteristics and Influencing Factors of Soil CO2 Emissions during the Succession of Halophyte Vegetation
5. Conclusions
- (1)
- During the natural succession process of bare land—highly salt-tolerant vegetation—moderate salt-tolerant vegetation—lightly salt-tolerant vegetation, soil salinity continues to decrease, organic matter, total nitrogen, alkali-hydrolyzable nitrogen, and other nutrients continue to accumulate, and the succession of halophyte vegetation process is a process of continuous improvement of soil quality.
- (2)
- Soil bacterial diversity and abundance increase during halophyte vegetation succession, with the phylum Proteobacteria being the most dominant phylum in the study area and Stenotrophomonas being the bacterial genus that contributes most to the variation in a soil bacterial community structure during salt vegetation succession. Bacteria in the study area are functionally diverse, with metabolism functions being their core functions.
- (3)
- Soil CO2 emission rates increase continuously during the succession of halophyte vegetation in the Yellow River Delta. The CO2 emission rate of soils with vegetation cover is significantly higher than that of bare land. Under long-term flooding conditions, each site first becomes a sink of CO2, and with longer flooding time each site changes from a sink to a source of CO2.
- (4)
- Soil salinity is a major limiting factor for soil bacterial community structure, functional structure, and soil CO2 emission rates.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillon, M.E.; Wang, G.; Huey, R.B. Global metabolic impacts of recent climate warming. Nature 2010, 467, 704–706. [Google Scholar] [CrossRef]
- Kaleem Abbasi, M.; Müller, C. Trace gas fluxes of CO2, CH4 and N2O in a permanent grassland soil exposed to elevated CO2 in the Giessen FACE study. Atmos. Chem. Phys. 2011, 11, 9333–9342. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.P.; Hawkins, E.; Bellouin, N.; Collins, B. IPCC, 2021: Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef]
- Walker, A.P.; De Kauwe, M.G.; Bastos, A.; Belmecheri, S.; Georgiou, K.; Keeling, R.F.; McMahon, S.M.; Medlyn, B.E.; Moore, D.J.; Norby, R.J. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 2021, 229, 2413–2445. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.L.; Bond-Lamberty, B.; Desai, A.R.; Lavoie, M.; Risk, D.; Tang, J.; Todd-Brown, K.; Vargas, R. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant Soil 2017, 413, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Duan, L.; Liu, T.; Ma, L.; Lei, H.; Singh, V.P. Analysis of soil respiration and influencing factors in a semiarid dune–meadow cascade ecosystem. Sci. Total Environ. 2021, 796, 148993. [Google Scholar] [CrossRef] [PubMed]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wang, L.; Song, X.-P.; Black, T.A.; Jassal, R.S.; Myneni, R.B.; Wu, C.; Wang, L.; Song, W.; Ji, D. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 2020, 6, eabb8508. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Jud, M.; Tscherko, D.; Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 2009, 67, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; van Groenigen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pei, J.; Pendall, E.; Fang, C.; Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 2020, 141, 107675. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zou, J.; Meng, D.; Dang, S.; Zhou, J.; Osborne, B.; Ren, Y.; Liang, T.; Yu, K. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta-analysis. Ecol. Evol. 2020, 10, 13602–13612. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, X.; Zhang, Z.; Li, M.; Cao, H.; Zhou, X.; Ni, H. Responses of soil respiration to nitrogen addition in the Sanjiang Plain wetland, northeastern China. PLoS ONE 2019, 14, e0211456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowska-Długosz, A.; Długosz, J.; Gryta, A.; Frąc, M. Responses of N-cycling enzyme activities and functional diversity of soil microorganisms to soil depth, pedogenic processes and cultivated plants. Agronomy 2022, 12, 264. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, Q.; Durenkamp, M.; Dungait, A.J.; Brookes, P.C. Soil priming effects following substrates addition to biochar-treated soils after 431 days of pre-incubation. Biol. Fertil. Soils 2017, 53, 315–326. [Google Scholar] [CrossRef]
- Chen, X.D.; Dunfield, K.E.; Fraser, T.D.; Wakelin, S.A.; Richardson, A.E.; Condron, L.M. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 2020, 58, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dangi, S.R.; Stahl, P.D.; Wick, A.F. Soil Microbial Community Recovery in Reclaimed Soils on a Surface Coal Mine. Soil Sci. Soc. Am. J. 2012, 76, 915–924. [Google Scholar] [CrossRef]
- Li, H.; Chi, Z.; Li, J.; Wu, H.; Yan, B. Bacterial community structure and function in soils from tidal freshwater wetlands in a Chinese delta: Potential impacts of salinity and nutrient. Sci. Total Environ. 2019, 696, 134029. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Delgado-Baquerizo, M.; Trivedi, C.; Hu, H.; Anderson, I.C.; Jeffries, T.C.; Zhou, J.; Singh, B.K. Microbial regulation of the soil carbon cycle: Evidence from gene-enzyme relationships. ISME J. 2016, 10, 2593–2604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, P.; Qin, Y.; Liu, Q.; Zhu, T.; Li, Z.; Li, P.; Ren, Z.; Liu, Y.; Wang, F. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau, China. Sci. Total Environ. 2020, 707, 135507. [Google Scholar] [PubMed]
- Shi, L.; Chuankuan, W.; Fei, X. Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China. Acta Ecol. Sin. 2010, 30, 4075–4084. [Google Scholar]
- Cao, X.; Liu, H.; Kou, X.; Zhang, R.; Wen, L.; Xu, Z.; Liu, D.; Yu, X.; Wang, L. Laboratory Simulation of Greenhouse Gas Emissions from Soils in Lakeshore of Ulansu Lake under Spring Thawing Conditions. Wetl. Sci. 2022, 20, 34–48. [Google Scholar] [CrossRef]
- Chen, L.-F.; He, Z.-B.; Wu, X.-R.; Du, J.; Zhu, X.; Lin, P.-F.; Tian, Q.-Y.; Kong, J.-Q. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Appl. Soil Ecol. 2021, 161, 103882. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Yao, M.; Liu, S.; Jia, H. Characteristic of soil CO2 emission under different plant communities in the shores of saline lake in arid region. China Environ. Sci. 2019, 39, 1879–1889. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Liu, S.; Hou, X.; Yang, M.; Cheng, F.; Coxixo, A.; Wu, X.; Zhang, Y. Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. CATENA 2018, 165, 279–285. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Gao, Y.; Zhao, H.; Zhang, G.; Cui, B. Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degrad. Dev. 2020, 31, 2255–2267. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Serrano-Ortiz, P.; Roland, M.; Sanchez-Moral, S.; Janssens, I.A.; Domingo, F.; Godderis, Y.; Kowalski, A.S. Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: Review and perspectives. Agric. For. Meteorol. 2011, 151, 321–329. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Yu, W.; Turak, A.; Chen, D.; Huang, Y.; Ao, J.; Jiang, Y.; Huang, Z. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Front. Microbiol. 2018, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Peng, C.; Yang, B.; Song, H.; Li, Q.; Jiang, L.; Wei, G.; Wang, K.; Wang, H.; Liu, S.; et al. Contrasting Soil Bacterial Community, Diversity, and Function in Two Forests in China. Front. Microbiol. 2018, 9, 1693. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Bai, L.; Wang, J.; Deng, J.; Ren, C.; Han, X.; Yang, G.; Wang, J. Change in soil bacterial community during secondary succession depend on plant and soil characteristics. CATENA 2019, 173, 246–252. [Google Scholar] [CrossRef]
- Zhang, J.; Ru, J.; Song, J.; Li, H.; Li, X.; Ma, Y.; Li, Z.; Hao, Y.; Chi, Z.; Hui, D. Increased precipitation and nitrogen addition accelerate the temporal increase in soil respiration during 8-year old-field grassland succession. Glob. Chang. Biol. 2022, 28, 3944–3959. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Zeng, G.; Yang, H.; Wang, M.; Lyu, Y.; Cheng, A.; Zhang, L.; Cai, X.; Chen, J. CO2 flux of soil respiration in natural recovering karst abandoned farmland in Southwest China. Acta Geochim. 2020, 39, 527–538. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Tebbe, C.C.; Zhao, Q.; Jia, J.; Wang, W.; Wang, X.; Yu, L. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 2021, 23, 1020–1037. [Google Scholar] [CrossRef]
- Sharrar, A.M.; Crits-Christoph, A.; Méheust, R.; Diamond, S.; Starr, E.P.; Banfield, J.F. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 2020, 11, e00416–e00420. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Xu, X.; Li, K.; Chen, Q. Denitrifying anaerobic methane oxidation and mechanisms influencing it in Yellow River Delta coastal wetland soil, China. Chemosphere 2022, 298, 134345. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, C.; Wu, H.; Xu, Z. Dynamics of soil extractable carbon and nitrogen under different cover crop residues. J. Soils Sediments 2012, 12, 844–853. [Google Scholar] [CrossRef]
- Guenon, R.; Gros, R. Increasing the maturity of compost used affects the soil chemical properties and the stability of microbial activity along a mediterranean post-fire chronosequence. Eur. J. Soil Biol. 2015, 66, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Fang, K.; Chen, C. Seasonal variation and impact factors of available phosphorus in typical paddy soils of Taihu Lake region, China. Water Environ. J. 2012, 26, 392–398. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E.G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl. Soil Ecol. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- DeSutter, T.; Franzen, D.; He, Y.; Wick, A.; Lee, J.; Deutsch, B.; Clay, D. Relating Sodium Percentage to Sodium Adsorption Ratio and its Utility in the Northern Great Plains. Soil Sci. Soc. Am. J. 2015, 79, 1261–1264. [Google Scholar] [CrossRef]
- Thapa, R.; Chatterjee, A.; Wick, A.; Butcher, K. Carbon Dioxide and Nitrous Oxide Emissions from Naturally Occurring Sulfate-Based Saline Soils at Different Moisture Contents. Pedosphere 2017, 27, 868–876. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Six, J.; Parikh, S.J. The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma 2013, 200, 90–98. [Google Scholar] [CrossRef]
- Bao, S.; Wang, Q.; Bao, X.; Li, M.; Wang, Z. Biological treatment of saline-alkali soil by Sulfur-oxidizing bacteria. Bioengineered 2016, 7, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Liu, N.; Zhang, Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 2019, 337, 444–452. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Delgado-Baquerizo, M.; Wang, J.-T.; Hu, H.-W.; Yang, Z.; He, J.-Z. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 2018, 118, 35–41. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, D.; Chen, Z.; Li, H.; Deng, J.; Qiao, W.; Han, X.; Yang, G.; Feng, Y.; Huang, J. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma 2018, 325, 152–161. [Google Scholar] [CrossRef]
- Xu, H.; Yu, M.; Cheng, X. Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations. Ecol. Indic. 2021, 129, 107932. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China—Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Jian, Z.; Ming, X. Characteristic of Soil Bacterial Community Diversity among Different Vegetation Types in the Loess Hilly Region. J. Ecol. Rural. Environ. 2022, 38, 225–235. [Google Scholar]
- Yang, H.; Hu, J.; Long, X.; Liu, Z.; Rengel, Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci. Rep. 2016, 6, 20687. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Shao, M.; Fu, X.; Agren, G.I.; Yin, X. The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China. Geoderma 2011, 160, 590–598. [Google Scholar] [CrossRef]
- Setia, R.; Marschner, P.; Baldock, J.; Chittleborough, D.; Verma, V. Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biol. Biochem. 2011, 43, 667–674. [Google Scholar] [CrossRef]
- Garcia-Gil, J.C.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Guan, Y.; Jiang, N.; Wu, Y.; Yang, Z.; Bello, A.; Yang, W. Disentangling the role of salinity-sodicity in shaping soil microbiome along a natural saline-sodic gradient. Sci. Total Environ. 2021, 765, 142738. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, V.; Verma, M.K.; Gupta, S.; Mandhan, V.; Chauhan, N.S. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes. Front. Microbiol. 2018, 9, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Ming, X.; Xiao, Z.; Jin, C.; Jiao, Z.; Jian, Z. Effects of Different Vegetation Types on the Characteristics of Soil Bacterial Communities in the Hilly Area of Central Guizhou. J. Ecol. Rural Environ. 2021, 37, 518–525. [Google Scholar]
- Tian, X.-Y.; Zhang, C.-S. Illumina-Based Analysis of Endophytic and Rhizosphere Bacterial Diversity of the Coastal Halophyte Messerschmidia sibirica. Front. Microbiol. 2017, 8, 2288. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Y.; Lin, X.; Zhang, H.; Zeng, J.; Hou, J.; Yang, Y.; Yao, T.; Knight, R.; Chu, H. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ. Microbiol. 2012, 14, 2457–2466. [Google Scholar] [CrossRef] [Green Version]
- Xin, S. Responses of Microbial Community Taxonomic Composition and Functional Genes to Precipitation Changes in Semi-arid Grasslands. Master's Thesis, Tsinghua University, Beijing, China, 2015. [Google Scholar]
- Chowdhury, N.; Marschner, P.; Burns, R.G. Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biol. Biochem. 2011, 43, 1229–1236. [Google Scholar] [CrossRef]
- Rajaniemi, T.K.; Allison, V.J. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol. Biochem. 2009, 41, 102–109. [Google Scholar] [CrossRef]
- Kersters, K.; De Vos, P.; Gillis, M.; Swings, J.; Vandamme, P.; Stackebrandt, E. Introduction to the Proteobacteria; Springer: New York, NY, USA, 2006; pp. 3–37. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, J.; Zeng, Q.; Sun, J.; Li, J.; Liu, Y.; Xie, H.; Wu, Y.; Zhang, Q.; Cui, J.; et al. Distribution pattern of soil bacterial community characteristics along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains. Chin. J. Ecol. 2021, 41, 1482–1492. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, F.; Huai, B.D.; Yang, X.; Sui, W.Z. Effects of Land Use Changes on Soil Bacterial Community Diversity in the riparian Wetland Along the Downstream of Songhua River. Environ. Sci. 2020, 41, 4273–4283. [Google Scholar]
- Wan, W.; Tan, J.; Wang, Y.; Qin, Y.; He, H.; Wu, H.; Zuo, W.; He, D. Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function. Sci. Total Environ. 2020, 700, 134418. [Google Scholar] [CrossRef]
- Liu, K.H.; Xue, Y.Q.; Zhu, L.P.; Xu, F.; Zhu, Z.H.; Zhang, T.; Zhang, F.B. Effect of Different Land Use Types on the Diversity of Soil Bacterial Community in the Coastal Zone of Jialing River. Environ. Sci. 2022, 43, 1620–1629. [Google Scholar]
- Li, J.; Li, M.; Zhao, L.; Sun, X.; Gao, M.; Sheng, L.; Bian, H. Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. Sci. Total Environ. 2022, 839, 156242. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xiao, X.; Nuccio, E.E.; Yuan, M.; Zhang, N.; Xue, K.; Cohan, F.M.; Zhou, J.; Sun, B. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ. Microbiol. 2020, 22, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Wang, H.; Xu, M.; Wei, W.; Duan, Y.; Liu, S. Diversity and function prediction of bacteria community in fluvo-aquic soils as affected by long-term organic fertilization. J. Plant Nutr. Fertil. 2021, 27, 2073–2082. [Google Scholar] [CrossRef]
- Zerva, A.; Mencuccini, M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation. Soil Biol. Biochem. 2005, 37, 2025–2036. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, Y.; Yang, Z.; Chen, G.; Xie, J.; Guo, J.; Zou, S. The dynamic response of soil respiration to land-use changes in subtropical China. Glob. Chang. Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Li, C.; Qiao, S.; Liu, J.; Chai, B. Spatiotemporal dynamics of microbial communities involved in soil carbon cycling of subalpine temperate coniferous forest. China Environ. Sci. 2020, 40, 4540–4548. [Google Scholar] [CrossRef]
- Shi, S.; Tian, L.; Nasir, F.; Bahadur, A.; Batool, A.; Luo, S.; Yang, F.; Wang, Z.; Tian, C. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils. Appl. Soil Ecol. 2019, 135, 16–24. [Google Scholar] [CrossRef]
- Song, M.; Peng, W.; Du, H.; Xu, Q. Responses of soil and microbial C:N:P stoichiometry to vegetation succession in a Karst Region of Southwest China. Forests 2019, 10, 755. [Google Scholar] [CrossRef]
Plots | BL | SS | TC | AS | IC | AC |
---|---|---|---|---|---|---|
T (°C) | 18.41 ± 1.37 a | 17.32 ± 1.74 a, b | 16.07±1.75 b | 16.10 ± 1.49 b | 14.02 ± 1.05 c | 12.95 ± 2.89 c |
MC (%) | 0.19 ± 0.02 a | 0.19 ± 0.03 a | 0.20 ± 0.02 a | 0.20 ± 0.02 a | 0.18 ± 0.02 a | 0.14 ± 0.04 b |
EC (dS·m−1) | 4.83 ± 0.95 a | 3.27 ± 0.63 a, b | 2.89 ± 0.88 a, b | 2.27 ± 0.59 b | 0.24 ± 0.15 c | 0.39 ± 0.29 c |
pH | 8.25 ± 0.42 a | 7.88 ± 0.37 b | 7.84 ± 0.27 b | 7.79 ± 0.26 b | 8.09 ± 0.23 a, b | 8.12 ± 0.23 a, b |
TN (g·kg−1) | 0.22 ± 0.05 d | 0.32 ± 0.12 c, d | 0.26 ± 0.05 c, d | 0.57 ± 0.11 a | 0.49 ± 0.23 a, b | 0.41 ± 0.16 b, c |
SOM (g·kg−1) | 5.87 ± 3.23 c | 11.40 ± 4.26 b | 12.98 ± 3.95 b | 17.06 ± 4.15 a | 14.88 ± 5.60 a, b | 12.39 ± 3.17 b |
AP (mg·kg−1) | 2.24 ± 0.72 b | 3.86 ± 0.84 a | 2.66 ± 0.40 b | 2.85 ± 0.44 b | 2.31 ± 0.58 b | 2.84 ± 0.56 b |
AN (mg·kg−1) | 12.30 ± 3.72 c | 18.62 ± 5.28 b, c | 27.14 ± 4.34 b | 43.58 ± 10.13 a | 40.95 ± 10.91 a, b | 36.05 ± 15.01 a, b |
NH4+ (mg·kg−1) | 1.09 ± 0.31 b | 3.87 ± 1.24 a, b | 1.27 ± 0.58 b | 3.90 ± 0.98 a | 2.60 ± 0.82 a, b | 1.59 ± 0.54 b |
NO3- (mg·kg−1) | 2.64 ± 0.89 a, b | 3.20 ± 0.97 a, b | 3.71 ± 1.05 a | 3.24 ± 0.76 a, b | 2.48 ± 0.34 b | 2.25 ± 0.31 b |
Plots | OTU | Shannon | Simpson | Chao1 | ACE | Coverage |
---|---|---|---|---|---|---|
BL | 2258 b | 5.83 b | 0.822 b | 3239 b | 3414 b | 0.979 |
SS | 3339 a | 9.23 a | 0.990 a | 4387 a | 4489 a | 0.972 |
TC | 3662 a | 9.26 a | 0.986 a | 5089 a | 5252 a | 0.967 |
AS | 3697 a | 9.38 a | 0.989 a | 4909 a | 5029 a | 0.968 |
IC | 3823 a | 9.92 a | 0.960 a | 5116 a | 5271 a | 0.971 |
AC | 4134 a | 9.97 a | 0.993 a | 5389 a | 5384 a | 0.968 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Ji, L.; Wang, Z.; Li, K.; Xu, X.; Guo, D. Functional Diversity and CO2 Emission Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation in the Yellow River Delta. Int. J. Environ. Res. Public Health 2022, 19, 12919. https://doi.org/10.3390/ijerph191912919
Xin Y, Ji L, Wang Z, Li K, Xu X, Guo D. Functional Diversity and CO2 Emission Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation in the Yellow River Delta. International Journal of Environmental Research and Public Health. 2022; 19(19):12919. https://doi.org/10.3390/ijerph191912919
Chicago/Turabian StyleXin, Yu, Linhui Ji, Zihao Wang, Kun Li, Xiaoya Xu, and Dufa Guo. 2022. "Functional Diversity and CO2 Emission Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation in the Yellow River Delta" International Journal of Environmental Research and Public Health 19, no. 19: 12919. https://doi.org/10.3390/ijerph191912919
APA StyleXin, Y., Ji, L., Wang, Z., Li, K., Xu, X., & Guo, D. (2022). Functional Diversity and CO2 Emission Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation in the Yellow River Delta. International Journal of Environmental Research and Public Health, 19(19), 12919. https://doi.org/10.3390/ijerph191912919