Sociodemographic and Psychosocial Profiles of Multi-Media Use for Risk Communication in the General Population
Abstract
:1. Introduction
1.1. Use of Multiple Warning Channels for Risk Communication
1.2. Complementarity of Media Channels
1.3. Sociodemographic Profiles of Multi-Media Use in Risk Communication
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.3. Statistical Analysis
3. Results
3.1. Description of Warning Media Users
3.2. Statistical Comparisons of Media Use
4. Discussion
4.1. Profiles of Media Users
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seeger, M.W. Best practices in crisis communication: An expert panel process. J. Appl. Commun. Res. 2006, 34, 232–244. [Google Scholar] [CrossRef]
- Veil, S.; Reynolds, B.; Sellnow, T.L.; Seeger, M.W. CERC as a theoretical framework for research and practice. Health Promot. Pract. 2008, 9, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Renn, O. Risk Governance: Coping with Uncertainty in a Complex World; Routledge: London, UK, 2008; pp. 8–11. [Google Scholar]
- Reuter, C.; Ludwig, T. Anforderungen und technische Konzepte der Krisenkommunikation bei Stromausfall [Requirements and technical concepts of crisis communication in case of a blackout]. In INFORMATIK 2013–Informatik Angepasst an Mensch, Organisation und Umwelt; Gesellschaft für Informatik e.V.: Bonn, Germany, 2013. [Google Scholar]
- Kuligowski, E. Communicating the Emergency: Preliminary findings on the elements of an effective public warning message. In Emergency Evacuation of People from Buildings; Jaskółowski, W., Kępka, P., Eds.; BEL Studio Sp. z o.o.: Warszawa, Poland, 2011. [Google Scholar]
- Sutton, J.; Kuligowski, E.D. Alerts and Warnings on Short Messaging Channels: Guidance from an Expert Panel Process. Nat. Hazards Rev. 2019, 20, 04019002. [Google Scholar] [CrossRef]
- Mileti, D.; Nathe, S.; Gori, P. Public Hazards Communication and Education: The State of the Art; National Hazards Center: Boulder CO, USA, 2004. [Google Scholar]
- Lindell, M.K.; Perry, R.W. The Protective Action Decision Model: Theoretical Modifications and Additional Evidence. Risk Anal. 2011, 32, 616–632. [Google Scholar] [CrossRef] [PubMed]
- Sellnow, D.D.; Lane, D.R.; Sellnow, T.L.; Littlefield, R.S. The IDEA model as a best practice for effective instructional risk and crisis communication. Commun. Stud. 2017, 68, 552–567. [Google Scholar] [CrossRef]
- Wogalter, M.S.; DeJoy, D.M.; Laughery, K.R. Organizing theoretical framework: A consolidated communication-human information processing (C-HIP) model. In Warnings and Risk Communication, 2nd ed.; Wogalter, M.S., DeJoy, D.M., Laughery, K.R., Eds.; Taylor & Francis: London, UK, 1999; pp. 29–37. [Google Scholar]
- Utz, S.; Schultz, F.; Glocka, S. Crisis communication online: How medium, crisis type and emotions affected public reactions in the Fukushima Daiichi nuclear disaster. Public Relat. Rev. 2013, 39, 40–46. [Google Scholar] [CrossRef]
- Schultz, F.; Utz, S.; Göritz, A. Is the medium the message? Perceptions of and reactions to crisis communication via twitter, blogs and traditional media. Public Relat. Rev. 2011, 37, 20–27. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Wertz, E. How Spokesperson Rank and Selected Media Channels Impact Perceptions in Crisis Communication. Public Relat. J. 2014, 8. Available online: https://www.prsa.org/Intelligence/PRJournal/Vol8/No2/ (accessed on 9 September 2022).
- Brengarth, L.; Mujkic, E. WEB 2.0: How social media applications leverage nonprofit responses during a wildfire crisis. Comput. Hum. Behav. 2015, 54, 589–596. [Google Scholar] [CrossRef]
- Garfin, D.R. Technology as a coping tool during the coronavirus disease 2019 (COVID-19) pandemic: Implications and recommendations. Stress Health 2020, 36, 555–559. [Google Scholar] [CrossRef]
- Wong, A.; Ho, S.; Olusanya, O.; Antonini, M.V.; Lyness, D. The use of social media and online communications in times of pandemic COVID-19. J. Intensive Care Soc. 2021, 22, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Arias, F.; Núñez, M.Z.; Guerra-Adames, A.; Tejedor-Flores, N.; Vargas-Lombardo, M. Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics. IEEE Access 2022, 10, 74850–74872. [Google Scholar] [CrossRef]
- Taylor, M.; Kent, M. Taxonomy of mediated crisis responses. Public Relat. Rev. 2007, 33, 140–146. [Google Scholar] [CrossRef]
- Eriksson, M. Lessons for crisis communication on social media: A systematic review of what research tells the practice. Int. J. Strateg. Commun. 2018, 12, 526–551. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.F.; Hooker, E.D.; Rohleder, N.; Pressman, S.D. The use of smartphones as a digital security blanket: The influence of phone use and availability on psychological and physiological responses to social exclusion. Psychosom. Med. 2018, 80, 345–352. [Google Scholar] [CrossRef]
- Pollard, W.E. Public perceptions of information sources concerning bioterrorism before and after anthrax attacks: An analysis of national survey data. J. Health Commun. 2003, 8 (Suppl. S1), 93–103. [Google Scholar] [CrossRef]
- Austin, L.; Fisher Liu, B.; Jin, Y. How Audiences Seek Out Crisis Information: Exploring the Social-Mediated Crisis Communication Model. J. Appl. Commun. Res. 2012, 40, 188–207. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, B.F. The Blog-Mediated Crisis Communication Model: Recommendations for Responding to Influential External Blogs. J. Public Relat. Res. 2010, 22, 429–455. [Google Scholar] [CrossRef]
- Liu, B.F.; Fraustino, J.D.; Jin, Y. How Disaster Information Form, Source, Type, and Prior Disaster Exposure Affect Public Outcomes: Jumping on the Social Media Bandwagon? J. Appl. Commun. Res. 2015, 43, 44–65. [Google Scholar] [CrossRef]
- Glik, D.C. Risk communication for public health emergencies. Annu. Rev. Public Health 2007, 28, 33–54. [Google Scholar] [CrossRef]
- Trevino, L.K.; Lengel, R.H.; Daft, R.L. Media Symbolism, Media Richness, and Media Choice in Organizations: A Symbolic Interactionist Perspective. Commun. Res. 1987, 14, 553–574. [Google Scholar] [CrossRef]
- Burigat, S.; Chittaro, L. Passive and active navigation of virtual environments vs. traditional printed evacuation maps: A comparative evaluation in the aviation domain. Int. J. Hum.-Comput. Stud. 2016, 87, 92–105. [Google Scholar] [CrossRef]
- Cao, Y.; Boruff, B.J.; McNeill, I.M. Is a picture worth a thousand words? Evaluating the effectiveness of maps for delivering wildfire warning information. Int. J. Disaster Risk Reduct. 2016, 19, 179–196. [Google Scholar] [CrossRef]
- Liu, B.F.; Wood, M.M.; Egnoto, M.; Bean, H.; Sutton, J.; Mileti, D.; Madden, S. Is a picture worth a thousand words? The effects of maps and warning messages on how publics respond to disaster information. Public Relat. Rev. 2017, 43, 493–506. [Google Scholar] [CrossRef]
- Zillmann, D. Mood Management in the Context of Selective Exposure Theory. Ann. Int. Commun. Assoc. 2000, 23, 103–123. [Google Scholar] [CrossRef]
- Smith, S.M.; Fabrigar, L.R.; Norris, M.E. Reflecting on Six Decades of Selective Exposure Research: Progress, Challenges, and Opportunities. Soc. Personal. Psychol. Compass 2008, 2, 464–493. [Google Scholar] [CrossRef]
- Knobloch-Westerwick, S. Choice and Preference in Media Use: Advances in Selective Exposure Theory and Research; Routledge: London, UK, 2014. [Google Scholar]
- Knobloch-Westerwick, S. The Selective Exposure Self- and Affect-Management (SESAM) Model: Applications in the Realms of Race, Politics, and Health. Commun. Res. 2014, 42, 959–985. [Google Scholar] [CrossRef]
- Dutta-Bergman, M.J. Complementarity in consumption of news types across traditional and new media. J. Broadcasting Electron. Media 2004, 48, 41–60. [Google Scholar] [CrossRef]
- Dutta-Bergman, M.J. Primary sources of health information: Comparisons in the domain of health attitudes, health cognitions, and health behaviors. Health Commun. 2004, 16, 273–288. [Google Scholar] [CrossRef]
- Dutta-Bergman, M.J. Community Participation and Internet Use after September 11: Complementarity in Channel Consumption. J. Comput.-Mediat. Commun. 2006, 11, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Arlikatti, S.; Taibah, H.A.; Andrew, S.A. How do you warn them if they speak only Spanish? Challenges for organizations in communicating risk to Colonias residents in Texas, USA. Disaster Prev. Manag. 2014, 23, 533–550. [Google Scholar] [CrossRef]
- Fatima Oliveira, M.D. Multicultural Environments and Their Challenges to Crisis Communication. J. Bus. Commun. 2013, 50, 253–277. [Google Scholar] [CrossRef] [Green Version]
- Hmielowski, J.D.; Donaway, R.; Wang, M.Y. Environmental Risk Information Seeking: The Differential Roles of Anxiety and Hopelessness. Environ. Commun. 2019, 13, 894–908. [Google Scholar]
- Laux, L.; Glanzmann, P.; Schaffner, P.; Spielberger, C.D. Das State-Trait-Angstinventar. Theoretische Grundlagen und Handanweisung [The State-Trait-Anxiety Inventory. Theoretical Basics and Instructions]; Beltz Test: Weinheim, Germany, 1981. [Google Scholar]
- Berle, D.; Starcevic, V.; Moses, K.; Hannan, A.; Milicevic, D.; Sammut, P. Preliminary validation of an ultra-brief version of the Penn State Worry Questionnaire. Clin. Psychol. Psychother. 2011, 18, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, S. Digitale Medien, Partizipation und Ungleichheit: Eine Studie zum sozialen Gebrauch des Internets [Digital media, participation, and inequality: A study on social internet use]; Springer VS: Wiesbaden, Germany, 2019; p. 394. [Google Scholar]
- McGaughey, R.E.; Zeltmann, S.M.; McMurtrey, M.E. Motivations and obstacles to smartphone use by the elderly: Developing a research framework. Int. J. Electron. Financ. 2013, 7, 177–195. [Google Scholar] [CrossRef]
- Tomczyk, S.; Barth, S.; Schmidt, S.; Muehlan, H. Utilizing Health Behavior Change and Technology Acceptance Models to Predict the Adoption of COVID-19 Contact Tracing Apps: Cross-sectional Survey Study. J. Med. Internet Res. 2021, 23, e25447. [Google Scholar] [CrossRef]
- Alexander, D.E. Social media in disaster risk reduction and crisis management. Sci. Eng. Ethics 2014, 20, 717–733. [Google Scholar] [CrossRef]
- Budhwani, H.; Sun, R. Creating COVID-19 stigma by referencing the novel coronavirus as the “Chinese virus” on Twitter: Quantitative analysis of social media data. J. Med. Internet Res. 2020, 22, e19301. [Google Scholar]
- Visschers, V.H.; Siegrist, M. Exploring the Triangular Relationship Between Trust, Affect, and Risk Perception: A Review of the Literature. Risk Manag. 2008, 10, 156–167. [Google Scholar] [CrossRef]
- Choi, J.; Kang, W. A Dynamic Examination of Motives for Using Social Media and Social Media Usage among Undergraduate Students: A Latent Class Analysis. Procedia Soc. Behav. Sci. 2014, 131, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis—With Applications in the Social, Behavioral and Health Sciences; Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Tomczyk, S.; Schomerus, G.; Stolzenburg, S.; Muehlan, H.; Schmidt, S. Who is seeking whom? A person-centred approach to help-seeking in adults with untreated mental health problems via latent class analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Smyth, J.M.; Stone, A.A. Ecological Momentary Assessment Research in Behavioral Medicine. J. Happiness Stud. 2003, 4, 35–52. [Google Scholar] [CrossRef]
- Markwart, H.; Vitera, J.; Lemanski, S.; Kietzmann, D.; Brasch, M.; Schmidt, S. Warning messages to modify safety behavior during crisis situations: A virtual reality study. Int. J. Disaster Risk Reduct. 2019, 38, 101235. [Google Scholar] [CrossRef]
- Duarte, E.; Rebelo, F.; Wogalter, M.S. Virtual reality and its potential for evaluating warning compliance. Hum. Factors Ergon. Manuf. Serv. Ind. 2010, 20, 526–537. [Google Scholar] [CrossRef]
- Tomczyk, S.; Rahn, M.; Markwart, H.; Schmidt, S. A walk in the park? Examining the impact of app-based weather warnings on affective reactions and the search for information in a virtual city. Int. J. Environ. Res. Public Health 2021, 18, 8353. [Google Scholar] [CrossRef]
Traditional Media (n = 76) | New Media (n = 123) | Traditional + New (n = 414) | Comparisons between Groups * | |
---|---|---|---|---|
Sex Female Male | 42 (55.26) 34 (44.74) | 82 (66.67) 41 (33.33) | 265 (64.01) 149 (35.99) | χ2 (2) = 2.80, p = 0.246 |
Age | 48.39 (26.06) | 25.37 (9.01) | 30.51 (15.25) | F (2, 580) = 49.09, p < 0.001 |
Level of education Lower secondary Higher secondary | 37 (48.68) 39 (51.32) | 23 (18.70) 99 (81.30) | 80 (19.32) 334 (80.68) | χ2 (2) = 32.91, p = < 0.001 |
Residential area Rural Town Small city City | 18 (23.68) 18 (23.68) 32 (42.11) 8 (10.53) | 15 (12.20) 20 (16.26) 62 (50.41) 26 (21.14) | 74 (17.87) 76 (18.36) 156 (37.68) 108 (26.09) | χ2 (6) = 15.90, p < 0.05 |
Country of origin Germany Other | 62 (81.585) 14 (18.42) | 90 (73.17) 33 (26.83) | 338 (81.64) 76 (18.36) | χ2 (2) = 4.39, p = 0.111 |
Trait anxiety (STAI-T) 1 | 41.08 (10.88) | 42.24 (10.43) | 40.61 (10.56) | F (2, 580) = 1.08, p = 0.340 |
Worry (PSWQ) 2 | 7.10 (3.28) | 7.33 (2.76) | 7.21 (2.74) | F (2, 580) = 0.16, p = 0.854 |
Media channels TV Radio Newspaper Online news Social media Apps Push | 55 (72.37) 62 (81.58) 32 (42.11) - - - - | - - - 82 (66.67) 76 (61.79) 53 (43.09) 41 (33.33) | 306 (73.91) 322 (77.78) 127 (30.68) 331 (79.95) 238 (57.49) 159 (38.41) 98 (23.67) | Two-group comparisons: χ2 (1) = 0.08, p = 0.779 χ2 (1) = 0.55, p = 0.459 χ2 (1) = 3.83, p = 0.050 χ2 (1) = 9.42, p < 0.01 χ2 (1) = 0.72, p = 0.395 χ2 (1) = 0.87, p = 0.351 χ2 (1) = 4.61, p < 0.05 |
Trust in media channels 3 | ||||
TV Radio Newspaper Online news Social media Apps Push | 4.16 (1.11) 4.19 (0.95) 3.67 (1.24) 2.94 (1.27) 2.00 (0.99) 2.49 (1.09) 2.65 (1.22) | 3.44 (1.13) 3.87 (0.98) 3.34 (1.23) 3.47 (0.90) 2.67 (1.01) 3.32 (1.15) 3.35 (1.26) | 4.07 (0.95) 4.12 (0.93) 3.82 (1.01) 3.54 (0.93) 2.50 (0.98) 3.17 (1.11) 3.18 (1.15) | F (2, 610) = 20.32, p < 0.001 F (2, 610) = 4.10, p < 0.05 F (2, 610) = 9.46, p < 0.001 F (2, 610) = 12.48, p < 0.001 F (2, 610) = 11.35, p < 0.001 F (2, 610) = 14.68, p < 0.001 F (2, 610) = 8.67, p < 0.001 |
New Media vs. Traditional Media RRR [95% CI] * | Traditional + New vs. Traditional Media RRR [95% CI] * | Traditional + New vs. New Media RRR [95% CI] * | |
---|---|---|---|
Sex (ref. female) | 1.46 [0.68; 3.14] | 1.16 [0.62; 2.16] | 0.79 [0.48; 1.31] |
Age | 0.94 [0.92; 0.96] | 0.96 [0.95; 0.98] | 1.01 [1.01; 1.03] |
Level of education (ref. lower secondary) | 2.59 [1.10; 6.06] | 2.43 [1.24; 4.76] | 0.94 [0.51; 1.74] |
Residential area (ref. rural) Town Small city City | 1.04 [0.32; 3.41] 1.55 [0.54; 4.46] 1.39 [0.40; 4.89] | 0.81 [0.32; 2.06] 0.73 [0.31; 1.71] 1.24 [0.44; 3.55] | 0.77 [0.34; 1.77] 0.47 [0.23; 0.97] 0.89 [0.40; 1.99] |
Country of origin (ref. Germany) | 2.81 [1.11; 7.08] | 1.54 [0.68; 3.49] | 0.55 [0.33; 0.93] |
Trait anxiety (STAI-T) 1 | 0.99 [0.94; 1.04] | 0.98 [0.95; 1.03] | 0.99 [0.96; 1.02] |
Worry (PSWQ) 2 | 0.99 [0.83; 1.18] | 1.05 [0.91; 1.22] | 1.07 [0.96; 1.20] |
Trust in media channels TV Radio Newspaper Online news Social media Apps Push | 0.35 [0.20; 0.61] 1.06 [0.62; 1.81] 0.93 [0.58; 1.49] 2.52 [1.59; 4.00] 1.31 [0.85; 2.02] 1.52 [1.03; 2.23] 1.11 [0.78; 1.58] | 0.78 [0.47; 1.27] 0.78 [0.49; 1.26] 1.06 [0.71; 1.58] 2.08 [1.41; 3.06] 1.06 [0.72; 1.54] 1.42 [1.03; 1.95] 0.95 [0.71; 1.28] | 2.24 [1.59; 3.15] 0.74 [0.54; 1.01] 1.14 [0.85; 1.53] 0.83 [0.62; 1.11] 0.81 [0.63; 1.04] 0.93 [0.73; 1.19] 0.86 [0.68; 1.08] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, S.; Rahn, M.; Schmidt, S. Sociodemographic and Psychosocial Profiles of Multi-Media Use for Risk Communication in the General Population. Int. J. Environ. Res. Public Health 2022, 19, 12777. https://doi.org/10.3390/ijerph191912777
Tomczyk S, Rahn M, Schmidt S. Sociodemographic and Psychosocial Profiles of Multi-Media Use for Risk Communication in the General Population. International Journal of Environmental Research and Public Health. 2022; 19(19):12777. https://doi.org/10.3390/ijerph191912777
Chicago/Turabian StyleTomczyk, Samuel, Maxi Rahn, and Silke Schmidt. 2022. "Sociodemographic and Psychosocial Profiles of Multi-Media Use for Risk Communication in the General Population" International Journal of Environmental Research and Public Health 19, no. 19: 12777. https://doi.org/10.3390/ijerph191912777
APA StyleTomczyk, S., Rahn, M., & Schmidt, S. (2022). Sociodemographic and Psychosocial Profiles of Multi-Media Use for Risk Communication in the General Population. International Journal of Environmental Research and Public Health, 19(19), 12777. https://doi.org/10.3390/ijerph191912777