Escapism and Excessive Online Behaviors: A Three-Wave Longitudinal Study in Finland during the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. Escapism and Excessive Gambling
1.2. Escapism and Excessive Gaming
1.3. Escapism and Excessive Internet Use
1.4. This Study
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Dependent Variables
2.2.2. Independent Variable
2.2.3. Control Variables
2.3. Statistical Methods
3. Results
4. Discussion
4.1. Main Findings
4.2. Theoretical and Empirical Implications
4.3. Practical Implications
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sublette, V.A.; Mullan, B. Consequences of play: A systematic review of the effects of online gaming. Int. J. Ment. Health Addict. 2012, 10, 3–23. [Google Scholar] [CrossRef]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol Abus. 2010, 36, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; Rehbein, F.; Ko, C.H.; O’Brien, C.P. Internet gaming disorder in the DSM-5. Curr. Psychiatry Rep. 2015, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sleczka, P.; Braun, B.; Piontek, D.; Bühringer, G.; Kraus, L. DSM-5 criteria for gambling disorder: Underlying structure and applicability to specific groups of gamblers. J. Behav. Addict. 2015, 4, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Delfabbro, P.; King, D.L. Gaming-gambling convergence: Evaluating evidence for the ‘gateway’ hypothesis. Int. Gambl. Stud. 2020, 20, 380–392. [Google Scholar] [CrossRef]
- Baumeister, R.F. Escaping the Self. Alcoholism, Spirituality, Masochism, and Other Flights from the Burden of Selfhood, 1st ed.; Basic Books: New York, NY, USA, 1991. [Google Scholar]
- Jarman, H.K.; Marques, M.D.; McLean, S.A.; Slater, A.; Paxton, S.J. Motivations for social media use: Associations with social media engagement and body satisfaction and well-being among adolescents. J. Youth Adolesc. 2021, 50, 2279–2293. [Google Scholar] [CrossRef]
- Liu, F.; Deng, H.; Zhang, Q.; Fang, Q.; Liu, B.; Yang, D.; Tian, X.; Wang, X. Symptoms of internet gaming disorder among male college students in Nanchong, China. BMC Psychiatry 2022, 22, 142. [Google Scholar] [CrossRef]
- Stenseng, F.; Falch-Madsen, J.; Hygen, B.W. Are there two types of escapism? Exploring a dualistic model of escapism in digital gaming and online streaming. Psychol. Pop. Media 2021, 10, 319–329. [Google Scholar] [CrossRef]
- Weiss, T.; Schiele, S. Virtual worlds in competitive contexts: Analyzing eSports consumer needs. Electron. Mark. 2013, 23, 307–316. [Google Scholar] [CrossRef]
- Kuss, D.J.; Louws, J.; Wiers, R.W. Online gaming addiction? Motives predict addictive play behavior in massively multiplayer online role-playing games. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Sauter, M.; Braun, T.; Mack, W. Social context and gaming motives predict mental health better than time played: An exploratory regression analysis with over 13,000 video game players. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Gil-Or, O.; Yossi, L.-B.; Ofir, T. The “Facebook-self”: Characteristics and psychological predictors of false self-presentation on Facebook. Front. Psychol. 2015, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Tobin, S.J.; Chant, G.; Clay, R. Interpersonal goals as predictors of Facebook use, social capital, and envy. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, G.E.; Ksendzova, M.; Howell, R.T.; Vohs, K.D.; Baumeister, R.F. Buying to blunt negative feelings: Materialistic escape from the self. Rev. Gen. Psychol. 2016, 20, 272–316. [Google Scholar] [CrossRef]
- Murch, W.S.; Limbrick-Oldfield, E.H.; Ferrari, M.A.; MacDonald, K.I.; Fooken, J.; Cherkasova, M.V.; Spering, M.; Clark, L. Zoned in or zoned out? Investigating immersion in slot machine gambling using mobile eye-tracking. Addiction 2020, 115, 1127–1138. [Google Scholar] [CrossRef]
- Shead, W.N.; Hodgins, D.C. Affect-regulation expectancies among gamblers. J. Gambl. Stud. 2009, 25, 357–375. [Google Scholar] [CrossRef]
- Stewart, M.J.; MacNevin, P.L.D.; Hodgins, D.C.; Barrett, S.P.; Swansburg, J.; Stewart, S.H. Motivation-matched approach to the treatment of problem gambling: A case series pilot study. J. Gambl. Issues 2016, 33, 124–147. [Google Scholar] [CrossRef]
- Browne, M.; Hing, N.; Rockloff, M.; Russell, A.M.; Greer, N.; Nicoll, F.; Smith, G. A multivariate evaluation of 25 proximal and distal risk-factors for gambling-related harm. J. Clin. Med. 2019, 8, 509. [Google Scholar] [CrossRef]
- Flack, M.; Morris, M. Problem gambling: One for the money…? J. Gambl. Stud. 2015, 31, 1561–1578. [Google Scholar] [CrossRef]
- Hing, N.; Breen, H.; Gordon, A.; Russell, A. Gambling behaviour and gambling risk factors for Indigenous Australian women. Int. J. Ment. Health Addict. 2014, 12, 1–20. [Google Scholar] [CrossRef]
- Hing, N.; Russell, A.; Tolchard, B.; Nower, L. Risk factors for gambling problems: An analysis by gender. J. Gambl. Stud. 2016, 32, 511–534. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.M.; Neighbors, C.; Rinker, D.V.; Tackett, J.L. Motivational profiles of gambling behavior: Self-determination theory, gambling motives, and gambling behavior. J. Gambl. Stud. 2015, 31, 1597–1615. [Google Scholar] [CrossRef]
- Nower, L.; Blaszczynski, A. Gambling motivations, money-limiting strategies, and precommitment preferences of problem versus non-problem gamblers. J. Gambl. Stud. 2010, 26, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Bernhard, B.J.; Kim, J.; Fong, T.; Lee, T.K. Differential gambling motivations and recreational activity preferences among casino gamblers. J. Gambl. Stud. 2015, 31, 1833–1847. [Google Scholar] [CrossRef] [PubMed]
- Mulkeen, J.; Abdou, H.A.; Parke, J. A three stage analysis of motivational and behavioural factors in UK internet gambling. Pers. Individ. Differ. 2017, 107, 114–125. [Google Scholar] [CrossRef]
- Fang, X.; Mowen, J.C. Examining the trait and functional motive antecedents of four gambling activities: Slot machines, skilled card games, sports betting, and promotional games. J. Consum. Mark. 2009, 26, 121–131. [Google Scholar] [CrossRef]
- Surujlal, J.; Akinwale, Y. Socio-economic analysis of choice of gambling type among South African university students: An ordered logit model. International Information Institute (Tokyo). Information 2017, 20, 7159–7170. [Google Scholar]
- Yee, N. Motivations for play in online games. Cyberpsychol. Behav. 2006, 9, 772–775. [Google Scholar] [CrossRef]
- Biegun, J.; Edgerton, J.D.; Roberts, L.W. Measuring problem online video gaming and its association with problem gambling and suspected motivational, mental health, and behavioral risk factors in a sample of university students. Games Cult. 2021, 16, 434–456. [Google Scholar] [CrossRef]
- Kaczmarek, L.D.; Drążkowski, D. MMORPG escapism predicts decreased well-being: Examination of gaming time, game realism beliefs, and online social support for offline problems. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.M.; Lai, M.H.; Yu, S.; Lau, J.T.; Lei, M.W. Motives for online gaming questionnaire: Its psychometric properties and correlation with Internet gaming disorder symptoms among Chinese people. J. Behav. Addict. 2016, 6, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deleuze, J.; Maurage, P.; Schimmenti, A.; Nuyens, F.; Melzer, A.; Billieux, J. Escaping reality through videogames is linked to an implicit preference for virtual over real-life stimuli. J. Affect. Disord. 2019, 245, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Bányai, F.; Griffiths, M.D.; Demetrovics, Z.; Király, O. The mediating effect of motivations between psychiatric distress and gaming disorder among esport gamers and recreational gamers. Compr. Psychiatry 2019, 94, 152117. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D. The moderating role of psychosocial well-being on the relationship between escapism and excessive online gaming. Comput. Hum. Behav. 2014, 38, 68–74. [Google Scholar] [CrossRef]
- Kwon, J.H.; Chung, C.S.; Lee, J. The effects of escape from self and interpersonal relationship on the pathological use of Internet games. Community Ment. Health J. 2011, 47, 113–121. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H.; Billieux, J.; Potenza, M.N. Problematic online gaming and the COVID-19 pandemic. J. Behav. Addict. 2020, 9, 184–186. [Google Scholar] [CrossRef]
- Hall, L.C.; Drummond, A.; Sauer, J.D.; Ferguson, C.J. Effects of self-isolation and quarantine on loot box spending and excessive gaming—Results of a natural experiment. PeerJ 2021, 9, e10705. [Google Scholar] [CrossRef]
- Bengtsson, T.T.; Bom, L.H.; Fynbo, L. Playing apart together: Young people’s online gaming during the COVID-19 lockdown. Young 2021, 29, 65–80. [Google Scholar] [CrossRef]
- Melodia, F.; Canale, N.; Griffiths, M.D. The role of avoidance coping and escape motives in problematic online gaming: A systematic literature review. Int. J. Ment. Health Addict. 2020, 996–1022. [Google Scholar] [CrossRef]
- Eichenberg, C.; Schott, M.; Decker, O.; Sindelar, B. Attachment style and internet addiction: An online survey. J. Med. Internet Res. 2017, 19, e170. [Google Scholar] [CrossRef]
- Koo, H.J.; Kwon, J.H. Risk and protective factors of internet addiction: A meta-analysis of empirical studies in Korea. Yonsei Med. J. 2014, 55, 1691–1711. [Google Scholar] [CrossRef] [Green Version]
- Ohno, S. Internet escapism and addiction among Japanese senior high school students. Int. J. Cult. Ment. Health 2016, 9, 399–406. [Google Scholar] [CrossRef]
- Casale, S.; Caplan, S.E.; Fioravanti, G. Positive metacognitions about Internet use: The mediating role in the relationship between emotional dysregulation and problematic use. Addict. Behav. 2016, 59, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Hsieh, G.M.; Lin, S.S. The mediation effects of gaming motives between game involvement and problematic Internet use: Escapism, advancement and socializing. Comput. Educ. 2018, 122, 43–53. [Google Scholar] [CrossRef]
- Fernandes, B.; Biswas, U.N.; Mansukhani, R.T.; Casarín, A.V.; Essau, C.A. The impact of COVID-19 lockdown on internet use and escapism in adolescents. Rev. Psicol. Clin. Con. Ninos. Adolesc. 2020, 7, 59–65. [Google Scholar] [CrossRef]
- Ferris, J.A.; Wynne, H.J. The Canadian Problem Gambling Index: Final Report; Canadian Centre on Substance Abuse: Ottawa, ON, Canada, 2001. [Google Scholar]
- Holtgraves, T. Evaluating the problem gambling severity index. J. Gambl. Stud. 2009, 25, 105–120. [Google Scholar] [CrossRef]
- Castrén, S.; Perhoniemi, R.; Kontto, J.; Alho, H.; Salonen, A.H. Association between gambling harms and game types: Finnish population study. Int. Gambl. Stud. 2018, 18, 124–142. [Google Scholar] [CrossRef]
- Raisamo, S.U.; Mäkelä, P.; Salonen, A.H.; Lintonen, T.P. The extent and distribution of gambling harm in Finland as assessed by the Problem Gambling Severity Index. Eur. J. Public Health 2015, 25, 716–722. [Google Scholar] [CrossRef]
- Salonen, A.H.; Alho, H.; Castrén, S. Attitudes towards gambling, gambling participation, and gambling-related harm: Cross-sectional Finnish population studies in 2011 and 2015. BMC Public Health 2017, 17, 122. [Google Scholar] [CrossRef]
- Salonen, A.; Hagfors, H.; Lind, K.; Kontto, J. Gambling and Problem Gambling: Finnish Gambling 2019: Prevalence of At-Risk Gambling Has Decreased; Statistical Report 9/2020; THL: Helsinki, Finland, 2020. [Google Scholar]
- Király, O.; Bőthe, B.; Ramos-Diaz, J.; Rahimi-Movaghar, A.; Lukavska, K.; Hrabec, O.; Miovsky, M.; Billieux, J.; Deleuze, J.; Nuyens, F.; et al. Ten-Item Internet Gaming Disorder Test (IGDT-10): Measurement invariance and cross-cultural validation across seven language-based samples. Psychol. Addict. Behav. 2019, 33, 91–103. [Google Scholar] [CrossRef]
- Männikkö, N.; Ruotsalainen, H.; Tolvanen, A.; Kääriäinen, M. Psychometric properties of the Internet Gaming Disorder Test (IGDT-10) and problematic gaming behavior among Finnish vocational school students. Scand. J. Psychol. 2019, 60, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, I.; Vuorinen, I.; Sirola, A.; Oksanen, A. Gambling and gaming during COVID-19: The role of mental health and social motives in gambling and gaming problems. Compr Psychiatry 2022, 117, 152331. [Google Scholar] [CrossRef]
- Vuorinen, I.; Savolainen, I.; Hagfors, H.; Oksanen, A. Basic psychological needs in gambling and gaming problems. Addict. Behav. Rep. 2022, 16, 100445. [Google Scholar] [CrossRef] [PubMed]
- Meerkerk, G.J.; Van Den Eijnden, R.J.; Vermulst, A.A.; Garretsen, H.F. The compulsive internet use scale (CIUS): Some psychometric properties. Cyberpsychol. Behav. 2009, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dhir, A.; Chen, S.; Nieminen, M. Psychometric validation of the compulsive internet use scale: Relationship with adolescents’ demographics, ICT accessibility, and problematic ICT use. Soc. Sci. Comput. Rev. 2016, 34, 197–214. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Griffiths, M.D.; Kuss, D.J.; Dawes, C.; Pontes, H.M.; Justice, L.; Rumpf, H.-J.; Bischof, A.; Gässler, A.-K.; Suryani, E.; et al. Cross-cultural validation of the compulsive internet use scale in four forms and eight languages. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Hagström, D.; Kaldo, V. Escapism among players of MMORPGs—Conceptual clarification, its relation to mental health factors, and development of a new measure. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 19–25. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bush, K.; Kivlahan, D.R.; McDonell, M.B.; Fihn, S.D.; Bradley, K.A. Ambulatory Care Quality Improvement Project (ACQUIP. (1998). The AUDIT alcohol consumption questions (AUDIT-C): An effective brief screening test for problem drinking. Arch. Intern. Med. 1998, 158, 1789–1795. [Google Scholar] [CrossRef]
- Aalto, M.; Alho, H.; Halme, J.T.; Seppä, K. AUDIT and its abbreviated versions in detecting heavy and binge drinking in a general population survey. Drug Alcohol Depend. 2009, 1, 25–29. [Google Scholar] [CrossRef]
- Bradley, K.A.; Bush, K.R.; Epler, A.J.; Dobie, D.J.; Davis, T.M.; Sporleder, J.L.; Maynard, C.; Burman, M.L.; Kivlahan, D.R. Two Brief Alcohol-Screening Tests from the Alcohol Use Disorders Identification Test (AUDIT): Validation in a Female Veterans Affairs Patient Population. Arch. Intern. Med. 2003, 163, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, D.A.; Grant, B.F.; Stinson, F.S.; Zhou, Y. Effectiveness of the derived Alcohol Use Disorders Identification Test (AUDIT-C) in screening for alcohol use disorders and risk drinking in the US general population. Alcohol Clin. Exp. Res. 2005, 29, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Levola, J.; Aalto, M. Screening for at-risk drinking in a population reporting symptoms of depression: A validation of the AUDIT, AUDIT-C, and AUDIT-3. Alcohol Clin. Exp. Res. 2015, 39, 1186–1192. [Google Scholar] [CrossRef]
- Oksanen, A.; Savolainen, I.; Savela, N.; Oksa, R. Psychological stressors predicting increased drinking during the COVID-19 crisis: A longitudinal national survey study of workers in Finland. Alcohol Alcohol. 2021, 56, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Holmila, M. Intoxication and hazardous use of alcohol: Results from the 1992 Finnish Drinking Habits Study. Addiction 1995, 90, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Lintonen, T.; Niemelä, S.; Mäkelä, P. Alkoholinkäytön hälytysrajan ylittäviä käyttäjiä on Suomessa vähintään viisi prosenttia väestöstä At least five percent of the Finnish population are high risk alcohol users. Results from the Drinking Habits Survey 2016. Duodecim 2019, 135, 1459–1466. [Google Scholar]
- Berwick, D.M.; Murphy, J.M.; Goldman, P.A.; Ware, J.E., Jr.; Barsky, A.J.; Weinstein, M.C. Performance of a five-item mental health screening test. Med. Care 1991, 169–176. [Google Scholar] [CrossRef]
- Cuijpers, P.; Smits, N.; Donker, T.; ten Have, M.; de Graaf, R. Screening for mood and anxiety disorders with the five-item, the three-item, and the two-item Mental Health Inventory. Psychiatry Res. 2009, 168, 250–255. [Google Scholar] [CrossRef]
- Elovainio, M.; Hakulinen, C.; Pulkki-Råback, L.; Aalto, A.-M.; Virtanen, M.; Partonen, T.; Suvisaari, J. General Health Questionnaire (GHQ-12), Beck Depression Inventory (BDI-6), and Mental Health Index (MHI-5): Psychometric and predictive properties in a Finnish population-based sample. Psychiatry Res. 2020, 289, 112973. [Google Scholar] [CrossRef]
- Schunck, R.; Perales, F. Within-and between-cluster effects in generalized linear mixed models: A discussion of approaches and the xthybrid command. Stata J. 2017, 17, 89–115. [Google Scholar] [CrossRef]
- Vohs, K.D.; Baumeister, R.R. Can satisfaction reinforce wanting? A new theory about long-term changes in strength of motivation. In Handbook of Motivation Science; Shah, J.Y., Gardner, W.L., Eds.; Guilford Press: New York, NY, USA, 2008; pp. 371–389. [Google Scholar]
- Fauth-Bühler, M.; Mann, K. Neurobiological correlates of internet gaming disorder: Similarities to pathological gambling. Addict. Behav. 2017, 64, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Teichert, T.; Gainsbury, S.M.; Mühlbach, C. Positioning of online gambling and gaming products from a consumer perspective: A blurring of perceived boundaries. Comput. Hum. Behav. 2017, 75, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Gainsbury, S.M.; King, D.L.; Russell, A.M.; Delfabbro, P.; Hing, N. Virtual addictions: An examination of problematic social casino game use among at-risk gamblers. Addict. Behav. 2017, 64, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, R.F.; Bratslavsky, E.; Finkenauer, C.; Vohs, K.D. Bad is stronger than good. Rev. Gen. Psychol. 2001, 5, 323–370. [Google Scholar] [CrossRef]
Zero Order Correlations at T1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Continuous Variables | Range | T1, M (SD) | T2, M (SD) | T3, M (SD) | 1 | 2 | 3 | 4 | 5 |
1. Escapism | 0–10 | 0.83 (1.72) | 0.82 (1.74) | 0.80 (1.75) | 1 | ||||
2. Excessive gambling | 0–27 | 1.15 (3.02) | 1.12 (2.98) | 1.11 (3.03) | 0.45 *** | 1 | |||
3. Excessive gaming | 0–16 | 1.12 (2.36) | 1.24 (2.52) | 1.10 (2.29) | 0.75 *** | 0.53 *** | 1 | ||
4. Excessive internet use | 0–53 | 7.95 (9.06) | 8.20 (9.65) | 7.85 (9.31) | 0.51 *** | 0.32 *** | 0.49 *** | 1 | |
5. Excessive drinking | 0–12 | 3.54 (2.71) | 3.46 (2.72) | 3.42 (2.72) | 0.09 ** | 0.17 *** | 0.08 * | 0.03 | 1 |
6. Distress | 5–30 | 12.24 (4.67) | 12.20 (4.58) | 12.28 (4.428) | 0.42 *** | 0.24 *** | 0.31 *** | 0.43 *** | 0.07 * |
Excessive Gambling | Excessive Gaming | Excessive Internet Use | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE (B) | 95 % | CI | Z | p | B | SE (B) | 95 % | CI | Z | p | B | SE (B) | 95 % | CI | Z | p | |
Within-person effects | ||||||||||||||||||
Escapism | 0.18 | 0.06 | 0.06 | 0.29 | 2.93 | 0.003 | 0.50 | 0.05 | 0.41 | 0.60 | 10.08 | <0.001 | 0.77 | 0.14 | 0.49 | 1.05 | 5.41 | <0.001 |
Excessive gambling | - | - | - | - | - | - | 0.21 | 0.04 | 0.13 | 0.29 | 4.93 | <0.001 | 0.53 | 0.12 | 0.28 | 0.77 | 4.22 | <0.001 |
Excessive gaming | 0.23 | 0.05 | 0.13 | 0.33 | 4.43 | <0.001 | - | - | - | - | - | - | 0.53 | 0.14 | 0.25 | 0.82 | 3.71 | <0.001 |
Excessive internet use | 0.04 | 0.01 | 0.02 | 0.06 | 4.11 | <0.001 | 0.04 | 0.01 | 0.02 | 0.06 | 4.03 | <0.001 | - | - | - | - | - | - |
Excessive drinking | 0.09 | 0.04 | 0.00 | 0.17 | 2.08 | 0.038 | −0.03 | 0.03 | −0.09 | 0.04 | −0.79 | 0.427 | 0.47 | 0.11 | 0.25 | 0.68 | 4.29 | <0.001 |
Distress | 0.00 | 0.01 | −0.03 | 0.02 | −0.16 | 0.876 | 0.02 | 0.01 | −0.01 | 0.04 | 1.40 | 0.162 | 0.13 | 0.04 | 0.05 | 0.22 | 3.02 | 0.003 |
Between-person effects | ||||||||||||||||||
Escapism | 0.20 | 0.19 | −0.17 | 0.56 | 1.07 | 0.285 | 0.91 | 0.05 | 0.81 | 1.02 | 17.22 | <0.001 | 0.61 | 0.29 | 0.04 | 1.19 | 2.09 | 0.036 |
Excessive gambling | - | - | - | - | - | - | 0.14 | 0.04 | 0.07 | 0.22 | 3.76 | <0.001 | 0.10 | 0.12 | −0.13 | 0.33 | 0.87 | 0.385 |
Excessive gaming | 0.59 | 0.14 | 0.32 | 0.86 | 4.26 | <0.001 | - | - | - | - | - | - | 1.30 | 0.19 | 0.92 | 1.67 | 6.73 | <0.001 |
Excessive internet use | 0.01 | 0.02 | −0.02 | 0.05 | 0.83 | 0.409 | 0.04 | 0.01 | 0.03 | 0.06 | 5.81 | <0.001 | - | - | - | - | - | - |
Excessive drinking | 0.13 | 0.04 | 0.06 | 0.21 | 3.47 | 0.001 | 0.00 | 0.01 | −0.03 | 0.03 | 0.20 | 0.840 | −0.07 | 0.08 | −0.23 | 0.10 | −0.81 | 0.419 |
Distress | 0.03 | 0.02 | −0.01 | 0.07 | 1.68 | 0.094 | −0.04 | 0.01 | −0.06 | −0.02 | −4.23 | <0.001 | 0.47 | 0.07 | 0.34 | 0.61 | 6.94 | <0.001 |
Controls | ||||||||||||||||||
Male | 0.03 | 0.15 | −0.27 | 0.33 | 0.19 | 0.846 | 0.28 | 0.08 | 0.13 | 0.43 | 3.71 | <0.001 | −1.90 | 0.42 | −2.73 | −1.08 | −4.52 | <0.001 |
Age | 0.02 | 0.01 | 0.00 | 0.03 | 2.50 | 0.013 | 0.00 | 0.00 | −0.01 | 0.00 | −1.41 | 0.160 | −0.14 | 0.02 | −0.18 | −0.11 | −7.93 | <0.001 |
Master’s degree or higher | −0.30 | 0.14 | −0.57 | −0.02 | −2.11 | 0.035 | −0.08 | 0.08 | −0.23 | 0.07 | −1.01 | 0.310 | 0.59 | 0.52 | −0.43 | 1.60 | 1.13 | 0.258 |
Working | 0.30 | 0.16 | −0.01 | 0.60 | 1.89 | 0.059 | −0.02 | 0.08 | −0.18 | 0.15 | −0.21 | 0.835 | −0.69 | 0.47 | −1.61 | 0.24 | −1.45 | 0.146 |
High income | −0.06 | 0.21 | −0.31 | 0.76 | −0.47 | 0.342 | −0.04 | 0.09 | −0.23 | 0.14 | −0.45 | 0.652 | −0.19 | 0.49 | −1.15 | 0.77 | −0.40 | 0.691 |
In official relationship | −0.12 | 0.16 | −0.76 | 0.45 | −0.42 | 0.187 | −0.05 | 0.08 | −0.20 | 0.11 | −0.59 | 0.554 | −0.63 | 0.44 | −1.50 | 0.24 | −1.41 | 0.158 |
Children | 0.17 | 0.17 | −0.15 | 0.50 | 1.03 | 0.304 | 0.10 | 0.09 | −0.07 | 0.27 | 1.17 | 0.243 | 0.97 | 0.45 | 0.09 | 1.84 | 2.16 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouhki, H.; Savolainen, I.; Sirola, A.; Oksanen, A. Escapism and Excessive Online Behaviors: A Three-Wave Longitudinal Study in Finland during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 12491. https://doi.org/10.3390/ijerph191912491
Jouhki H, Savolainen I, Sirola A, Oksanen A. Escapism and Excessive Online Behaviors: A Three-Wave Longitudinal Study in Finland during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2022; 19(19):12491. https://doi.org/10.3390/ijerph191912491
Chicago/Turabian StyleJouhki, Hannu, Iina Savolainen, Anu Sirola, and Atte Oksanen. 2022. "Escapism and Excessive Online Behaviors: A Three-Wave Longitudinal Study in Finland during the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 19, no. 19: 12491. https://doi.org/10.3390/ijerph191912491
APA StyleJouhki, H., Savolainen, I., Sirola, A., & Oksanen, A. (2022). Escapism and Excessive Online Behaviors: A Three-Wave Longitudinal Study in Finland during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(19), 12491. https://doi.org/10.3390/ijerph191912491