The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Anthropometric Measurements
2.3. Criteria for Obesity/Sarcopenia Diagnosis and Premature Mortality Risk
2.4. Statistical Analysis
3. Results
3.1. Correlations between Indices Determining Obesity with Anthropometric Parameters and Premature Mortality Risk
3.2. Assessment of Anthropometric Parameters and Indices Based on the Distribution of Participants According to Defined Cut-Offs of Variables Determining Obesity
3.3. Assessment of Risk of Premature Mortality Based on the Distribution of Participants according to Defined Cut-Offs of Variables Determining Obesity
3.4. Assessment of the Obese Young Women Group According to Different Anthropometric Parameters and Indices Based on Adjusted Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, M.; Leitzmann, M.; Freisling, H.; Bray, F.; Romieu, I.; Renehan, A.; Soerjomataram, I. Obesity and cancer: An update of the global impact. Cancer Epidemiol. 2016, 41, 8–15. [Google Scholar] [CrossRef] [PubMed]
- WHO European Regional Obesity Report 2022. Copenhagen: WHO Regional Office for Europe; 2022. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf (accessed on 7 July 2022).
- Yu, J.Y.; Choi, W.J.; Lee, H.S.; Lee, J.W. Relationship between inflammatory markers and visceral obesity in obese and overweight Korean adults: An observational study. Medicine 2019, 98, e14740. [Google Scholar] [CrossRef] [PubMed]
- Iliodromiti, S.; Celis-Morales, C.A.; Lyall, D.M.; Anderson, J.; Gray, S.R.; Mackay, D.F.; Nelson, S.M.; Welsh, P.; Pell, J.P.; Gill, J.M.R.; et al. The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: A cohort study of 296,535 adults of white European descent. Eur. Heart J. 2018, 39, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M.; Laufs, U. New concepts for body shape-related cardiovascular risk: Role of fat distribution and adipose tissue function. Eur. Heart J. 2019, 40, 2856–2858. [Google Scholar] [CrossRef]
- Chen, G.C.; Arthur, R.; Iyengar, N.M.; Kamensky, V.; Xue, X.; Wassertheil-Smoller, S.; Allison, M.A.; Shadyab, A.H.; Wild, R.A.; Sun, Y.; et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur. Heart J. 2019, 40, 2849–2855. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F. Clinical assessment and management of adult obesity. Circulation 2012, 126, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Dmitruk, A.; Czeczelewski, J.; Czeczelewska, E.; Golach, J.; Parnicka, U. Body composition and fatty tissue distribution in women with various menstrual status. Rocz. Panstw. Zakl. Hig. 2018, 69, 95–101. [Google Scholar]
- Liu, M.M.; Liu, Q.J.; Wen, J.; Wang, M.; Wu, L.Y.; Qu, M.L.; Li, M.; Shen, M.X.; Wu, J. Waist-to-hip ratio is the most relevant obesity index at each phase of insulin secretion among obese patients. J. Diabetes Complicat. 2018, 32, 670–676. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Müller, M.J. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease—There is need for a unified definition. Int. J. Obes. 2015, 39, 379–386. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Scherzer, R.; Pietrobelli, A.; Lewis, C.E.; Grunfeld, C. Body Mass Index as a phenotypic expression of adiposity: Quantitative contribution of muscularity in a population-based sample. Int. J. Obes. 2009, 33, 1363–1373. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): Association with mortality in NHANES 1999–2014. Int. J. Obes. 2020, 44, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.A.; Chen, H.; Saldana, S.; Bertoni, A.G.; Effoe, V.S.; Hairston, K.G.; Kalyani, R.R.; Norwood, A.F. Comparison of Measures of Adiposity and Cardiovascular Disease Risk Factors Among African American Adults: The Jackson Heart Study. J. Racial. Ethn. Health Disparities 2018, 5, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Gruson, E.; Montaye, M.; Kee, F.; Wagner, A.; Bingham, A.; Ruidavets, J.B.; Haas, B.; Evans, A.; Ferrières, J.; Ducimetière, P.P.; et al. Anthropometric assessment of abdominal obesity and coronary heart disease risk in men: The PRIME study. Heart 2010, 96, 136–140. [Google Scholar] [CrossRef]
- Chang, Y.; Guo, X.; Chen, Y.; Guo, L.; Li, Z.; Yu, S.; Yang, H.; Sun, Y. A body shape index and body roundness index: Two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health 2015, 15, 794. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. Dynamic association of mortality hazard with body shape. PLoS ONE 2014, 9, e88793. [Google Scholar] [CrossRef]
- Dhana, K.; Koolhas, C.; Schoufour, J.; Rivadeneira, F.; Hofman, A.; Kavousi, M.; Franco, O.H. Association of anthropometric measures with fat and fat-free mass in the elderly: The Rotterdam study. Maturitas 2016, 88, 96–100. [Google Scholar] [CrossRef]
- Chung, W.; Park, C.G.; Ryu, O.H. Association of a New Measure of Obesity with Hypertension and Health-Related Quality of Life. PLoS ONE 2016, 11, e0155399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Xu, Y. Association of sarcopenic obesity with the risk of all-cause mortality: A meta-analysis of prospective cohort studies. Geriatr. Gerontol. Int. 2016, 16, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Wells, J.C.; Smith, S.R.; Stephan, B.C.; Siervo, M. Sarcopenic obesity: A critical appraisal of the current evidence. Clin. Nutr. 2012, 31, 583–601. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Amato, M.C.; Guarnotta, V.; Giordano, C. Body composition assessment for the definition of cardiometabolic risk. J. Endocrinol. Investig. 2013, 36, 537–543. [Google Scholar] [CrossRef]
- Stankovičová, T.; Čorejová, A.; Foltánová, T.; Hrabovská, A.; Jankyová, S.; Klimas, J.; Kovácsová, B.; Kráľová, E.; Musil, P.; Vavrinec, P.; et al. Anatomy and Physiology, 1st ed.; UK in Bratislava, 2015; ISBN 978-80-223-3944-5. Available online: https://www.fpharm.uniba.sk/fileadmin/faf/Pracoviska-subory/KFT/Anat_fyz/fyziologia_skripta_web.pdf (accessed on 30 July 2022).
- Skrzypczak, M.; Szwed, A.; Pawlińska-Chmara, R.; Skrzypulec, V. Assessment of the BMI, WHR and W/Ht in pre- and post-menopausal women. Anthropol. Rev. 2007, 70, 3–13. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- World Health Organization. Obesity and Overweight. 2020. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 July 2022).
- Diet, Anthropometry and Physical Activity Measurement Toolkit. Available online: https://dapa-toolkit.mrc.ac.uk/anthropometry/introduction/anthropometry (accessed on 29 July 2022).
- Clinical Practice Guidelines for the Management of Overweight and Obesity in Adults. Canberra: National Health and Medical Research Council. Available online: https://www.nhmrc.gov.au/about-us/publications/clinical-practice-guidelines-managementoverweight-and-obesity (accessed on 14 June 2022).
- Gomez-Peralta, F.; Abreu, C.; Cruz-Bravo, M.; Alcarria, E.; Gutierrez-Buey, G.; Krakauer, N.Y.; Krakauer, J.C. Relationship between “a body shape index (ABSI)” and body composition in obese patients with type 2 diabetes. Diabetol. Metab. Syndr. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Kyle, U.G.; Pirlich, M.; Lochs, H.; Schuetz, T.; Pichard, C. Increased length of hospital stay in underweight and overweight patients at hospital admission: A controlled population study. Clin Nutr. 2005, 24, 133–142. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Pastore, C.A.; Orlandi, S.P.; Heymsfield, S.B. Obesity paradox in cancer: New insights provided by body composition. Am. J. Clin. Nutr. 2014, 99, 999–1005. [Google Scholar] [CrossRef]
- Gasier, H.G.; Hughes, L.M.; Young, C.R.; Richardson, A.M. Comparison of Body Composition Assessed by Dual-Energy X-ray Absorptiometry and BMI in Current and Former U.S. Navy Service Members. PLoS ONE 2015, 10, e0132157. [Google Scholar] [CrossRef]
- Gažarová, M.; Galšneiderová, M.; Mečiarová, L. Obesity diagnosis and mortality risk based on a body shape index (ABSI) and other indices and anthropometric parameters in university students. Rocz. Panstw. Zakl. Hig. 2019, 70, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Choo, V. WHO reassesses appropriate body-mass index for Asian populations. Lancet 2002, 360, 235. [Google Scholar] [CrossRef]
- Nimptsch, K.; Konigorski, S.; Pischon, T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism 2019, 92, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Sen, A.; Norat, T.; Janszky, I.; Romundstad, P.; Tonstad, S.; Vatten, L.J. Body Mass Index, Abdominal Fatness, and Heart Failure Incidence and Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Circulation 2016, 133, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chen, J.; Wang, J.; Gong, S.; Jin, H.; Sheng, P.; Qi, X.; Lv, L.; Dong, Y.; Hou, L. Body mass index and risk of brain tumors: A systematic review and dose-response meta-analysis. Eur. J. Clin. Nutr. 2016, 70, 757–765. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, S.Y.; Sun, X.N.; Xie, J.; Cui, Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz. J. Med. Biol. Res. 2012, 45, 591–600. [Google Scholar] [CrossRef]
- Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Thibault, R.; Genton, L.; Pichard, C. Body composition: Why, when and for who? Clin. Nutr. 2012, 31, 435–447. [Google Scholar] [CrossRef]
- Bigaard, J.; Frederiksen, K.; Tjønneland, A.; Thomsen, B.L.; Overvad, K.; Heitmann, B.L.; Sørensen, T.I. Body fat and fat-free mass and all-cause mortality. Obes. Res. 2004, 12, 1042–1049. [Google Scholar] [CrossRef]
- Vazquez, G.; Duval, S.; Jacobs, D.R., Jr.; Silventoinen, K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: A meta-analysis. Epidemiol. Rev. 2007, 29, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Balkau, B.; Deanfield, J.E.; Després, J.P.; Bassand, J.P.; Fox, K.A.; Smith, S.C.; Barter, P.; Tan, C.E.; Van Gaal, L.; Wittchen, H.U.; et al. International Day for the Evaluation of Abdominal Obesity (IDEA): A study of waist circumference, cardiovascular disease, and diabetes mellitus in 168,000 primary care patients in 63 countries. Circulation 2007, 116, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Bouchi, R.; Asakawa, M.; Ohara, N.; Nakano, Y.; Takeuchi, T.; Murakami, M.; Sasahara, Y.; Numasawa, M.; Minami, I.; Izumiyama, H.; et al. Indirect measure of visceral adiposity ‘A Body Shape Index’ (ABSI) is associated with arterial stiffness in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2016, 4, e000188. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Fujimoto, S.; Konta, T.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Narita, I.; Kondo, M.; Kasahara, M.; et al. Body shape index: Sex-specific differences in predictive power for all-cause mortality in the Japanese population. PLoS ONE 2017, 12, e0177779. [Google Scholar] [CrossRef]
- de Koning, L.; Merchant, A.T.; Pogue, J.; Anand, S.S. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: Meta-regression analysis of prospective studies. Eur. Heart J. 2007, 28, 850–856. [Google Scholar] [CrossRef]
- Yan, R.T.; Yan, A.T.; Anderson, T.J.; Buithieu, J.; Charbonneau, F.; Title, L.; Verma, S.; Lonn, E.M. The differential association between various anthropometric indices of obesity and subclinical atherosclerosis. Atherosclerosis 2009, 207, 232–238. [Google Scholar] [CrossRef]
- Ji, M.; Zhang, S.; An, R. Effectiveness of A Body Shape Index (ABSI) in predicting chronic diseases and mortality: A systematic review and meta-analysis. Obes. Rev. 2018, 19, 737–759. [Google Scholar] [CrossRef]
- Perona, J.S.; Schmidt Rio-Valle, J.; Ramírez-Vélez, R.; Correa-Rodríguez, M.; Fernández-Aparicio, Á.; González-Jiménez, E. Waist circumference and abdominal volume index are the strongest anthropometric discriminators of metabolic syndrome in Spanish adolescents. Eur. J. Clin. Investig. 2019, 49, e13060. [Google Scholar] [CrossRef]
- Schneider, H.J.; Friedrich, N.; Klotsche, J.; Pieper, L.; Nauck, M.; John, U.; Dörr, M.; Felix, S.; Lehnert, H.; Pittrow, D.; et al. The predictive value of different measures of obesity for incident cardiovascular events and mortality. J. Clin. Endocrinol. Metab. 2010, 95, 1777–1785. [Google Scholar] [CrossRef]
- Ashwell, M.; Mayhew, L.; Richardson, J.; Rickayzen, B. Waist-to-height ratio is more predictive of years of life lost than body mass index. PLoS ONE 2014, 9, e103483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Allison, D.B.; Kotler, D.P.; Ross, R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. Am. J. Clin. Nutr. 2002, 75, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Bozorgmanesh, M.; Sardarinia, M.; Hajsheikholeslami, F.; Azizi, F.; Hadaegh, F. CVD-predictive performances of “a body shape index” versus simple anthropometric measures: Tehran lipid and glucose study. Eur. J. Nutr. 2016, 55, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Biolo, G.; Di Girolamo, F.G.; Breglia, A.; Chiuc, M.; Baglio, V.; Vinci, P.; Toigo, G.; Lucchin, L.; Jurdana, M.; Pražnikar, Z.J.; et al. Inverse relationship between “a body shape index” (ABSI) and fat-free mass in women and men: Insights into mechanisms of sarcopenic obesity. Clin. Nutr. 2015, 34, 323–327. [Google Scholar] [CrossRef]
- Biolo, G.; Ciocchi, B.; Stulle, M.; Piccoli, A.; Lorenzon, S.; Dal Mas, V.; Barazzoni, R.; Zanetti, M.; Guarnieri, G. Metabolic consequences of physical inactivity. J. Ren. Nutr. 2005, 15, 49–53. [Google Scholar] [CrossRef]
- Lee, C.C.; Glickman, S.G.; Dengel, D.R.; Brown, M.D.; Supiano, M.A. Abdominal adiposity assessed by dual energy X-ray absorptiometry provides a sex-independent predictor of insulin sensitivity in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 872–877. [Google Scholar] [CrossRef]
- Dhana, K.; Kavousi, M.; Ikram, M.A.; Tiemeier, H.W.; Hofman, A.; Franco, O.H. Body shape index in comparison with other anthropometric measures in prediction of total and cause-specific mortality. J. Epidemiol. Community Health 2016, 70, 90–96. [Google Scholar] [CrossRef]
- Tchoukalova, Y.D.; Koutsari, C.; Karpyak, M.V.; Votruba, S.B.; Wendland, E.; Jensen, M.D. Subcutaneous adipocyte size and body fat distribution. Am. J. Clin. Nutr. 2008, 87, 56–63. [Google Scholar] [CrossRef]
- Manolopoulos, K.N.; Karpe, F.; Frayn, K.N. Gluteofemoral body fat as a determinant of metabolic health. Int. J. Obes. 2010, 34, 949–959. [Google Scholar] [CrossRef]
- O’Neill, D. Measuring obesity in the absence of a gold standard. Econ. Hum. Biol. 2015, 17, 116–128. [Google Scholar] [CrossRef]
- Caitano Fontela, P.; Winkelmann, E.R.; Nazario Viecili, P.R. Study of conicity index, body mass index and waist circumference as predictors of coronary artery disease. Estudo do índice de conicidade, índice de massa corporal e circunferência abdominal como preditores de doença arterial coronariana. Rev. Port. Cardiol. 2017, 36, 357–364. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean | SD | 95% CI | Min | Max |
---|---|---|---|---|---|
Age, years | 21.73 | 2.10 | 21.50–21.97 | 18.00 | 25.00 |
BMR, kcal | 1338 | 109 | 1325–1350 | 1019 | 1704 |
Height, m | 1.674 | 0.06 | 1.67–1.68 | 1.51 | 1.89 |
Weight, kg | 62.27 | 10.48 | 61.08–63.45 | 42.80 | 116.00 |
Waist Circumference, cm | 80.33 | 9.09 | 79.30–81.36 | 65.60 | 119.30 |
Hip Circumference, cm | 93.73 | 5.77 | 93.08–94.38 | 83.00 | 122.20 |
Chest Circumference, cm | 88.57 | 6.01 | 87.89–89.25 | 76.20 | 115.30 |
Right Arm Circumference, cm | 28.69 | 2.69 | 28.38–28.99 | 23.50 | 39.70 |
Left Arm Circumference, cm | 28.55 | 2.69 | 28.24–28.85 | 23.50 | 39.10 |
Right Leg Circumference, cm | 50.77 | 4.02 | 50.32–51.23 | 43.50 | 69.80 |
Left Leg Circumference, cm | 50.96 | 4.14 | 50.49–51.43 | 43.40 | 70.70 |
Arm Muscle Circumference, cm | 22.75 | 1.57 | 22.57–22.93 | 19.20 | 27.93 |
Body Mass Index, kg/m2 | 22.21 | 3.38 | 21.83–22.60 | 16.80 | 38.76 |
Waist-to-Hip Ratio | 0.86 | 0.05 | 0.85–0.86 | 0.76 | 1.05 |
Waist-to-Height Ratio | 0.48 | 0.05 | 0.47–0.49 | 0.40 | 0.69 |
Fat-free Mass, kg | 44.82 | 5.05 | 44.25–45.40 | 30.10 | 61.80 |
Fat-free Mass, % | 72.77 | 6.86 | 71.00–73.55 | 49.41 | 88.10 |
Fat Free Mass Index, kg/m2 | 15.99 | 1.41 | 15.83–16.14 | 12.81 | 20.65 |
Visceral Fat Area, cm2 | 69.98 | 26.06 | 67.04–72.93 | 14.34 | 171.05 |
Fat Mass, kg | 17.45 | 7.30 | 16.62–18.27 | 6.40 | 54.20 |
Fat Mass, % | 27.23 | 6.86 | 26.45–28.01 | 11.97 | 50.59 |
Fat Mass Index, kg/m2 | 6.23 | 2.55 | 5.94–6.52 | 2.33 | 18.11 |
Fat Mass/Fat Free Mass Ratio | 0.39 | 0.14 | 0.37–0.40 | 0.14 | 1.02 |
Skeletal Muscle Mass, kg | 24.52 | 3.02 | 24.18–24.87 | 15.63 | 34.32 |
Skeletal Muscle Mass, % | 42.15 | 4.75 | 41.61–42.69 | 28.20 | 58.00 |
Extracellular Water, L | 12.48 | 1.39 | 12.33–12.64 | 8.50 | 17.30 |
ECW/TBW, % | 38.04 | 0.49 | 37.99–38.10 | 36.13 | 39.23 |
Intracellular Water, L | 20.34 | 2.31 | 20.08–20.60 | 13.50 | 27.90 |
ICW/TBW, % | 61.96 | 0.49 | 61.90–62.01 | 60.77 | 63.87 |
Total Body Water, L | 32.82 | 3.69 | 32.40–33.24 | 22.00 | 45.20 |
TBW/W, % | 53.29 | 5.08 | 52.72–53.87 | 36.19 | 64.41 |
ABSI, m11/6 kg−2/3 | 0.0788 | 0.0030 | 0.078–0.079 | 0.0707 | 0.0874 |
ABSI z-score | 0.3120 | 0.7122 | 0.23–0.39 | −1.6170 | 2.3670 |
Variables | Body Mass Index (kg/m2) | Fat Mass Index (kg/m2) | Fat Free Mass Index (kg/m2) | Fat Mass/Fat Free Mass Ratio | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
ABSI, m11/6 kg−2/3 | 0.073 | 0.2077 | 0.300 | <0.0001 | −0.367 | <0.0001 | 0.404 | <0.0001 |
ABSI z-score | 0.073 | 0.2066 | 0.300 | <0.0001 | −0.367 | <0.0001 | 0.404 | <0.0001 |
BMR, kcal | 0.560 | <0.0001 | 0.309 | <0.0001 | 0.784 | <0.0001 | 0.119 | 0.0378 |
Height, m | −0.025 | 0.6621 | −0.036 | 0.5271 | 0.006 | 0.924 | −0.059 | 0.3035 |
Weight, kg | 0.907 | <0.0001 | 0.834 | <0.0001 | 0.667 | <0.0001 | 0.715 | <0.0001 |
WC, cm | 0.907 | <0.0001 | 0.912 | <0.0001 | 0.525 | <0.0001 | 0.840 | <0.0001 |
HC, cm | 0.965 | <0.0001 | 0.890 | <0.0001 | 0.706 | <0.0001 | 0.770 | <0.0001 |
CHC, cm | 0.930 | <0.0001 | 0.807 | <0.0001 | 0.772 | <0.0001 | 0.665 | <0.0001 |
RAC, cm | 0.972 | <0.0001 | 0.888 | <0.0001 | 0.726 | <0.0001 | 0.770 | <0.0001 |
LAC, cm | 0.971 | <0.0001 | 0.884 | <0.0001 | 0.730 | <0.0001 | 0.765 | <0.0001 |
RLC, cm | 0.939 | <0.0001 | 0.868 | <0.0001 | 0.683 | <0.0001 | 0.753 | <0.0001 |
LLC, cm | 0.941 | <0.0001 | 0.868 | <0.0001 | 0.688 | <0.0001 | 0.752 | <0.0001 |
AMC, cm | 0.859 | <0.0001 | 0.646 | <0.0001 | 0.893 | <0.0001 | 0.467 | <0.0001 |
Waist-to-Hip Ratio | 0.689 | <0.0001 | 0.781 | <0.0001 | 0.240 | <0.0001 | 0.778 | <0.0001 |
Waist-to-Height Ratio | 0.948 | <0.0001 | 0.958 | <0.0001 | 0.541 | <0.0001 | 0.891 | <0.0001 |
Fat-free Mass, kg | 0.560 | <0.0001 | 0.309 | <0.0001 | 0.785 | <0.0001 | 0.119 | 0.0378 |
Fat-free Mass, % | −0.777 | <0.0001 | −0.946 | <0.0001 | −0.154 | 0.0073 | −0.989 | <0.0001 |
Visceral Fat Area, cm2 | 0.870 | <0.0001 | 0.952 | <0.0001 | 0.365 | <0.0001 | 0.928 | <0.0001 |
Fat Mass, kg | 0.914 | <0.0001 | 0.983 | <0.0001 | 0.415 | <0.0001 | 0.943 | <0.0001 |
Fat Mass, % | 0.777 | <0.0001 | 0.946 | <0.0001 | 0.154 | 0.0073 | 0.989 | <0.0001 |
Skeletal Muscle Mass, kg | 0.559 | <0.0001 | 0.299 | <0.0001 | 0.800 | <0.0001 | 0.105 | 0.0678 |
Skeletal Muscle Mass, % | 0.556 | <0.0001 | 0.301 | <0.0001 | 0.788 | <0.0001 | 0.110 | 0.0564 |
ICW/TBW, % | 0.168 | 0.0034 | 0.031 | 0.5915 | 0.347 | <0.0001 | −0.045 | 0.4333 |
ECW/TBW, % | −0.168 | 0.0034 | −0.031 | 0.5915 | −0.347 | <0.0001 | 0.045 | 0.4333 |
TBW/W, % | −0.776 | <0.0001 | −0.945 | <0.0001 | −0.153 | 0.0075 | −0.988 | <0.0001 |
Variables | FMI | FFMI | ||||||||
Fat Deficit | Normal | Excess Fat | High Fat Mass | Skinny | Average | Athlete | Fat | Body Builder | ||
BMR, kcal | 1339 a | 1325 a | 1350 a | 1510 b | 1236 a | 1347 b | 1396 c | 1369 bc | 1525 d | |
Height, m | 1.69 a | 1.67 | 1.66 b | 1.69 | 1.67 | 1.68 | 1.68 | 1.66 | 1.67 | |
Weight, kg | 54.30 a | 60.31 b | 71.50 c | 92.70 d | 55.13 a | 61.20 b | 59.78 b | 75.19 c | 81.05 d | |
WC, cm | 71.60 a | 78.60 b | 90.41 c | 107.19 d | 75.68 a | 78.97 b | 75.41 ac | 93.45 d | 94.81 d | |
HC, cm | 88.63 a | 92.64 b | 99.66 c | 110.64 d | 89.58 a | 93.09 b | 92.13 b | 101.74 c | 104.39 d | |
CHC, cm | 84.45 a | 87.36 b | 94.16 c | 105.48 d | 83.50 a | 88.14 b | 87.84 b | 96.32 c | 100.37 d | |
RAC, cm | 26.19 a | 28.18 b | 31.72 c | 36.22 d | 26.56 a | 28.45 b | 27.88 b | 32.62 c | 33.70 d | |
LAC, cm | 26.09 a | 28.03 b | 31.58 c | 36.06 d | 26.41 a | 28.30 b | 27.82 b | 32.47 c | 33.58 d | |
RLC, cm | 47.15 a | 50.07 b | 54.84 c | 61.99 d | 47.98 a | 50.36 b | 49.63 b | 56.22 c | 57.82 d | |
LLC, cm | 47.19 a | 50.24 b | 55.11 c | 62.55 d | 48.05 a | 50.54 b | 49.80 b | 56.54 c | 58.24 d | |
AMC, cm | 22.00 a | 22.47 b | 23.97 c | 26.29 d | 21.15 a | 22.72 b | 23.17 c | 24.30 d | 26.10 e | |
BMI, kg/m2 | 18.98 a | 21.55 b | 26.04 c | 32.30 d | 19.73 a | 21.78 b | 21.18 b | 27.25 c | 28.76 d | |
WHR | 0.81 a | 0.85 b | 0.91 c | 0.97 d | 0.84 a | 0.85 a | 0.82 b | 0.92 c | 0.90 c | |
WHtR | 0.42 a | 0.47 b | 0.55 c | 0.63 d | 0.45 a | 0.47 b | 0.45 ac | 0.56 d | 0.57 d | |
FFM, kg | 44.90 a | 44.22 a | 45.37 a | 52.78 b | 40.11 a | 45.23 b | 47.53 c | 46.28 bc | 53.50 d | |
FFM, % | 82.64 a | 73.48 b | 63.45 c | 57.01 d | 73.13 a | 74.23 a | 79.54 b | 61.98 c | 67.59 d | |
FFMI, kg/m2 | 15.70 a | 15.80 a | 16.53 b | 18.37 c | 14.34 a | 16.09 b | 16.84 c | 16.78 c | 19.06 d | |
VFA, cm2 | 38.44 a | 66.02 b | 101.94 c | 142.03 d | 62.23 a | 65.07 a | 50.56 b | 109.13 c | 103.12 c | |
FM, kg | 9.4 | 16.09 | 26.13 | 39.92 | 15.01 ac | 15.97 a | 12.25 c | 28.91 d | 27.54 d | |
FM, % | 17.37 a | 26.53 b | 36.55 c | 42.98 d | 26.87 a | 25.78 a | 20.47 b | 38.03 b | 32.41 b | |
FMI, kg/m2 | 3.28 a | 5.75 b | 9.51 c | 13.93 d | 5.39 a | 5.69 a | 4.34 b | 10.47 c | 9.70 c | |
FM/FFM | 0.21 a | 0.37 b | 0.58 c | 0.76 d | 0.38 a | 0.35 a | 0.26 b | 0.62 c | 0.51 d | |
SMM, kg | 24.63 a | 24.16 a | 24.83 a | 29.21 b | 21.64 a | 24.79 b | 26.19 c | 25.37 bc | 29.79 d | |
SMM, % | 42.30 a | 41.58 a | 42.61 a | 49.56 b | 37.70 a | 42.54 b | 44.77 c | 43.46 bc | 50.36 d | |
ICW/TBW, % | 61.99 | 61.94 | 62.03 | 62.05 | 61.69 a | 62.02 b | 62.01 bc | 62.06 bc | 62.23 c | |
ECW/TBW, % | 38.01 | 38.06 | 37.98 | 37.95 | 38.31 a | 37.98 b | 38.00 bc | 37.94 bc | 37.77 c | |
TBW/W, % | 60.62 a | 53.81 b | 46.38 c | 41.68 d | 53.57 a | 54.35 a | 58.34 b | 45.29 c | 49.50 d | |
ABSI m11/6 kg−2/3 | 0.0775 a | 0.0786 b | 0.0801 c | 0.0814 c | 0.0803 a | 0.0783 b | 0.0761 c | 0.0802 a | 0.0779 b | |
ABSI z-score | 0.0064 a | 0.2777 b | 0.6212 c | 0.9527 c | 0.6794 a | 0.1923 b | −0.3268 c | 0.6540 a | 0.1109 b | |
Variables | FM/FFM | FMI and FFMI | Body Mass Index | |||||||
Metabolic Health | Obese | Sarcopenic Obesity | Obesity | Normal | Sarcopenia | Underweight | Healthy Weight | Overweight | Obese | |
BMR, kcal | 1329 a | 1348 a | 1510 b | 1510 a | 1362 b | 1236 c | 1228 a | 1328 b | 1404 c | 1558 d |
Height, m | 1.67 | 1.67 | 1.68 | 1.69 | 1.67 | 1.67 | 1.68 | 1.67 | 1.66 | 1.70 |
Weight, kg | 57.66 a | 68.62 b | 103.10 c | 92.70 a | 62.78 b | 55.13 c | 50.33 a | 60.18 b | 74.15 c | 95.98 d |
WC, cm | 75.42 a | 87.40 b | 111.83 c | 107.19 a | 80.20 b | 75.68 c | 70.98 a | 78.39 b | 91.21 c | 108.89 d |
HC, cm | 91.07 a | 97.39 b | 117.63 c | 110.64 a | 94.08 b | 89.58 c | 86.49 a | 92.52 b | 101.20 c | 112.43 d |
CHC, cm | 86.08 a | 92.02 b | 110.23 c | 105.48 a | 89.25 b | 83.50 c | 81.03 a | 87.42 b | 95.79 c | 107.31 d |
RAC, cm | 27.40 a | 30.51 b | 38.17 c | 36.22 a | 28.94 b | 26.56 c | 25.08 a | 28.16 b | 32.27 c | 36.88 d |
LAC, cm | 27.27 a | 30.35 b | 38.10 c | 36.06 a | 28.81 b | 26.41 c | 24.98 a | 28.02 b | 32.13 c | 36.71 d |
RLC, cm | 48.99 a | 53.21 b | 67.20 c | 61.99 a | 51.02 b | 47.98 c | 45.73 a | 49.95 b | 55.97 c | 63.30 d |
LLC, cm | 49.12 a | 53.47 b | 67.97 c | 62.55 a | 51.22 b | 48.05 c | 45.73 a | 50.12 b | 56.26 c | 63.92 d |
AMC, cm | 22.27 a | 23.42 b | 26.71 c | 26.29 a | 23.08 b | 21.15 c | 20.65 a | 22.51 b | 24.56 c | 26.85 d |
BMI, kg/m2 | 20.60 a | 24.44 b | 36.43 c | 32.30 a | 22.42 b | 19.73 c | 17.85 a | 21.48 b | 26.85 c | 33.23 d |
WHR | 0.83 a | 0.90 b | 0.95 c | 0.97 a | 0.85 b | 0.84 b | 0.82 a | 0.85 b | 0.90 c | 0.97 d |
WHtR | 0.45 a | 0.52 b | 0.67 c | 0.63 a | 0.48 b | 0.45 c | 0.42 a | 0.47 b | 0.55 c | 0.64 d |
FFM, kg | 44.41 a | 45.28 a | 52.83 b | 52.78 a | 45.95 b | 40.11 c | 39.76 a | 44.39 b | 47.91 c | 55.02 d |
FFM, % | 77.13 a | 66.32 b | 51.13 c | 57.01 a | 73.68 b | 73.13 b | 78.95 a | 73.98 b | 64.72 c | 57.44 d |
FFMI, kg/m2 | 15.85 a | 16.13 a | 18.65 b | 18.37 a | 16.41 b | 14.34 c | 14.09 a | 15.84 b | 17.35 c | 19.02 d |
VFA, cm2 | 54.35 a | 92.93 b | 154.72 c | 142.03 a | 67.99 b | 62.23 c | 44.95 a | 64.56 b | 101.78 c | 144.39 d |
FM, kg | 13.25 a | 23.34 b | 50.27 c | 39.92 a | 16.83 b | 15.01 c | 10.57 a | 15.79 b | 26.24 c | 40.97 d |
FM, % | 22.87 a | 33.67 b | 48.89 c | 42.98 a | 26.32 b | 26.87 b | 21.06 a | 26.02 b | 35.28 c | 42.56 d |
FMI, kg/m2 | 4.74 a | 8.32 b | 17.78 c | 13.93 a | 6.02 b | 5.39 c | 3.76 a | 5.64 b | 9.50 c | 14.21 d |
FM/FFM | 0.30 a | 0.51 b | 0.96 c | 0.76 a | 0.37 b | 0.38 b | 0.27 a | 0.36 b | 0.55 c | 0.75 d |
SMM, kg | 24.30 a | 24.76 a | 29.09 b | 29.21 a | 25.23 b | 21.64 c | 21.47 a | 24.27 b | 26.36 c | 30.57 d |
SMM, % | 41.79 a | 42.54 a | 49.57 b | 49.56 a | 43.22 b | 37.70 c | 37.42 a | 41.74 b | 45.03 c | 51.68 d |
ICW/TBW, % | 61.98 | 61.93 | 61.79 | 62.05 a | 62.05 a | 61.69 b | 61.67 a | 61.97 b | 62.03 b | 62.12 b |
ECW/TBW, % | 38.02 | 38.07 | 38.21 | 37.95 a | 37.96 a | 38.31 b | 38.33 a | 38.03 b | 37.97 b | 37.88 b |
TBW/W, % | 56.52 a | 48.52 b | 37.39 c | 41.68 a | 53.96 b | 53.57 b | 57.94 a | 54.18 b | 47.35 c | 41.99 d |
ABSI, m11/6 kg−2/3 | 0.0778 a | 0.0804 b | 0.0784 | 0.0814 a | 0.0781 b | 0.0803 ac | 0.0804 a | 0.0785 b | 0.0790 | 0.0809 a |
ABSI z-score | 0.0826 a | 0.6838 b | 0.2321 | 0.9527 a | 0.1417 b | 0.6794 ac | 0.6816 a | 0.2466 b | 0.3622 | 0.8181 a |
Variables | Premature Mortality Risk | ||||
---|---|---|---|---|---|
Very Low | Low | Average | High | Very High | |
BMR, kcal | 1405 a | 1358 ac | 1311 b | 1334 bc | 1346 |
Height, m | 1.64 a | 1.65 a | 1.65 a | 1.69 b | 1.71 c |
Weight, kg | 60.12 acd | 60.94 ac | 59.26 ab | 62.77 c | 66.31 d |
WC, cm | 73.65 a | 76.86 a | 77.33 a | 81.07 b | 86.40 c |
HC, cm | 93.50 | 93.87 | 92.53 a | 93.80 | 94.90 b |
CHC, cm | 87.99 | 88.10 a | 86.96 a | 88.60 a | 90.79 b |
RAC, cm | 28.44 | 28.59 | 28.07 a | 28.65 a | 29.54 b |
LAC, cm | 28.26 | 28.50 | 27.91 a | 28.53 a | 29.36 b |
RLC, cm | 51.07 | 51.18 | 50.03 | 50.85 | 51.13 |
LLC, cm | 51.30 | 51.46 | 50.26 | 50.99 | 51.27 |
AMC, cm | 23.38 | 23.02 a | 22.42 b | 22.63 | 22.97 a |
BMI, kg/m2 | 22.24 | 22.52 | 21.76 | 22.6 | 22.69 |
WHR | 0.787 a | 0.818 b | 0.834 c | 0.862 d | 0.908 e |
WHtR | 0.448 a | 0.467 ab | 0.469 ab | 0.481 b | 0.506 c |
FFM, kg | 47.95 a | 45.75 ac | 43.58 b | 44.67 bc | 45.20 |
FFM, % | 79.83 a | 75.46 b | 74.03 b | 72.09 c | 69.10 d |
FFMI, kg/m2 | 17.73 a | 16.88 b | 15.96 c | 15.68 cd | 15.45 d |
VFA, cm2 | 45.52 a | 59.86 ab | 62.51 b | 72.29 c | 86.89 d |
FM, kg | 12.17 a | 15.19 a | 15.67 a | 18.10 b | 21.12 c |
FM, % | 20.17 a | 24.55 b | 25.97 b | 27.92 c | 30.90 d |
FMI, kg/m2 | 4.51 a | 5.63 ab | 5.80 ab | 6.38 b | 7.24 c |
FM/FFM | 0.257 a | 0.332 ab | 0.361 bc | 0.401 c | 0.461 d |
SMM, kg | 26.55 a | 25.10 ac | 23.79 b | 24.43 bc | 24.71 |
SMM, % | 45.20 a | 43.05 ac | 40.99 b | 41.00 bc | 42.46 |
ICW/TBW, % | 62.33 a | 62.01 b | 61.91 b | 61.95 b | 61.92 b |
ECW/TBW, % | 37.67 a | 37.99 b | 38.09 b | 38.05 b | 38.08 b |
TBW/W, % | 58.49 a | 55.29 b | 54.24 b | 52.78 c | 50.57 d |
ABSI, m11/6 kg−2/3 | 0.0729 a | 0.0753 b | 0.0774 c | 0.0796 d | 0.0828 e |
ABSI z-score | −1.106 | −0.5296 | −0.0188 | 0.51865 | 1.2763 |
Variables/Adjusted Variables | BMI–a | WHR–b | FM/FFM–c | FMI–d | FFMI–e | WC–f | VFA–g | FM (%)–h |
---|---|---|---|---|---|---|---|---|
BMI, kg/m2 | 33.23 b–h | 26.52 acg | 24.44 a–h | 27.90 ach | 27.25 ac | 27.65 ach | 28.68 a–ch | 25.93 acdfg |
WHR | 0.97 bc–fh | 0.94 aceh | 0.90 a–g | 0.93 acgh | 0.92 a–cg | 0.94 ach | 0.95 c–eh | 0.91 abdfg |
FM/FFM | 0.75 b–h | 0.59 acg | 0.51 a–h | 0.63 ach | 0.62 ac | 0.60 acg | 0.66 a–cfh | 0.58 acdg |
FMI, kg/m2 | 14.21 b–h | 9.88 acg | 8.32 a–h | 10.83 ach | 10.47 ac | 10.40 ac | 11.43 a–ch | 9.54 acdg |
FFMI, kg/m2 | 19.02 b–h | 16.65 ac | 16.13 abdfg | 17.08 ach | 16.78 a | 17.26 ach | 17.25 ach | 16.39 adfg |
WC, cm | 108.89 b–h | 95.05 acgh | 87.40 a–h | 95.41 acgh | 93.45 acg | 96.66 ach | 99.64 a–eh | 90.69 a–dfg |
VFA, cm2 | 144.39 b–h | 110.36 acg | 92.93 a–h | 113.88 acgh | 109.13 acg | 113.99 ach | 123.75 a–eh | 102.70 acdfg |
BMR, kcal | 1558 b–h | 1407 ach | 1348 abdfg | 1398 ac | 1370 afg | 1446 aceh | 1451 aceh | 1358 abfg |
SMM, % | 51.68 b–h | 45.11 ach | 42.54 abdfg | 44.68 ac | 43.46 afg | 46.80 aceh | 46.96 aceh | 42.95 abfg |
FFM, % | 57.44 b–h | 63.54 acdg | 66.32 a–h | 61.53 a–ch | 61.98 ac | 62.99 acg | 60.61 a–cfh | 63.69 acdg |
AMC, cm | 26.85 b–h | 24.44 ach | 23.42 a–g | 24.66 ach | 24.30 ac | 24.97 ach | 25.09 ach | 23.82 abdfg |
ABSI, m11/6 kg−2/3 | 0.0809 ns | 0.0825 c–eh | 0.0804 bfg | 0.0805 bg | 0.0802 bg | 0.0815 ch | 0.0819 c–eh | 0.0803 bfg |
ABSI z–score | 0.8181 ns | 1.1954 c–eh | 0.6838 bfg | 0.7199 bg | 0.6540 bg | 0.9501 ch | 1.0534 c–eh | 0.6781 bfg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gažarová, M.; Bihari, M.; Lorková, M.; Lenártová, P.; Habánová, M. The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk. Int. J. Environ. Res. Public Health 2022, 19, 12449. https://doi.org/10.3390/ijerph191912449
Gažarová M, Bihari M, Lorková M, Lenártová P, Habánová M. The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk. International Journal of Environmental Research and Public Health. 2022; 19(19):12449. https://doi.org/10.3390/ijerph191912449
Chicago/Turabian StyleGažarová, Martina, Maroš Bihari, Marta Lorková, Petra Lenártová, and Marta Habánová. 2022. "The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk" International Journal of Environmental Research and Public Health 19, no. 19: 12449. https://doi.org/10.3390/ijerph191912449
APA StyleGažarová, M., Bihari, M., Lorková, M., Lenártová, P., & Habánová, M. (2022). The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk. International Journal of Environmental Research and Public Health, 19(19), 12449. https://doi.org/10.3390/ijerph191912449