A Potential Driver of Disseminated Intravascular Coagulation in Heat Stroke Mice: Neutrophil Extracellular Traps
Abstract
:Highlights
- NETs contribute to the activation of the coagulation cascade and have been successfully proved to be a potential driver of DIC in HS mice.
- This work provides a novel alternative treatment strategy for the treatment of DIC in HS patients.
Abstract
1. Introduction
2. Methods
2.1. Animals
2.2. Establishment of HS Model
2.3. Diagnostic Criteria for Experimental HS and DIC
2.4. Biochemical and Cytokines Measurement of Blood
2.5. Histological Examination
2.6. Neutrophil Isolation and NETs Production
2.7. Western Blot Analysis
2.8. NETs Quantification and Image Analysis
2.9. Statistical Analysis
3. Results
3.1. HT + LPS Stress Increases the Risk of HS-Induced DIC
3.2. HT + LPS Increases the Expression of NETs
3.3. Associations between NETs Markers and Coagulation Biomarkers in HS Mice
3.4. Procoagulant Activity of the NETs Generated from HS Neutrophils
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fine, J. Disseminated Intravascular Coagulation in Heat Stroke. JAMA 1975, 233, 1164. [Google Scholar] [CrossRef]
- Jilma, B.; Derhaschnig, U. Disseminated intravascular coagulation in heat stroke: A hot topic. Crit. Care Med. 2012, 40, 1370–1372. [Google Scholar] [CrossRef]
- Camus, G.; Deby-Dupont, G.; Duchateau, J.; Deby, C.; Pincemail, J.; Lamy, M. Are similar inflammatory factors involved in strenuous exercise and sepsis? Intensive Care Med. 1994, 20, 602–610. [Google Scholar] [CrossRef]
- Lim, C.L. Heat sepsis precedes heat toxicity in the pathophysiology of heat stroke—A new paradigm on an ancient disease. Antioxidants 2018, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Roberts, G.; Al Mohanna, F.; El-Sayed, R.; Lach, B.; Chollet-Martin, S.; Ollivier, V.; Al Baradei, R.; Loualich, A.; Nakeeb, S.; et al. Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J. Appl. Physiol. 2005, 98, 697–705. [Google Scholar] [CrossRef]
- Proctor, E.A.; Dineen, S.M.; Van Nostrand, S.C.; Kuhn, M.K.; Barrett, C.D.; Brubaker, D.K.; Yaffe, M.B.; Lauffenburger, D.A.; Leon, L.R. Coagulopathy signature precedes and predicts severity of end-organ heat stroke pathology in a mouse model. J. Thromb. Haemost. 2020, 18, 1900–1910. [Google Scholar] [CrossRef] [PubMed]
- Dineen, S.M.; Ward, J.A.; Leon, L.R. Prior viral illness increases heat stroke severity in mice. Exp. Physiol. 2021, 106, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.J.; Li, Y.J.; Li, Z.L.; Zou, F.; Lin, M.T. Pre-existing lipopolysaccharide may increase the risk of heatstroke in rats. Am. J. Med. Sci. 2009, 337, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, K.Y.; Omer, O.; Khogali, M.; Jamjoom, A.; Gumaa, K.A.; El-Nasr, N.A.; Gader, M.A. Blood coagulation and fibrinolysis in heat stroke. Br. J. Haematol. 1985, 61, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Scully, M. How I treat disseminated intravascular coagulation. Blood 2018, 131, 845–854. [Google Scholar] [CrossRef]
- Abrams, S.T.; Morton, B.; Alhamdi, Y.; Alsabani, M.; Lane, S.; Welters, I.D.; Wang, G.; Toh, C.H. A novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. Am. J. Respir. Crit. Care Med. 2019, 200, 869–880. [Google Scholar] [CrossRef]
- McDonald, B.; Davis, R.P.; Kim, S.J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Kambas, K.; Chrysanthopoulou, A.; Vassilopoulos, D.; Apostolidou, E.; Skendros, P.; Girod, A.; Arelaki, S.; Froudarakis, M.; Nakopoulou, L.; Giatromanolaki, A.; et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann. Rheum. Dis. 2014, 73, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Radic, M. Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Liu, B.; Zhou, P.; Zuo, N.; Wang, Y.; Feng, Y.; Zhang, Y.; Wang, J.; He, Y.; et al. Neutrophil extracellular traps enhance procoagulant activity and thrombotic tendency in patients with obstructive jaundice. Liver Int. 2021, 41, 333–347. [Google Scholar] [CrossRef]
- Liaw, P.C.; Ito, T.; Iba, T.; Thachil, J.; Zeerleder, S. DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 2016, 30, 257–261. [Google Scholar] [CrossRef]
- Iba, T.; Levi, M.; Levy, J.H. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Semin Thromb Hemost. 2020, 46, 89–95. [Google Scholar] [CrossRef]
- Stiel, L.; Mayeur-Rousse, C.; Helms, J.; Meziani, F.; Mauvieux, L. First visualization of circulating neutrophil extracellular traps using cell fluorescence during human septic shock-induced disseminated intravascular coagulation. Thromb. Res. 2019, 183, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.J.; Vu, T.T.; Swystun, L.L.; Dwivedi, D.J.; Mai, S.H.; Weitz, J.I.; Liaw, P.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1977–1984. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood J. Am. Soc. Hematol. 2011, 118, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Leon, L.R.; DuBose, D.A.; Mason, C.W. Heat stress induces a biphasic thermoregulatory response in mice. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2005, 288, R197–R204. [Google Scholar] [CrossRef] [PubMed]
- Iwaniec, J.; Robinson, G.P.; Garcia, C.K.; Murray, K.O.; de Carvalho, L.; Clanton, T.L.; Laitano, O. Acute phase response to exertional heat stroke in mice. Exp. Physiol. 2021, 106, 222–232. [Google Scholar] [CrossRef]
- Levi, M.; Toh, C.H.; Thachil, J.; Watson, H.G. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br. J. Haematol. 2009, 145, 24–33. [Google Scholar] [CrossRef]
- Kessler, C.M.; Tang, Z.C.; Jacobs, H.M.; Szymanski, L.M. The suprapharmacologic dosing of antithrombin concentrate for Staphylococcus aureus-induced disseminated intravascular coagulation in guinea pigs: Substantial reduction in mortality and morbidity. Blood 1997, 89, 4393–4401. [Google Scholar] [CrossRef]
- Wong, S.L.; Demers, M.; Martinod, K.; Gallant, M.; Wang, Y.; Goldfine, A.B.; Kahn, C.R.; Wagner, D.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 2015, 21, 815–819. [Google Scholar] [CrossRef]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.; Berends, E.T.; Nerlich, A.; Molhoek, E.M.; Gallo, R.L.; Meerloo, T.; Nizet, V.; Naim, H.Y.; von Köckritz-Blickwede, M. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem. J. 2014, 464, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, F.; Giaglis, S.; Hahn, S.; Blum, C.A.; Baumgartner, C.; Kutz, A.; van Breda, S.V.; Mueller, B.; Schuetz, P.; Christ-Crain, M.; et al. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: Secondary analysis of a randomised controlled trial. Eur. Respir. J. 2018, 51, 1701389. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alcázar, M.; Rangaswamy, C.; Panda, R.; Bitterling, J.; Simsek, Y.J.; Long, A.T.; Bilyy, R.; Krenn, V.; Renné, C.; Renné, T.; et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 2017, 358, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.T.; Ghebeh, H.; Chishti, M.A.; Al-Mohanna, F.; El-Sayed, R.; Al-Mohanna, F.; Bouchama, A. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke a study in baboon model. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1130–1136. [Google Scholar] [CrossRef]
- Masucci, M.T.; Minopoli, M.; Vecchio, S.; Del Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef]
- Kang, L.; Yu, H.; Yang, X.; Zhu, Y.; Bai, X.; Wang, R.; Cao, Y.; Xu, H.; Luo, H.; Lu, L.; et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 2020, 11, 2488. [Google Scholar] [CrossRef]
- Li, R.H.L.; Tablin, F. A comparative review of neutrophil extracellular traps in sepsis. Front. Vet. Sci. 2018, 5, 291. [Google Scholar] [CrossRef]
- Bouchama, A.; Al-Mohanna, F.; Assad, L.; Baturcam, E.; Eldali, A.; Owaidah, T.; Dehbi, M. Tissue factor/factor VIIa pathway mediates coagulation activation in induced-heat stroke in the baboon. Crit. Care Med. 2012, 40, 1229–1236. [Google Scholar] [CrossRef]
- Meikle, A.W.; Graybill, J.R. Fibrinolysis and hemorrhage in a fatal case of heat stroke. N. Engl. J. Med. 1967, 276, 911–913. [Google Scholar] [CrossRef]
- Yousefi, S.; Stojkov, D.; Germic, N.; Simon, D.; Wang, X.; Benarafa, C.; Simon, H.U. Untangling “NETosis” from NETs. Eur. J. Immunol. 2019, 49, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | CTR | HT | HT + LPS | LPS |
---|---|---|---|---|
WBC (×109/L) | 3.3 ± 0.4 | 6.1 ± 1.0 ** | 1.4 ± 0.3 * | 1.3 ± 0.5 * |
PLT (×109/L) | 1019 ± 56 | 744 ± 32 * | 453 ± 48 ** | 710 ± 75 * |
PT (sec) | 9.4 ± 0.3 | 12.4 ± 0.3 ** | 16.7 ± 0.6 ** | 10.3 ± 0.2 |
APTT (sec) | 22.4 ± 0.5 | 27.5 ± 0.5 | 32.8 ± 1.2 ** | 23.9 ± 2.3 |
TT (sec) | 13.5 ± 0.2 | 17.2 ± 1.0 * | 23.6 ± 1.3 ** | 15.2 ± 0.6 |
FIB (g/L) | 2.1 ± 0.1 | 1.9 ± 0.1 | 1.4 ± 0.2 * | 2.3 ± 0.1 |
D-D (μg/L) | 25 ± 3 | 104 ± 10 | 6036 ± 130 ** | 5546 ± 250 ** |
Variable | CTR | HS | DNAse I |
---|---|---|---|
WBC (×109/L) | 3.3 ± 0.4 | 1.4 ± 0.3 * | 1.9 ± 0.5 |
PLT (×109/L) | 1019 ± 56 | 453 ± 48 ** | 727 ± 57 # |
PT (sec) | 9.4 ± 0.3 | 16.7 ± 0.6 ** | 12.0 ± 0.6 # |
TT (sec) | 13.5 ± 0.2 | 23.6 ± 1.3 ** | 18.4 ± 1.1 ## |
FIB (g/L) | 2.1 ± 0.1 | 1.4 ± 0.2 * | 2.0 ± 0.1 # |
D-D (μg/L) | 25 ± 3 | 6036 ± 130 ** | 5021 ± 213 ## |
TM (μg/L) | 174 ± 30 | 8532 ± 648 ** | 2902 ± 458 ## |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Deng, X.; Zhang, J.; Zhang, L.; Akram, Z.; Zhang, B.; Sun, S. A Potential Driver of Disseminated Intravascular Coagulation in Heat Stroke Mice: Neutrophil Extracellular Traps. Int. J. Environ. Res. Public Health 2022, 19, 12448. https://doi.org/10.3390/ijerph191912448
Zhang Y, Deng X, Zhang J, Zhang L, Akram Z, Zhang B, Sun S. A Potential Driver of Disseminated Intravascular Coagulation in Heat Stroke Mice: Neutrophil Extracellular Traps. International Journal of Environmental Research and Public Health. 2022; 19(19):12448. https://doi.org/10.3390/ijerph191912448
Chicago/Turabian StyleZhang, Yuling, Xiling Deng, Jing Zhang, Liang Zhang, Zubair Akram, Bo Zhang, and Shiguo Sun. 2022. "A Potential Driver of Disseminated Intravascular Coagulation in Heat Stroke Mice: Neutrophil Extracellular Traps" International Journal of Environmental Research and Public Health 19, no. 19: 12448. https://doi.org/10.3390/ijerph191912448
APA StyleZhang, Y., Deng, X., Zhang, J., Zhang, L., Akram, Z., Zhang, B., & Sun, S. (2022). A Potential Driver of Disseminated Intravascular Coagulation in Heat Stroke Mice: Neutrophil Extracellular Traps. International Journal of Environmental Research and Public Health, 19(19), 12448. https://doi.org/10.3390/ijerph191912448