Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Study Participants
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Heat Conditions during the Study
3.3. Discomfort/Comfort in the Heat
3.4. Heat-Related Symptoms
3.5. Heat Coping Strategies
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaltsatou, A.; Kenny, G.P.; Flouris, A.D. The Impact of Heat Waves on Mortality among the Elderly: A Mini Systematic Review. J. Geriatr. Med. Gerontol. 2018, 4, 053. [Google Scholar] [CrossRef]
- Meade, R.D.; Akerman, A.P.; Notley, S.R.; McGinn, R.; Poirier, P.; Gosselin, P.; Kenny, G.P. Physiological factors characterizing heat-vulnerable older adults: A narrative review. Environ. Int. 2020, 144, 105909. [Google Scholar] [CrossRef]
- Tochihara, Y.; Ohnaka, T.; Nagai, Y.; Tokuda, T.; Kawashima, Y. Physiological responses and thermal sensations of the elderly in cold and hot environments. J. Therm. Biol. 1993, 18, 355–361. [Google Scholar] [CrossRef]
- Bjerke, D. Considerations for thermal injury: The elderly as a sensitive population. In Textbook of Aging Skin; Farage, M.A., Miller, K.W., Maibach, H.I., Eds.; Springer: Berlin, Germany, 2010; pp. 159–171. [Google Scholar]
- Sagawa, S.; Shiraki, K.; Yousef, M.K.; Miki, K. Sweating and cardiovascular responses of aged men to heat exposure. J. Gerontol. 1988, 43, M1–M8. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Nomura, T.; Laakso, I. Computational estimation of decline in sweating in the elderly from measured body temperatures and sweating for passive heat exposure. Physiol. Meas. 2012, 33, N51–N60. [Google Scholar] [CrossRef]
- Kenney, W.L.; Havenith, G. Heat stress and age: Skin blood flow and body temperature. J. Therm. Biol. 1993, 18, 341–344. [Google Scholar] [CrossRef]
- Rooke, G.A.; Savage, M.V.; Brengelmann, G.L. Maximal skin blood flow is decreased in elderly men. J. Appl. Physiol. 1994, 77, 11–14. [Google Scholar] [CrossRef]
- Kenney, W.L.; Munce, T.A. Invited review: Aging and human temperature regulation. J. Appl. Physiol. 2003, 95, 2598–2603. [Google Scholar] [CrossRef]
- Holowatz, L.A.; Kenney, W.L. Peripheral mechanisms of thermoregulatory control of skin blood flow in aged humans. J. Appl. Physiol. 2010, 109, 1538–1544. [Google Scholar] [CrossRef]
- Åström, D.O.; Forsberg, B.; Rocklöv, J. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. EBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup. Environ. Med. 2007, 64, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kenney, W.L.; Craighead, D.H.; Alexander, L.M. Heat waves, aging, and human cardiovascular health. Med. Sci. Sports Exerc. 2014, 46, 1891–1899. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Macey, S.M.; Schneider, D.F. Deaths from excessive heat and excessive cold among the elderly. Gerontologist 1993, 33, 497–500. [Google Scholar] [CrossRef]
- Stafoggia, M.; Forastiere, F.; Agostini, D.; Biggeri, A.; Bisanti, L.; Cadum, E.; Caranci, N.; de’ Donato, F.; De Lisio, S.; De Maria, M.; et al. Vulnerability to heat-related mortality: A multicity, population-based, case-crossover analysis. Epidemiology 2006, 17, 315–323. [Google Scholar] [CrossRef]
- Bouchama, A.; Dehbi, M.; Mohamed, G.; Matthies, F.; Shoukri, M.; Menne, B. Prognostic factors in heat wave related deaths: A meta-analysis. Arch. Intern. Med. 2007, 167, 2170–2176. [Google Scholar] [CrossRef]
- Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; Ribéron, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 heat wave in France: Risk factors for death of elderly people living at home. Eur. J. Public Health 2006, 16, 583–591. [Google Scholar] [CrossRef]
- Schifano, P.; Cappai, G.; De Sario, M.; Michelozzi, P.; Marino, C.; Bargagli, A.M.; Perucci, C.A. Susceptibility to heat wave-related mortality: A follow-up study of a cohort of elderly in Rome. Environ. Health 2009, 8, 50. [Google Scholar] [CrossRef]
- Layton, J.B.; Li, W.; Yuan, J.; Gilman, J.P.; Horton, D.B.; Setoguch, S. Heatwaves, medications, and heat-related hospitalization in older Medicare beneficiaries with chronic conditions. PLoS ONE 2020, 15, e0243665. [Google Scholar] [CrossRef]
- Liss, A.; Naumova, E.N. Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA. Environ. Monit. Assess. 2019, 191 (Suppl. S2), 394. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Hu, K.; Huxley, R.R.; Abramson, M.J.; Guo, Y. The association between heatwaves and risk of hospitalization in Brazil: A nationwide time series study between 2000 and 2015. PLoS Med. 2019, 16, e1002753. [Google Scholar] [CrossRef] [PubMed]
- de Farias Panet, M.; de Araújo, V.M.D.; de Araújo, E.H.S. Thermal sensation index for elderly people living in Brazil. Int. J. Biometeorol. 2022, 66, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Kemen, J.; Schäffer-Gemein, S.; Grünewald, J.; Kistemann, T. Heat Perception and Coping Strategies: A Structured Interview-Based Study of Elderly People in Cologne, Germany. Int. J. Environ. Res. Public Health 2021, 18, 7495. [Google Scholar] [CrossRef]
- Malmquist, A.; Hjerpe, M.; Glaas, E.; Karlsson, H.; Lassi, T. Elderly People’s Perceptions of Heat Stress and Adaptation to Heat: An Interview Study. Int. J. Environ. Res. Public Health 2022, 19, 3775. [Google Scholar] [CrossRef]
- Abrahamson, V.; Wolf, J.; Lorenzoni, I.; Fenn, B.; Kovats, S.; Wilkinson, P.; Adger, W.N.; Raine, R. Perceptions of heatwave risks to health: Interview-based study of older people in London and Norwich, UK. J. Public Health 2009, 31, 119–126. [Google Scholar] [CrossRef]
- Bhanu, C.; Avgerinou, C.; Kharicha, K.; Bauernfreund, Y.; Croker, H.; Liljas, A.; Rea, J.; Kirby-Barr, M.; Hopkins, J.; Walters, K. ’I’ve never drunk very much water and I still don’t, and I see no reason to do so’: A qualitative study of the views of community-dwelling older people and carers on hydration in later life. Age Ageing 2019, 49, 111–118. [Google Scholar] [CrossRef]
- Hansen, A.; Bi, P.; Nitschke, M.; Pisaniello, D.; Newbury, J.; Kitson, A. Older persons and heat-susceptibility: The role of health promotion in a changing climate. Health Promot. J. Austr. 2011, 22, 17–20. [Google Scholar] [CrossRef]
- Waldock, K.A.M.; Hayes, M.; Watt, P.W.; Maxwell, N.S. Physiological and perceptual responses in the elderly to simulated daily living activities in UK summer climatic conditions. Public Health 2018, 161, 163–170. [Google Scholar] [CrossRef]
- Jiao, Y.; Yu, H.; Wang, T.; An, Y.; Yu, Y. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China. J. Therm. Biol. 2017, 70 Pt A, 28–36. [Google Scholar] [CrossRef]
- Lindemann, U.; Skelton, D.A.; Oksa, J.; Beyer, N.; Rapp, K.; Becker, C.; Klenk, J. Social participation and heat-related behavior in older adults during heat waves and on other days. Z. Gerontol. Geriatr. 2018, 51, 543–549. [Google Scholar] [CrossRef] [PubMed]
- van Hoof, J.; Bennetts, H.; Hansen, A.; Kazak, J.K.; Soebarto, V. The Living Environment and Thermal Behaviours of Older South Australians: A Multi-Focus Group Study. Int. J. Environ. Res. Public Health 2019, 16, 935. [Google Scholar] [CrossRef] [PubMed]
- Wanka, A.; Arnberger, A.; Allex, B.; Eder, R.; Hutter, H.P.; Wallner, P. The challenges posed by climate change to successful ageing. Z. Gerontol. Geriatr. 2014, 47, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Laverdière, É.; Payette, H.; Gaudreau, P.; Morais, J.A.; Shatenstein, B.; Généreux, M. Risk and protective factors for heat-related events among older adults of Southern Quebec (Canada): The NuAge study. Can. J. Public Health 2016, 107, e258–e265. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Hansen, A.; Bi, P.; Pisaniello, D.; Newbury, J.; Kitson, A.; Tucker, G.; Avery, J.; Dal Grande, E. Risk factors, health effects and behaviour in older people during extreme heat: A survey in South Australia. Int. J. Environ. Res. Public Health 2013, 10, 6721–6733. [Google Scholar] [CrossRef] [PubMed]
- Hwang, R.L.; Chen, C.P. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments. Indoor Air 2010, 20, 235–245. [Google Scholar] [CrossRef]
- White-Newsome, J.L.; Sánchez, B.N.; Jolliet, O.; Zhang, Z.; Parker, E.A.; Dvonch, J.T.; O’Neill, M.S. Climate change and health: Indoor heat exposure in vulnerable populations. Environ. Res. 2012, 112, 20–77. [Google Scholar] [CrossRef]
- van Loenhout, J.A.; le Grand, A.; Duijm, F.; Greven, F.; Vink, N.M.; Hoek, G.; Zuurbier, M. The effect of high indoor temperatures on self-perceived health of elderly persons. Environ. Res. 2016, 146, 27–34. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. An exposure assessment study of ambient heat exposure in an elderly population in Baltimore, Maryland. Environ. Health Perspect. 2002, 110, 1219–1224. [Google Scholar] [CrossRef]
- Wilson, L.; Black, D.; Veitch, C. Heatwaves and the elderly. Aust. Fam. Physician 2011, 40, 637–640. [Google Scholar]
- Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T.M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 2018, 4, eaar5809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J. Climate change made South Asia heatwave 30 times more likely. Nature News, 23 May 2022. [Google Scholar] [CrossRef]
- Chambers, J. Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018. Clim. Chang. 2020, 163, 539–558. [Google Scholar] [CrossRef]
- Coumou, D.; Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 2013, 8, 034018. [Google Scholar] [CrossRef]
- Dubey, A.K.; Lal, P.; Kumar, P.; Kumar, A.; Dvornikov, A.Y. Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment. Environ. Res. 2021, 201, 111573. [Google Scholar] [CrossRef] [PubMed]
- Pradyumna, A.; Bendapudi, R.; Zade, D.; D’Souza, M.; Tasgaonkar, P. Managing the Increasing Heat Stress in Rural Areas. In Handbook of Climate Change Resilience; Leal Filho, W., Ed.; Springer: Cham, Switzerland, 2020; pp. 207–228. [Google Scholar] [CrossRef]
- Tran, K.V.; Azhar, G.S.; Nair, R.; Knowlton, K.; Jaiswal, A.; Sheffield, P.; Mavalankar, D.; Hess, J.A. Cross-sectional, randomized cluster sample survey of household vulnerability to extreme heat among slum dwellers in Ahmedabad, India. Int. J. Environ. Res. Public Health 2013, 18, 2515–2543. [Google Scholar] [CrossRef]
- Indraganti, M. Adaptive use of natural ventilation for thermal comfort in Indian apartments. Build. Environ. 2010, 45, 1490–1507. [Google Scholar] [CrossRef]
- Indraganti, M. Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India. Appl. Energy 2010, 87, 866–883. [Google Scholar] [CrossRef]
- Haque, M.A.; Budi, A.; Malik, A.A.; Yamamoto, S.S.; Louis, V.R.; Sauerborn, R. Health coping strategies of the people vulnerable to climate change in a resource-poor rural setting in Bangladesh. BMC Public Health 2013, 13, 565. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, M.K.; Loftness, V.; Mathur, J.; Mathur, S. Thermal comfort assessment and characteristics of occupant’s behaviour in naturally ventilated buildings in composite climate of India. Energy Sustain. Dev. 2016, 33, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, M.K.; Gupta, V.K. Quantification of indoor environments and study of thermal comfort in naturally hostel buildings in the tropical country, India. E3S Web Conf. 2019, 111, 02059. [Google Scholar] [CrossRef]
- Singh, S.; Chani, P.S. Thermal comfort analysis of Indian subjects in multi-storeyed apartments: An adaptive approach in composite climate. Indoor Built Environ. 2017, 27, 1216–1246. [Google Scholar] [CrossRef]
- Indraganti, M.; Rao, K. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy Build. 2010, 42, 273–281. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Mathur, J.; Garg, V.; Gupta, R. Review of studies on thermal comfort in Indian residential buildings. Sci. Technol. Built Environ. 2020, 20, 727–748. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, A.; Kulkarni, K.S. Thermal comfort studies for the naturally ventilated built environments in Indian subcontinent: A review. J. Build Eng. 2021, 44, n 103242. [Google Scholar] [CrossRef]
- Tasgaonkar, P.; Zade, D.; Ehsan, S.; Gorti, G.; Mamnun, N.; Siderius, C.; Singh, T. Indoor heat measurement data from low-income households in rural and urban South Asia. Sci. Data 2022, 9, 285. [Google Scholar] [CrossRef]
- Kuras, E.R.; Hondula, D.M.; Brown-Saracino, J. Heterogeneity in individually experienced temperatures (IETs) within an urban neighborhood: Insights from a new approach to measuring heat exposure. Int. J. Biometeorol. 2015, 59, 1363–1372. [Google Scholar] [CrossRef]
- Kuras, E.R.; Richardson, M.B.; Calkins, M.M.; Ebi, K.L.; Hess, J.J.; Kintziger, K.W.; Jagger, M.A.; Middel, A.; Scott, A.A.; Spector, J.T.; et al. Opportunities and Challenges for Personal Heat Exposure Research. Environ. Health Perspect. 2017, 125, 085001. [Google Scholar] [CrossRef]
- Bernhard, M.C.; Kent, S.T.; Sloan, M.E.; Evans, M.B.; McClure, L.A.; Gohlke, J.M. Measuring personal heat exposure in an urban and rural environment. Environ. Res. 2015, 137, 410–418. [Google Scholar] [CrossRef]
- Milà, C.; Curto, A.; Dimitrova, A.; Sreekanth, V.; Kinra, S.; Marshall, J.D.; Tonne, C. Identifying predictors of personal exposure to air temperature in peri-urban India. Sci. Total Environ. 2020, 10, 707–136114. [Google Scholar] [CrossRef]
- Hondula, D.M.; Kuras, E.R.; Betzel, S.; Drake, L.; Eneboe, J.; Kaml, M.; Munoz, M.; Sevig, M.; Singh, M.; Ruddell, B.L.; et al. Novel metrics for relating personal heat exposure to social risk factors and outdoor ambient temperature. Environ. Int. 2021, 146, 106271. [Google Scholar] [CrossRef]
- Basu, M.; Basu, S. Socio-Economic condition of the slums in Kolkata: A case study of ward no: 82. Int. J. Humanit. Soc. Sci. 2016, 3, 141–151. [Google Scholar]
- Rathi, S.K.; Chakraborty, S.; Mishra, S.K.; Dutta, A.; Nanda, L. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India. Int. J. Environ. Res. Public Health 2021, 19, 283. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Weitz, C.; Das, K. Indoor heat conditions measured in urban slum and rural village housing in West Bengal, India. Build Environ. 2021, 191, 107567. [Google Scholar] [CrossRef]
- Sen, J.; Nag, P.K. Human susceptibility to outdoor hot environment. Sci. Total Environ. 2018, 649, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Sett, M.; Kjellstrom, T. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: Implications for a climate change future. Ind. Health 2013, 51, 424–431. [Google Scholar] [CrossRef]
- Ravindra, K.; Agarwal, N.; Kaur-Sidhu, M.; Mor, S. Appraisal of thermal comfort in rural household kitchens of Punjab, India and adaptation strategies for better health. Environ. Int. 2019, 124, 431–440. [Google Scholar] [CrossRef]
- Markovitz, A.R.; Goldstick, J.E.; Levy, K.; Cevallos, W.; Mukherjee, B.; Trostle, J.A.; Eisenberg, J.N. Where science meets policy: Comparing longitudinal and cross-sectional designs to address diarrhoeal disease burden in the developing world. Int. J. Epidemiol. 2012, 41, 504–513. [Google Scholar] [CrossRef]
- Rothfusz, L.P. The Heat Index "Equation" (or, More Than You Ever Wanted to Know About Heat Index); Technical Attachment SR 90-23; Scientific Services Division, NWS Southern Region Headquarters: Fort Worth, TX, USA, 1990. [Google Scholar]
- Anderson, G.B.; Bell, M.L.; Peng, R.D. Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research. Environ. Health Perspect. 2013, 121, 1111–1119. [Google Scholar] [CrossRef]
- Gauer, R.; Meyers, B.K. Heat-Related Illnesses. Am. Fam. Physician 2019, 99, 482–489. [Google Scholar]
- Näyhä, S.; Rintamäki, H.; Donaldson, G.; Hassi, J.; Jousilahti, P.; Laatikainen, T.; Jaakkola, J.J.K.; Ikäheimo, T.M. Heat-related thermal sensation, comfort and symptoms in a northern population: The National FINRISK 2007 study. Eur. J. Public Health 2014, 24, 620–626. [Google Scholar] [CrossRef]
- Dolnicar, S.; Grün, B.; Leisch, F. Quick, simple and reliable: Forced binary survey questions. Int. J. Mark. Res. 2011, 53, 231–252. [Google Scholar] [CrossRef]
- Dolnicar, S.; Leisch, F. One legacy of Mazanec: Binary questions are a simple, stable and valid measure of evaluative beliefs. Int. J. Cult. Tour. Hosp. Res. 2012, 6, 316–325. [Google Scholar] [CrossRef]
- Grassi, M.; Nucera, A.; Zanolin, E.; Omenaas, E.; Anto, J.M.; Leynaert, B.; European Community Respiratory Health Study Quality of Life Working Group. Performance comparison of Likert and binary formats of SF-36 version 1.6 across ECRHS II adults populations. Value Health 2007, 10, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, S.; Shahid, R.; Toqeer, A.; Khan, M.A. Impact of sample size on principal component analysis ordination of an environmental data set: Effects on eigenstructure. Ekológia 2016, 35, 173–190. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA, 2013; Volume 398. [Google Scholar]
- Ponni, M.; Baskar, R.A. Study on Indoor Temperature and Comfort Temperature. Int. J. Eng. Sci. 2015, 4, 7–14. [Google Scholar]
- Rajasekar, E.; Ramachandraiah, A. Adaptive comfort and thermal expectations—A subjective evaluation in hot humid climate. In Proceedings of the Conference: Adapting to Change: New Thinking on Comfort, Cumberland Lodge, Windsor, UK, 9–11 April 2010; Network for Comfort and Energy Use in Buildings: London, UK. Available online: https://nceub.org.uk (accessed on 1 June 2022).
- Shastry, V.; Mani, M.; Tenorio, R. Evaluating thermal comfort and building climatic response in warm-humid climates for vernacular dwellings in Suggenhalli (India). Archit. Sci. Rev. 2016, 59, 12–26. [Google Scholar] [CrossRef]
- Weitz, C.A.; Mukhopadhyay, B.; Das, K. Individually experienced heat stress among elderly residents of an urban slum and rural village in India. Int. J. Biometeorol. 2022, 66, 1145–1162. [Google Scholar] [CrossRef]
- Glass, K.; Tait, P.W.; Hanna, E.G.; Dear, K. Estimating risks of heat strain by age and sex: A population-level simulation model. Int. J. Environ. Res. Public Health 2015, 12, 5241–5255. [Google Scholar] [CrossRef]
- Gu, S.; Huang, C.; Bai, L.; Chu, C.; Liu, Q. Heat-related illness in China, summer of 2013. Int. J. Biometeorol. 2016, 60, 131–137. [Google Scholar] [CrossRef]
- Na, W.; Jang, J.Y.; Lee, K.E.; Kim, H.; Jun, B.; Kwon, J.W.; Jo, S.N. The effects of temperature on heat-related illness according to the characteristics of patients during the summer of 2012 in the Republic of Korea. J. Prev. Med. Public Health 2013, 46, 19–27. [Google Scholar] [CrossRef]
- van Steen, Y.; Ntarladima, A.M.; Grobbee, R.; Karssenberg, D.; Vaartjes, I. Sex differences in mortality after heat waves: Are elderly women at higher risk? Int. Arch. Occup. Environ. Health 2019, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.G.; Ellis, F.P.; Doré, C.; Exton-Smith, A.N.; Weiner, J.S. Sweat responses in the aged. Age Ageing 1976, 5, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Notley, S.R.; Poirier, M.P.; Hardcastle, S.G.; Flouris, A.D.; Boulay, P.; Sigal, R.J.; Kenny, G.P. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress. Med. Sci. Sports Exerc. 2017, 49, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, M.K.; Al-Tamimi, N.; Alotaibi, B.S.; Abuhussain, M.A. Investigation on Subjects’ Seasonal Perception and Adaptive Actions in Naturally Ventilated Hostel Dormitories in the Composite Climate Zone of India. Sustainability 2022, 14, 4997. [Google Scholar] [CrossRef]
- Malik, J.; Bardhan, R.; Hong, T.; Piette, M.A. Contextualising adaptive comfort behaviour within low-income housing of Mumbai, India. Build. Environ. 2020, 177, 106877. [Google Scholar] [CrossRef]
- Maity, M.; Mukhopadhyay, B. Socio-economic Condition and Quality of Life Assessment: A Study Among Urban and Rural Elderly of West Bengal. Int. J. Aging Hum Dev. 2012, 1, 69–82. [Google Scholar] [CrossRef]
- Maity, M.; Mukhopadhyay, B. Social Network and Social Support for Ageing Adults: Rural-Urban Differences. Int. J. Aging Hum Dev. 2015, 5, 11–26. [Google Scholar] [CrossRef]
- de Dear, R.J.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 145–167. Available online: https://www.techstreet.com/ashrae/standards/sf-98-07-3-rp-884-developing-an-adaptive-model-of-thermal-comfort-and-preference-same-as-4106?product_id=1711448 (accessed on 17 July 2022).
- Debnath, R.; Bardhan, R.; Jain, R.K. A data-driven and simulation approach for understanding thermal performance of slum redevelopment in Mumbai, India. In Proceedings of the 15th International Building Performance Simulation Association Conference, San Francisco, CA, USA, 7–9 August 2017; pp. 2745–2752. [Google Scholar] [CrossRef]
- Patil, V.H.; Singh, N.H.; Mishra, S.; Donavan, T. Parallel Analysis Engine to Aid in Determining Number of Factors to Retain Using R [Computer Software]. 2017. Available online: https://analytics.gonzaga.edu/parallelengine/ (accessed on 17 July 2022).
- Horn, J.L. A Rationale and Test for the Number of Factors in Factor Analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
Kolkata Slums | Rural Villages | Chi-Square | |
---|---|---|---|
Ages | |||
60–69 years | 70 | 115 | |
70 years & Older | 60 | 65 | 3.164 NS |
Gender | |||
Men | 33 | 89 | |
Women | 97 | 91 | 18.308 *** |
Marital Status | |||
Single/Never Married | 2 | 0 | |
Married | 58 | 171 | |
Widow/widower | 67 | 9 | |
Divorced/separated | 3 | 0 | 99.548 *** |
Education | |||
None | 45 | 59 | |
Primary only | 28 | 28 | |
Some Secondary | 36 | 58 | |
Completed secondary | 9 | 15 | |
Post-secondary | 12 | 20 | 5.442 NS |
Currently Employed | |||
Yes | 38 | 45 | |
No | 92 | 135 | 0.689 NS |
Tobacco Use * | |||
Current/former user | 38 | 54 | |
Nonuser | 88 | 123 | 0.004 NS |
Activity | |||
Inactive all day | 49 | 37 | |
Active primarily inmorning | 20 | 45 | |
Active primarily in afternoon | 34 | 17 | |
Active primarily in evening | 4 | 0 | |
Active throughout the day | 23 | 81 | 44.446 *** |
Easurement | Kolkata Slums | Rural Villages | ||||
---|---|---|---|---|---|---|
Average 24-h | 24-h | Average 24-h | 24-h | |||
Max | Min | Median | Max | Min | Median | |
Temperature (°C) | ||||||
Outdoor 1 | 34.4 | 28.0 | 29.7 | 33.6 | 28.5 | 30.4 |
Indoor | 34.3 | 30.7 | 32.0 | 33.3 | 28.9 | 30.5 |
Elderly Men | 34.8 | 30.5 | 32.2 | 34.7 | 29.0 | 31.4 |
Elderly Women | 34.7 | 30.7 | 32.2 | 35.0 | 29.0 | 31.6 |
Humidity (%) | ||||||
Outdoor 1 | 93.0 | 60.4 | 87.0 | 95.4 | 73.9 | 90.0 |
Indoor | 81.7 | 68.6 | 76.5 | 89.5 | 73.3 | 83.7 |
Elderly Men | 81.2 | 67.3 | 76.7 | 89.5 | 73.1 | 83.6 |
Elderly Women | 81.9 | 69.0 | 76.5 | 89.6 | 73.4 | 83.7 |
Heat Index (°C) | ||||||
Outdoor 1 | 45.2 | 33.9 | 38.6 | 49.3 | 36.2 | 41.8 |
Indoor | 48.7 | 39.3 | 42.9 | 46.7 | 36.8 | 40.6 |
Elderly Men | 53.0 | 39.6 | 44.4 | 54.5 | 36.4 | 43.0 |
Elderly Women | 53.1 | 40.3 | 44.4 | 57.6 | 36.4 | 44.3 |
(a) | |||
Heat Measure | Kolkata | Rural Villages | Total |
Median 24-h | |||
Experienced Temperature | 28.58 °C | 27.82 °C | 27.78 °C |
(Standard Error of Estimate) | (0.23 °C) | (0.20 °C) | (0.16 °C) |
Median 24-h | |||
Experienced Heat Index | 36.89 °C | 33.42 °C | 34.78 °C |
(Standard Error of Estimate) | (0.20 °C) | (0.21 °C) | (0.15 °C) |
(b) | |||
Heat Measure | Kolkata | Rural Villages | Total |
Median 24-h | |||
Experienced Temperature | 27.67 °C | 27.00 °C | 26.82 °C |
(Standard Error of Estimate) | (0.22 °C) | (0.19 °C) | (0.16 °C) |
Median 24-h | |||
Experienced Temperature | 35.13 °C | 31.10 °C | 32.67 °C |
(Standard Error of Estimate) | (0.20 °C) | (0.21 °C) | (0.15 °C) |
Odds Ratio (Women Relative to Men) | 95% Confidence Intervals | Significance | ||
Lower | Higher | |||
Nausea/Vomiting | 4.400 | 1.981 | 10.267 | p < 0.001 |
Muscle Cramps | 3.054 | 1.903 | 4.901 | p < 0.001 |
Disturbed Sleep | 2.357 | 1.469 | 3.782 | p < 0.001 |
Prickly Heat | 1.767 | 1.105 | 2.824 | p = 0.009 |
Dizziness | 1.677 | 1.012 | 2.788 | p = 0.022 |
Odds Ratio (Rural Villages Relative to Kolkata Slums) | 95% Confidence Intervals | Significance | ||
Lower | Higher | |||
Disturbed sleep | 0.414 | 0.254 | 0.675 | p < 0.001 |
Nausea/Vomiting | 0.477 | 0.254 | 0.894 | p = 0.011 |
Muscle Cramps | 0.536 | 0.338 | 0.849 | p = 0.004 |
Prickly heat | 2.072 | 1.298 | 3.309 | p = 0.010 |
Heat Index | 0–3 Symptoms | 4–7 Symptoms | 8–11 Symptoms | F | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Measure | N | Mean | S.E. | N | Mean | S.E. | N | Mean | S.E. | |
Median 24-h Experienced HI (°C) | ||||||||||
Kolkata Slums (values adjusted to median 24-h indoor HI = 42.7 °C) | ||||||||||
Women | 11 | 44.3 | 0.4 | 46 | 43.6 | 0.2 | 40 | 44 | 0.2 | 1.842 NS |
Men | 10 | 42.7 | 0.4 | 14 | 43.8 | 0.4 | 9 | 43.9 | 0.5 | 2.662 NS |
F | 4.694 * | 0.179 NS | 0.043 NS | |||||||
Rural Villages (values adjusted to median 24-h outdoor HI = 41.3 °C) | ||||||||||
Women | 8 | 44 | 0.9 | 55 | 43.9 | 0.3 | 28 | 44.5 | 0.6 | 0.818 NS |
Men | 13 | 42.1 | 0.7 | 65 | 42.5 | 0.3 | 11 | 43.1 | 0.7 | 0.390 NS |
F | 2.874 NS | 10.774 ** | 2.988 NS | |||||||
Experienced HI at 1 P.M. (°C) | ||||||||||
Kolkata Slums (values adjusted to indoor HI at 1 P.M. = 47.1 °C) | ||||||||||
Women | 11 | 47.4 | 0.9 | 46 | 48 | 0.4 | 40 | 49.4 | 0.5 | 3.303 * |
Men | 10 | 48.4 | 0.9 | 14 | 48.4 | 0.8 | 9 | 50.3 | 1 | 1.481 NS |
F | 1.273 NS | 0.284 NS | 0.489 NS | |||||||
Rural Villages (values adjusted to outdoor HI at 1 P.M. = 47.1 °C) | ||||||||||
Women | 8 | 46.9 | 1.6 | 55 | 50.3 | 0.6 | 28 | 51.2 | 0.8 | 3.092 * |
Men | 13 | 46.6 | 1.2 | 65 | 48.2 | 0.5 | 11 | 48.2 | 1.3 | 0.875 NS |
F | 0.141 NS | 5.863 * | 5.050 * |
Coping Strategy | First Predictor | Second Predictor | Third Predictor | Fourth Predictor | Fifth Predictor | Nagelkerke R2 |
---|---|---|---|---|---|---|
Use Electric Fan In Sleeping Area | Walls made of Cement | Personal HI Overnight | Post-Secondary Education | 0.179 | ||
Rest | Walls made of Brick | Excessive Thirst | Number of Rooms ‘in Dwelling | 0.154 | ||
Drink Water | Excessive Thirst | Married | 0.309 | |||
Move to Cooler Area | Rural Villages | Roof made of Cement | Dizziness | Nausea/Vomiting | 0.535 | |
Use Hand Fan | Personal HI Afternoon | Excessive Sweating | Fatigue/Weakness | 0.122 | ||
Alter/Reduce Social Activities | Rural Villages | Walls made of brick | Personal HI Afternoon | Post-Secondary Education | Active All Day | 0.622 |
Change/Remove Clothing | Active in Afternoon | Men | Roof made of asbestos sheets | Number of rooms in dwelling | 0.175 | |
Add Food Items | Kolkata Slums | Under 70 Years | No Education | Dizziness | Prickly Heat | 0.367 |
Avoiding/Altering Activities | Rural Villages | Walls made of mud | Uncomfortable in Heat | Excessive Thirst | Number of rooms in dwelling | 0.585 |
Take Shower or Bath | Rural Villages | Roof made of Thatch | Secondary Ed | Uncomfortable | Walls made of Mud | 0.444 |
Delete Food Items | Rural Villages | Personal HI, Morning | Disturbed Sleep Overnight | Personal HI, | Prickly Heat | 0.297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhopadhyay, B.; Weitz, C.A. Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India. Int. J. Environ. Res. Public Health 2022, 19, 12446. https://doi.org/10.3390/ijerph191912446
Mukhopadhyay B, Weitz CA. Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India. International Journal of Environmental Research and Public Health. 2022; 19(19):12446. https://doi.org/10.3390/ijerph191912446
Chicago/Turabian StyleMukhopadhyay, Barun, and Charles A. Weitz. 2022. "Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India" International Journal of Environmental Research and Public Health 19, no. 19: 12446. https://doi.org/10.3390/ijerph191912446
APA StyleMukhopadhyay, B., & Weitz, C. A. (2022). Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India. International Journal of Environmental Research and Public Health, 19(19), 12446. https://doi.org/10.3390/ijerph191912446