Self-Organizing Maps to Multidimensionally Characterize Physical Profiles in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
- -
- One-way Welch ANOVA and Games–Howell post hoc test for the variables that were normal but variances are not homogenous.
- -
- One-way ANOVA and Tukey post hoc test for the variables that were normal with homogeneous variances.
- -
- Kruskal–Wallis and Dunn post hoc test for non-normal variables.
Women | Age ** | Gait/height * | Grip/BMI * | Balance ** | LAM% * | Fat% ** | |
---|---|---|---|---|---|---|---|
Cluster vs. Cluster | p-Value | p-Value | p-Value | p-Value | p-Value | p-Value | |
1 | 2 | 0.480 | 0.772 | 0.001 | 1.000 | <0.001 | <0.001 |
3 | 0.532 | 0.023 | <0.001 | 1.000 | <0.001 | <0.001 | |
4 | 0.749 | 0.040 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 | <0.001 | 0.765 | <0.001 | 1.000 | 0.004 | 0.086 | |
6 | <0.001 | <0.001 | 0.001 | <0.001 | 1.000 | 1.000 | |
7 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
2 | 3 | 1.000 | 0.003 | <0.001 | 1.000 | <0.001 | <0.001 |
4 | 1.000 | 0.064 | 0.001 | <0.001 | <0.001 | <0.001 | |
5 | <0.001 | 1.000 | <0.001 | 0.003 | 0.005 | 0.340 | |
6 | <0.001 | <0.001 | 0.261 | <0.001 | <0.001 | 0.002 | |
7 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
3 | 4 | 1.000 | 1.000 | 0.041 | <0.001 | 1.000 | 1.000 |
5 | <0.001 | 0.003 | 0.991 | 0.019 | <0.001 | <0.001 | |
6 | <0.001 | 0.006 | 0.486 | <0.001 | <0.001 | <0.001 | |
7 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | 0.012 | |
4 | 5 | <0.001 | 0.065 | 0.009 | <0.001 | <0.001 | <0.001 |
6 | <0.001 | 0.027 | 1.000 | 1.000 | <0.001 | <0.001 | |
7 | <0.001 | <0.001 | <0.001 | 1.000 | 0.041 | 0.729 | |
5 | 6 | 0.976 | <0.001 | 0.301 | <0.001 | 0.012 | 0.167 |
7 | 0.010 | <0.001 | 0.008 | <0.001 | <0.001 | <0.001 | |
6 | 7 | 1.000 | 0.979 | 0.011 | 1.000 | <0.001 | <0.001 |
Men | Age * | Gait/height * | Grip/BMI * | Balance *** | LAM% *** | Fat% ** | |
---|---|---|---|---|---|---|---|
Cluster vs. Cluster | p-Value | p-Value | p-Value | p-Value | p-Value | p-Value | |
1 | 2 | 0.030 | 0.489 | <0.001 | 1.000 | 1.000 | <0.001 |
3 | 0.739 | 0.732 | <0.001 | 1.000 | <0.001 | <0.001 | |
4 | <0.001 | <0.001 | <0.001 | <0.001 | 0.042 | 0.052 | |
5 | 0.850 | 0.008 | <0.001 | <0.001 | <0.001 | <0.001 | |
6 | <0.001 | 0.156 | <0.001 | 1.000 | <0.001 | <0.001 | |
7 | 0.232 | <0.001 | <0.001 | <0.001 | <0.001 | 0.021 | |
2 | 3 | 0.542 | 0.999 | 0.976 | 1.000 | <0.001 | <0.001 |
4 | <0.001 | <0.001 | 0.999 | <0.001 | 1.000 | 0.950 | |
5 | <0.001 | 0.753 | 0.007 | <0.001 | <0.001 | <0.001 | |
6 | <0.001 | 0.951 | <0.001 | 1.000 | <0.001 | 0.011 | |
7 | 0.001 | 0.001 | <0.001 | 0.008 | <0.001 | 0.076 | |
3 | 4 | <0.001 | <0.001 | 1.000 | <0.001 | 0.001 | <0.001 |
5 | 0.076 | 0.328 | 0.049 | <0.001 | 1.000 | 0.974 | |
6 | <0.001 | 0.775 | <0.001 | 1.000 | 1.000 | 1.000 | |
7 | 0.029 | <0.001 | <0.001 | <0.001 | 0.8391 | 0.426 | |
4 | 5 | <0.001 | 0.003 | 0.012 | 1.000 | 0.001 | <0.001 |
6 | 1.000 | 0.057 | <0.001 | <0.001 | 0.002 | 0.003 | |
7 | 0.942 | 0.808 | <0.001 | 1.000 | 0.001 | 0.052 | |
5 | 6 | 0.009 | 1.000 | 0.118 | <0.001 | 1.000 | 0.987 |
7 | 0.674 | 0.012 | 0.001 | 1.000 | 0.783 | 0.339 | |
6 | 7 | 0.961 | 0.030 | 0.480 | 0.012 | 1.000 | 0.504 |
Appendix C
Women | Peripheral Vascular Disease (PVD) Yes | Hypertension (HTN) Yes | |||||
---|---|---|---|---|---|---|---|
Cluster vs. Reference Cluster | p-Value | RRR | 95% CI | p-Value | RRR | 95% CI | |
2 | 1 | 0.726 | 1.192 | (0.446–3.186) | 0.267 | 2.113 | (0.564–7.921) |
3 | 0.775 | 1.156 | (0.428–3.126) | 0.056 | 3.606 | (0.967–13.441) | |
4 | 0.947 | 0.960 | (0.294–3.135) | 0.045 | 4.452 | (1.035–19.162) | |
5 | 0.507 | 0.711 | (0.259–1.950) | 0.002 | 8.095 | (2.165–30.273) | |
6 | 0.900 | 1.086 | (0.297–3.976) | 0.084 | 3.967 | (0.832–18.912) | |
7 | 0.090 | 2.281 | (0.880–5.914) | <0.001 | 10.225 | (2.845–36.743) | |
3 | 2 | 0.924 | 0.970 | (0.514–1.830) | 0.124 | 1.707 | (0.863–3.373) |
4 | 0.638 | 0.805 | (0.327–1.985) | 0.116 | 2.107 | (0.832–5.336) | |
5 | 0.123 | 0.596 | (0.309–1.150) | <0.001 | 3.831 | (1.926–7.621) | |
6 | 0.862 | 0.911 | (0.320–2.596) | 0.254 | 1.877 | (0.636–5.544) | |
7 | 0.025 | 1.913 | (1.086–3.371) | <0.001 | 4.839 | (2.635–8.887) | |
4 | 3 | 0.691 | 0.831 | (0.333–2.074) | 0.654 | 1.235 | (0.492–3.101) |
5 | 0.158 | 0.615 | (0.313–1.208) | 0.019 | 2.245 | (1.141–4.416) | |
6 | 0.908 | 0.940 | (0.326–2.708) | 0.862 | 1.100 | (0.375–3.226) | |
7 | 0.023 | 1.973 | (1.097–3.550) | 0.001 | 2.835 | (1.564–5.142) | |
5 | 4 | 0.526 | 0.740 | (0.292–1.877) | 0.206 | 1.818 | (0.720–4.588) |
6 | 0.845 | 1.131 | (0.328–3.898) | 0.856 | 0.891 | (0.256–3.102) | |
7 | 0.051 | 2.376 | (0.997–5.664) | 0.060 | 2.296 | (0.964–5.470) | |
6 | 5 | 0.438 | 1.529 | (0.523–4.468) | 0.195 | 0.490 | (0.166–1.443) |
7 | <0.001 | 3.211 | (1.742–5.919) | 0.447 | 1.263 | (0.691–2.307) | |
7 | 6 | 0.154 | 2.100 | (0.758–5.817) | 0.072 | 2.578 | (0.919–7.227) |
Women | Cognitive Impairment (CI) Yes | Fear of Falling (FF) Yes | |||||
---|---|---|---|---|---|---|---|
Cluster vs. Reference Cluster | p-Value | RRR | 95% CI | p-Value | RRR | 95% CI | |
2 | 1 | 0.502 | 2.082 | (0.245–17.684) | 0.068 | 2.786 | (0.925–8.385) |
3 | 0.428 | 2.375 | (0.279–20.206) | 0.002 | 6.000 | (1.949–18.472) | |
4 | 0.691 | 1.652 | (0.139–19.654) | 0.012 | 5.333 | (1.453–19.579) | |
5 | 0.715 | 1.508 | (0.166–13.711) | 0.003 | 5.500 | (1.781–16.987) | |
6 | 0.465 | 2.533 | (0.209–30.680) | 0.019 | 5.500 | (1.331–22.734) | |
7 | 0.095 | 5.758 | (0.740–44.812) | <0.001 | 13.696 | (4.522–41.481) | |
3 | 2 | 0.803 | 1.141 | (0.405–3.214) | 0.022 | 2.154 | (1.118–4.150) |
4 | 0.779 | 0.793 | (0.157–4.005) | 0.169 | 1.915 | (0.759–4.831) | |
5 | 0.588 | 0.724 | (0.225–2.327) | 0.044 | 1.974 | (1.019–3.825) | |
6 | 0.815 | 1.217 | (0.235–6.310) | 0.220 | 1.974 | (0.666–5.849) | |
7 | 0.017 | 2.765 | (1.198–6.382) | <0.001 | 4.916 | (2.625–9.207) | |
4 | 3 | 0.661 | 0.696 | (0.138–3.519) | 0.808 | 0.889 | (0.343–2.304) |
5 | 0.447 | 0.635 | (0.197–2.046) | 0.807 | 0.917 | (0.456–1.843) | |
6 | 0.939 | 1.067 | (0.205–5.545) | 0.878 | 0.917 | (0.302–2.778) | |
7 | 0.039 | 2.424 | (1.046–5.620) | 0.015 | 2.283 | (1.173–4.443) | |
5 | 4 | 0.971 | 0.913 | (0.165–5.036) | 0.950 | 1.031 | (0.396–2.683) |
6 | 0.685 | 1.533 | (0.194–12.092) | 0.963 | 1.031 | (0.285–3.735) | |
7 | 0.103 | 3.485 | (0.779–15.642) | 0.048 | 2.568 | (1.010–6.528) | |
6 | 5 | 0.558 | 1.680 | (0.297–9.512) | 1.000 | 1.000 | (0.329–3.041) |
7 | 0.009 | 3.818 | (1.407–10.359) | 0.008 | 2.490 | (1.272–4.874) | |
7 | 6 | 0.293 | 2.273 | (0.492–10.505) | 0.102 | 2.490 | (0.835–7.423) |
Women | Activities of Daily Living Dependence (ADLD) Yes | Years of Education (EDUC) | |||||
---|---|---|---|---|---|---|---|
Cluster vs. Reference Cluster | p-Value | RRR | 95% CI | p-Value | RRR | 95% CI | |
2 | 1 | 0.791 | 0.731 | (0.072–7.422) | 0.880 | 0.993 | (0.904–1.091) |
3 | 0.923 | 1.118 | (0.118–10.599) | 0.805 | 1.012 | (0.920–1.113) | |
4 | 0.268 | 3.619 | (0.371–35.293) | 0.488 | 0.961 | (0.859–1.075) | |
5 | 0.715 | 1.508 | (0.166–13.711) | 0.869 | 1.008 | (0.916–1.110) | |
6 | 0.465 | 2.533 | (0.209–30.680) | 0.342 | 0.942 | (0.834–1.065) | |
7 | 0.101 | 5.566 | (0.714–43.364) | 0.077 | 0.922 | (0.842–1.009) | |
3 | 2 | 0.587 | 1.529 | (0.331–7.076) | 0.539 | 1.019 | (0.959–1.084) |
4 | 0.046 | 4.952 | (1.028–23.866) | 0.453 | 0.968 | (0.890–1.054) | |
5 | 0.334 | 2.063 | (0.475–8.969) | 0.629 | 1.015 | (0.954–1.080) | |
6 | 0.193 | 3.467 | (0.533–22.551) | 0.297 | 0.949 | (0.861–1.047) | |
7 | 0.001 | 7.616 | (2.237–25.931) | 0.006 | 0.928 | (0.880–0.979) | |
4 | 3 | 0.117 | 3.238 | (0.745–14.080) | 0.242 | 0.950 | (0.871–1.035) |
5 | 0.666 | 1.349 | (0.347–5.250) | 0.905 | 0.996 | (0.934–1.062) | |
6 | 0.369 | 2.267 | (0.380–13.537) | 0.160 | 0.931 | (0.843–1.029) | |
7 | 0.004 | 4.980 | (1.674–14.811) | <0.001 | 0.911 | (0.861–0.963) | |
5 | 4 | 0.222 | 0.417 | (0.102–1.697) | 0.282 | 1.049 | (0.962–1.144) |
6 | 0.701 | 0.700 | (0.113–4.329) | 0.737 | 0.981 | (0.874–1.100) | |
7 | 0.462 | 1.538 | (0.489–4.840) | 0.304 | 0.959 | (0.885–1.039) | |
6 | 5 | 0.558 | 1.680 | (0.297–9.512) | 0.186 | 0.935 | (0.846–1.033) |
7 | 0.011 | 3.691 | (1.357–10.036) | 0.002 | 0.914 | (0.863–0.968) | |
7 | 6 | 0.314 | 2.197 | (0.475–10.170) | 0.640 | 0.978 | (0.890–1.074) |
Women | Number of Comorbidities (NUMCOM) | |||
---|---|---|---|---|
Cluster vs. Reference Cluster | p-Value | RRR | 95% CI | |
2 | 1 | 0.898 | 1.025 | (0.701–1.499) |
3 | 0.510 | 1.136 | (0.777–1.663) | |
4 | 0.191 | 1.333 | (0.866–2.053) | |
5 | 0.253 | 1.248 | (0.854–1.823) | |
6 | 0.438 | 1.212 | (0.745–1.971) | |
7 | 0.004 | 1.686 | (1.180–2.408) | |
3 | 2 | 0.395 | 1.109 | (0.874–1.406) |
4 | 0.100 | 1.301 | (0.951–1.779) | |
5 | 0.102 | 1.217 | (0.962–1.541) | |
6 | 0.393 | 1.182 | (0.805–1.737) | |
7 | <0.001 | 1.644 | (1.350–2.003) | |
4 | 3 | 0.318 | 1.173 | (0.858–1.605) |
5 | 0.438 | 1.098 | (0.867–1.391) | |
6 | 0.743 | 1.067 | (0.726–1.568) | |
7 | <0.001 | 1.483 | (1.217–1.808) | |
5 | 4 | 0.677 | 0.936 | (0.685–1.278) |
6 | 0.668 | 0.909 | (0.588–1.406) | |
7 | 0.106 | 1.264 | (0.952–1.679) | |
6 | 5 | 0.882 | 0.971 | (0.662–1.426) |
7 | 0.003 | 1.351 | (1.111–1.643) | |
7 | 6 | 0.074 | 1.391 | (0.969–1.997) |
Men | Peripheral Vascular Disease (PVD) Yes | Hypertension (HTN) Yes | |||||
---|---|---|---|---|---|---|---|
Cluster vs. Reference Cluster | p-Value | RRR | 95% CI | p-Value | RRR | 95% CI | |
2 | 1 | 0.121 | 0.175 | (0.019–1.585) | 0.653 | 0.742 | (0.202–2.724) |
3 | 0.640 | 0.729 | (0.194–2.739) | 0.909 | 1.069 | (0.342–3.344) | |
4 | 0.180 | 2.211 | (0.693–7.051) | 0.005 | 4.987 | (1.631–15.252) | |
5 | 0.365 | 1.750 | (0.522–5.867) | 0.031 | 3.455 | (1.119–10.669) | |
6 | 0.037 | 5.250 | (1.107–24.905) | 0.255 | 2.375 | (0.535–10.534) | |
7 | 0.912 | 0.875 | (0.082–9.376) | 0.060 | 9.500 | (0.913–98.803) | |
3 | 2 | 0.209 | 4.167 | (0.449–38.654) | 0.575 | 1.440 | (0.402–5.157) |
4 | 0.020 | 12.632 | (1.494–106.766) | 0.003 | 6.720 | (1.915–23.577) | |
5 | 0.037 | 10.000 | (1.151–86.876) | 0.017 | 4.655 | (1.315–16.475) | |
6 | 0.005 | 30.000 | (2.794–322.090) | 0.153 | 3.200 | (0.649–15.775) | |
7 | 0.289 | 5.000 | (0.256–97.697) | 0.038 | 12.800 | (1.149–142.577) | |
4 | 3 | 0.071 | 3.032 | (0.909–10.110) | 0.006 | 4.667 | (1.571–13.866) |
5 | 0.171 | 2.400 | (0.686–8.397) | 0.036 | 3.232 | (1.077–9.703) | |
6 | 0.015 | 7.200 | (1.468–35.317) | 0.286 | 2.222 | (0.512–9.647) | |
7 | 0.881 | 1.200 | (0.110–13.146) | 0.066 | 8.889 | (0.866–91.199) | |
5 | 4 | 0.671 | 0.792 | (0.269–2.327) | 0.503 | 0.693 | (0.236–2.030) |
6 | 0.245 | 2.375 | (0.553–10.196) | 0.316 | 0.476 | (0.112–2.031) | |
7 | 0.431 | 0.396 | (0.039–3.977) | 0.586 | 1.905 | (0.188–19.326) | |
6 | 5 | 0.150 | 3.000 | (0.671–13.404) | 0.614 | 0.688 | (0.160–2.955) |
7 | 0.560 | 0.500 | (0.049–5.154) | 0.393 | 2.750 | (0.270–28.036) | |
7 | 6 | 0.165 | 0.167 | (0.013–2.093) | 0.280 | 4.000 | (0.323–49.596) |
Men | Number of Comorbidities (NUMCOM) | |||
---|---|---|---|---|
Cluster vs. Reference Cluster | p-Value | RRR | 95% CI | |
2 | 1 | 0.062 | 0.586 | (0.335–1.028) |
3 | 0.798 | 0.944 | (0.605–1.471) | |
4 | 0.002 | 1.832 | (1.248–2.689) | |
5 | 0.116 | 1.394 | (0.922–2.107) | |
6 | 0.005 | 1.984 | (1.224–3.217) | |
7 | 0.009 | 2.189 | (1.221–3.927) | |
3 | 2 | 0.094 | 1.609 | (0.923–2.807) |
4 | < 0.001 | 3.124 | (1.876–5.200) | |
5 | 0.001 | 2.377 | (1.396–4.047) | |
6 | <0.001 | 3.383 | (1.879–6.092) | |
7 | < 0.001 | 3.733 | (1.904–7.321) | |
4 | 3 | 0.001 | 1.941 | (1.331–2.831) |
5 | 0.061 | 1.477 | (0.983–2.219) | |
6 | 0.002 | 2.102 | (1.304–3.391) | |
7 | 0.004 | 2.320 | (1.299–4.143) | |
5 | 4 | 0.116 | 0.761 | (0.541–1.070) |
6 | 0.711 | 1.083 | (0.710–1.653) | |
7 | 0.514 | 1.195 | (0.700–2.041) | |
6 | 5 | 0.124 | 1.424 | (0.908–2.232) |
7 | 0.112 | 1.571 | (0.900–2.741) | |
7 | 6 | 0.752 | 1.103 | (0.599–2.032) |
References
- Shinkai, S.; Watanabe, S.; Kumagai, S.; Fujiwara, Y.; Amano, H.; Yoshida, H.; Ishizaki, T.; Yukawa, H.; Suzuki, T.; Shibata, H. Walking Speed as a Good Predictor for the Onset of Functional Dependence in a Japanese Rural Community Population. Age Ageing 2000, 29, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, O.A.; Savva, G.M.; Cronin, H.; Kenny, R.A.; Horgan, N.F. Using Timed up and Go and Usual Gait Speed to Predict Incident Disability in Daily Activities among Community-Dwelling Adults Aged 65 and Older. Arch. Phys. Med. Rehabil. 2014, 95, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Makizako, H.; Doi, T.; Tsutsumimoto, K.; Suzuki, T. Incidence of Disability in Frail Older Persons with or without Slow Walking Speed. J. Am. Med. Dir. Assoc. 2015, 16, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Al-Momani, M.; Al-Momani, F.; Alghadir, A.H.; Alharethy, S.; Gabr, S.A. Factors Related to Gait and Balance Deficits in Older Adults. Clin. Interv. Aging 2016, 11, 1043–1049. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Kritchevsky, S.B.; Newman, A.B.; Simonsick, E.M.; Harris, T.B.; Penninx, B.W.; Brach, J.S.; Tylavsky, F.A.; Satterfield, S.; Bauer, D.C.; et al. Added Value of Physical Performance Measures in Predicting Adverse Health-Related Events: Results from the Health, Aging And Body Composition Study. J. Am. Geriatr. Soc. 2009, 57, 251–259. [Google Scholar] [CrossRef]
- De Buyser, S.L.; Petrovic, M.; Taes, Y.E.; Toye, K.R.C.; Kaufman, J.-M.; Goemaere, S. Physical Function Measurements Predict Mortality in Ambulatory Older Men. Eur. J. Clin. Investig. 2013, 43, 379–386. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
- Rantanen, T.; Volpato, S.; Ferrucci, L.; Heikkinen, E.; Fried, L.P.; Guralnik, J.M. Handgrip Strength and Cause-Specific and Total Mortality in Older Disabled Women: Exploring the Mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef]
- Hartholt, K.A.; Lee, R.; Burns, E.R.; van Beeck, E.F. Mortality from Falls among US Adults Aged 75 Years or Older, 2000–2016. JAMA 2019, 321, 2131–2133. [Google Scholar] [CrossRef] [Green Version]
- Mikkola, T.M.; von Bonsdorff, M.B.; Salonen, M.K.; Simonen, M.; Pohjolainen, P.; Osmond, C.; Perälä, M.-M.; Rantanen, T.; Kajantie, E.; Eriksson, J.G. Body Composition as a Predictor of Physical Performance in Older Age: A Ten-Year Follow-up of the Helsinki Birth Cohort Study. Arch. Gerontol. Geriatr. 2018, 77, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Leng, X.I.; Kritchevsky, S.B. Body Composition and Physical Function in Older Adults with Various Comorbidities. Innov. Aging 2017, 1, igx008. [Google Scholar] [CrossRef] [PubMed]
- Sallinen, J.; Stenholm, S.; Rantanen, T.; Heliöaara, M.; Sainio, P.; Koskinen, S. Effect of Age on the Association between Body Fat Percentage and Maximal Walking Speed. J. Nutr. Health Aging 2011, 15, 427–432. [Google Scholar] [CrossRef] [PubMed]
- de Stefano, F.; Zambon, S.; Giacometti, L.; Sergi, G.; Corti, M.C.; Manzato, E.; Busetto, L. Obesity, Muscular Strength, Muscle Composition and Physical Performance in an Elderly Population. J. Nutr. Health Aging 2015, 19, 785–791. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the Self-Organizing Map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Badran, F.; Yacoub, M.; Thiria, S. Self-Organizing Maps and Unsupervised Classification. In Neural Networks; Springer: Berlin/Heidelberg, Germany, 2005; pp. 379–442. [Google Scholar]
- Miljkovic, D. Brief Review of Self-Organizing Maps. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 1061–1066. [Google Scholar]
- Valkonen, V.-P.; Kolehmainen, M.; Lakka, H.-M.; Salonen, J.T. Insulin Resistance Syndrome Revisited: Application of Self-Organizing Maps. Int. J. Epidemiol. 2002, 31, 864–871. [Google Scholar] [CrossRef]
- Markey, M.K.; Lo, J.Y.; Tourassi, G.D.; Floyd, C.E. Self-Organizing Map for Cluster Analysis of a Breast Cancer Database. Artif. Intell. Med. 2003, 27, 113–127. [Google Scholar] [CrossRef]
- Faisal, T.; Taib, M.N.; Ibrahim, F. Reexamination of Risk Criteria in Dengue Patients Using the Self-Organizing Map. Med. Biol. Eng. Comput. 2010, 48, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Troka, M.; Wojnicz, W.; Szepietowska, K.; Podlasiński, M.; Walerzak, S.; Walerzak, K.; Lubowiecka, I. Towards Classification of Patients Based on Surface EMG Data of Temporomandibular Joint Muscles Using Self-Organising Maps. Biomed. Signal Process. Control. 2022, 72, 103322. [Google Scholar] [CrossRef]
- Schilithz, A.O.C.; Kale, P.L.; Gama, S.G.N.; Nobre, F.F. Risk Groups in Children under Six Months of Age Using Self-Organizing Maps. Comput. Methods Programs Biomed. 2014, 115, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Akbarpour, S.; Khalili, D.; Zeraati, H.; Mansournia, M.A.; Ramezankhanim, A.; Fotouhi, A. Lifestyle Patterns in the Iranian Population: Self- Organizing Map Application. Casp. J. Intern. Med. 2018, 9, 268–275. [Google Scholar] [CrossRef]
- Murakami, T.; Ueda-Arakawa, N.; Nishijima, K.; Uji, A.; Horii, T.; Ogino, K.; Yoshimura, N. Integrative Understanding of Macular Morphologic Patterns in Diabetic Retinopathy Based on Self-Organizing Map. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Andrews, A.W.; Thomas, M.W. Walking Speed: Reference Values and Correlates for Older Adults. J. Orthop. Sports Phys. Ther. 1996, 24, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, W.D.; García-Castañeda, L.; Orea-Tejeda, A.; Mendoza-Núñez, V.; González-Islas, D.G.; Santillán-Díaz, C.; Castillo-Martínez, L. Handgrip Strength: Reference Values and Its Relationship with Bioimpedance and Anthropometric Variables. Clin. Nutr. ESPEN 2017, 19, 54–58. [Google Scholar] [CrossRef]
- Khasnis, A.; Gokula, R.M. Romberg’s Test. J. Postgrad. Med. 2003, 49, 169–172. [Google Scholar] [PubMed]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body Composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Ostrosky, F.; López Arango, G.; Ardila, A. Sensitivity and Specificity of the Mini-Mental State Examination in a Spanish-Speaking Population. Appl. Neuropsychol. 2000, 7, 25–31. [Google Scholar] [CrossRef]
- de Beaman, S.R.; Beaman, P.E.; Garcia-Peña, C.; Villa, M.A.; Heres, J.; Córdova, A.; Jagger, C. Validation of a Modified Version of the Mini-Mental State Examination (MMSE) in Spanish. Aging Neuropsychol. Cogn. 2004, 11, 1–11. [Google Scholar] [CrossRef]
- Baztán, J.; Molino, J.; Alarcón, T.; Cristóbal, E.; Izquierdo, G.; Manzarbeitia, J. Índice de Barthel: Instrumento Válido Para La Valoración Funcional de Pacientes Con Enfermedad Cerebrovascular. Rev. Esp. Geriatr. Gerontol. 1993, 28, 32–40. [Google Scholar]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living1. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Rodríguez, A.; Manrique-Espinoza, B.; Acosta-Castillo, I.; Téllez-Rojo, M.M.; Franco-Núñez, A.; Gutiérrez-Robledo, L.M.; Sosa-Ortiz, A.L. Validación de Un Punto de Corte Para La Escala de Depresión Del Centro de Estudios Epidemiológicos, Versión Abreviada (CESD-7). Salud Publica Mex. 2013, 55, 267–274. [Google Scholar] [CrossRef]
- Lomas-Vega, R.; Hita-Contreras, F.; Mendoza, N.; Martínez-Amat, A. Cross-Cultural Adaptation and Validation of the Falls Efficacy Scale International in Spanish Postmenopausal Women. Menopause 2012, 19, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.; Gilman, J.; Boschiero, D.; Ilich, J. Osteosarcopenic Obesity: Current Knowledge, Revised Identification Criteria and Treatment Principles. Nutrients 2019, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, E.A.; Arencibia-Jorge, R.; Carrillo-Calvet, H. Multiparametric Characterization of Scientometric Performance Profiles Assisted by Neural Networks: A Study of Mexican Higher Education Institutions. Scientometrics 2017, 110, 77–104. [Google Scholar] [CrossRef]
- Jiménez-Andrade, J.L.; Villaseñor-García, E.A.; Carrillo-Calvet, H.A. Self Organizing Maps Laboratory: LabSOM. Available online: http://www.dynamics.unam.edu/DinamicaNoLineal3/labsom.htm (accessed on 11 April 2018).
- Bohannon, R.W. Comfortable and Maximum Walking Speed of Adults Aged 20–79 Years: Reference Values and Determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A Review of the Measurement of Grip Strength in Clinical and Epidemiological Studies: Towards a Standardised Approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Lloyd-Sherlock, P.; McKee, M.; Ebrahim, S.; Gorman, M.; Greengross, S.; Prince, M.; Pruchno, R.; Gutman, G.; Kirkwood, T.; O’Neill, D.; et al. Population Ageing and Health. Lancet 2012, 379, 1295–1296. [Google Scholar] [CrossRef]
- Suetta, C.; Maier, A.B. Is Muscle Failure a Better Term than Sarcopenia? J. Cachexia Sarcopenia Muscle 2019, 10, 1146–1147. [Google Scholar] [CrossRef]
- Keevil, V.L.; Romero-Ortuno, R. Ageing Well: A Review of Sarcopenia and Frailty. Proc. Nutr. Soc. 2015, 74, 337–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-W.; Hsieh, F.-C.; Lin, L.-F.; Liao, C.-D.; Ku, J.-W.; Hsiao, D.-J.; Liou, T.-H. Correlation between Body Composition and Physical Performance in Aged People. Int. J. Gerontol. 2018, 12, 186–190. [Google Scholar] [CrossRef]
- Makizako, H.; Shimada, H.; Doi, T.; Tsutsumimoto, K.; Lee, S.; Lee, S.C.; Harada, K.; Hotta, R.; Nakakubo, S.; Bae, S.; et al. Age-Dependent Changes in Physical Performance and Body Composition in Community-Dwelling Japanese Older Adults. J. Cachexia Sarcopenia Muscle 2017, 8, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Panton, L.B.; Dutton, G.R.; Ilich, J.Z. Relationship of Physical Performance with Body Composition and Bone Mineral Density in Individuals over 60 Years of Age: A Systematic Review. J. Aging Res. 2011, 2011, 191896. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, P.M.; Fox, K.M.; Gandra, S.R.; Delmonico, M.J.; Chiou, C.-F.; Anthony, M.S.; Caserotti, P.; Kritchevsky, S.B.; Newman, A.B.; Goodpaster, B.H.; et al. Clustering of Strength, Physical Function, Muscle, and Adiposity Characteristics and Risk of Disability in Older Adults. J. Am. Geriatr. Soc. 2011, 59, 781–787. [Google Scholar] [CrossRef]
- Granic, A.; Mossop, H.; Engstrom, G.; Davies, K.; Dodds, R.; Galvin, J.; Ouslander, J.G.; Tappen, R.; Sayer, A.A. Factors Associated with Physical Performance Measures in a Multiethnic Cohort of Older Adults. Gerontol. Geriatr. Med. 2018, 4, 1–14. [Google Scholar] [CrossRef]
- Chumha, N.; Funsueb, S.; Kittiwachana, S.; Rattanapattanakul, P.; Lerttrakarnnon, P. An Artificial Neural Network Model for Assessing Frailty-Associated Factors in the Thai Population. Int. J. Environ. Res. Public Health 2020, 17, 6808. [Google Scholar] [CrossRef]
- Crespillo-Jurado, M.; Delgado-Giralt, J.; Reigal, R.E.; Rosado, A.; Wallace-Ruiz, A.; Juárez-Ruiz de Mier, R.; Morales-Sánchez, V.; Morillo-Baro, J.P.; Hernández-Mendo, A. Body Composition and Cognitive Functioning in a Sample of Active Elders. Front. Psychol. 2019, 10, 1569. [Google Scholar] [CrossRef]
- Kehrer, J.; Hauser, H. Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey. IEEE Trans. Vis. Comput. Graph. 2013, 19, 495–513. [Google Scholar] [CrossRef]
- Dzemyda, G.; Kurasova, O.; Žilinskas, J. Multidimensional Data Visualization; Springer: New York, NY, USA, 2013; Volume 75, ISBN 978-1-4419-0235-1. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Anton, S.D.; Woods, A.J.; Ashizawa, T.; Barb, D.; Buford, T.W.; Carter, C.S.; Clark, D.J.; Cohen, R.A.; Corbett, D.B.; Cruz-Almeida, Y.; et al. Successful Aging: Advancing the Science of Physical Independence in Older Adults. Ageing Res. Rev. 2015, 24, 304–327. [Google Scholar] [CrossRef]
- Kidd, T.; Mold, F.; Jones, C.; Ream, E.; Grosvenor, W.; Sund-Levander, M.; Tingström, P.; Carey, N. What Are the Most Effective Interventions to Improve Physical Performance in Pre-Frail and Frail Adults? A Systematic Review of Randomised Control Trials. BMC Geriatr. 2019, 19, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, T.; Fang, F.; Li, F.; Ren, Y.; Hu, J.; Cao, J. Sarcopenia Is Associated with Hypertension in Older Adults: A Systematic Review and Meta-Analysis. BMC Geriatr. 2020, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shi, J.; Shen, C.; Liu, Y.; Liu, J.-M.; Zheng, X. Sarcopenia-Related Features and Factors Associated with Low Muscle Mass, Weak Muscle Strength, and Reduced Function in Chinese Rural Residents: A Cross-Sectional Study. Arch. Osteoporos. 2018, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Aronow, W.S. Association of Obesity with Hypertension. Ann. Transl. Med. 2017, 5, 350. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Zhang, Y.; Mesbah, S.E.; Ji, T.; Ma, L. Frailty and Hypertension in Older Adults: Current Understanding and Future Perspectives. Hypertens. Res. 2020, 43, 1352–1360. [Google Scholar] [CrossRef]
- Addison, O.; Prior, S.J.; Kundi, R.; Serra, M.C.; Katzel, L.I.; Gardner, A.W.; Ryan, A.S. Sarcopenia in Peripheral Arterial Disease: Prevalence and Effect on Functional Status. Arch. Phys. Med. Rehabil. 2018, 99, 623–628. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chou, C.-Y.; Liu, C.-S.; Huang, C.-Y.; Li, T.-C.; Lin, C.-C. Association between Frailty and Subclinical Peripheral Vascular Disease in a Community-Dwelling Geriatric Population: Taichung Community Health Study for Elders. Geriatr. Gerontol. Int. 2015, 15, 261–267. [Google Scholar] [CrossRef]
- Gong, G.; Wan, W.; Zhang, X.; Liu, Y.; Liu, X.; Yin, J. Correlation between the Charlson Comorbidity Index and Skeletal Muscle Mass/Physical Performance in Hospitalized Older People Potentially Suffering from Sarcopenia. BMC Geriatr. 2019, 19, 367. [Google Scholar] [CrossRef]
- Pacifico, J.; Geerlings, M.A.J.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of Sarcopenia as a Comorbid Disease: A Systematic Review and Meta-Analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Araujo de Carvalho, I.; Bautmans, I.; Bernabei, R.; et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice. Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef]
- Dodds, R.M.; Granic, A.; Davies, K.; Kirkwood, T.B.L.; Jagger, C.; Sayer, A.A. Prevalence and Incidence of Sarcopenia in the Very Old: Findings from the Newcastle 85+ Study. J. Cachexia Sarcopenia Muscle 2017, 8, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.W.J.; Wee, S.-L.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, D.H.M.; Ling Tan, Q.L.; Chen, K.K.; Jagadish, M.U.; Ng, T.P. Prevalence and Associated Factors of Sarcopenia in Singaporean Adults—The Yishun Study. J. Am. Med. Dir. Assoc. 2021, 22, 885.e1–885.e10. [Google Scholar] [CrossRef] [PubMed]
- Vesanto, J.; Alhoniemi, E. Clustering of the Self-Organizing Map. IEEE Trans. Neural. Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef] [PubMed]
Total n = 562 Mean ± SD or n (%) | Women n = 412 Mean ± SD or n (%) | Men n = 150 Mean ± SD or n (%) | p-Value | |
---|---|---|---|---|
Neural network analysis physical profile | ||||
Age, y | 71.2 ± 7.0 | 71.0 ± 7.1 | 71.7 ± 6.9 | 0.296 |
Gait speed over height (Gait/Height), 1/s | 0.654 ± 0.163 | 0.657 ± 0.165 | 0.645 ± 0.158 | 0.456 |
Grip strength over body mass index (Grip/BMI), m2 | 0.711 ± 0.322 | 0.583 ± 0.215 | 1.062 ± 0.307 | <0.001 |
One-legged stance (Balance), s | 25.7 ± 19.2 | 25.4 ± 19.3 | 26.6 ± 19.2 | 0.321 |
Lean appendicular mass percentage (LAM%), % | 23.1 ± 3.4 | 21.6 ± 2.2 | 27.1 ± 2.6 | <0.001 |
Fat percentage (Fat%), % | 39.5 ± 6.8 | 42.3 ± 5.0 | 31.9 ± 5.0 | <0.001 |
Height, (m) | 1.56 ± 0.09 | 1.53 ± 0.07 | 1.67 ± 0.07 | <0.001 |
Weight, (kg) | 67.4 ± 13.0 | 64.3 ± 11.4 | 75.9 ± 13.3 | <0.001 |
Body mass index (BMI), kg/m2 | 27.5 ± 4.3 | 27.6 ± 4.5 | 27.2 ± 4.0 | 0.499 |
Gait speed, cm/s | 102.4 ± 26.4 | 100.4 ± 26.1 | 107.7 ± 26.7 | 0.004 |
Grip strength, kg | 19.1 ± 8.2 | 15.7 ± 5.3 | 28.4 ± 7.7 | <0.001 |
Cognitive impairment (CI) | 76 (13.5) | 56 (13.6) | 20 (13.4) | 0.959 |
Activities of daily living dependence (ADLD) | 63 (11.2) | 48 (11.7) | 15 (10.0) | 0.577 |
Instrumental activities of daily living dependence (IADLD) | 99 (17.6) | 94 (22.9) | 5 (3.3) | <0.001 |
Depression | 187 (33.3) | 149 (36.3) | 38 (25.5) | 0.017 |
Fear of falling (FF) | 336 (59.9) | 268 (65.2) | 68 (45.3) | <0.001 |
Fell last year | 241 (42.9) | 187 (45.4) | 54 (36.0) | 0.047 |
Education (EDUC), y | 13.9 ± 5.5 | 13.1 ± 5.4 | 16.0 ± 5.4 | <0.001 |
No education | 9 (1.6) | 9 (2.2) | 0 | <0.001 |
Elementary school | 126 (22.4) | 102 (24.7) | 24 (16.0) | |
High school | 130 (23.1) | 112 (27.2) | 18 (12.0) | |
Bachelor’s degree | 221 (39.3) | 148 (35.9) | 73 (48.7) | |
Postgraduate | 76 (13.5) | 41 (10.0) | 35 (23.3) | |
Comorbidities | ||||
Myocardial infarction (MI) | 46 (8.2) | 25 (6.1) | 21 (14.0) | 0.002 |
Congestive heart failure (CHF) | 11 (2.0) | 9 (2.2) | 2 (1.3) | 0.519 |
Cerebrovascular accident (CVA) | 17 (3.0) | 15 (3.6) | 2 (1.3) | 0.160 |
Chronic obstructive pulmonary disease (COPD) | 33 (5.9) | 23 (5.6) | 10 (6.7) | 0.629 |
Arthritis | 64 (11.4) | 56 (13.6) | 8 (5.3) | 0.006 |
Peptic ulcer disease (PUD) | 233 (41.5) | 182 (44.2) | 51 (34.0) | 0.030 |
Liver disease | 45 (8.0) | 34 (8.3) | 11 (7.3) | 0.717 |
Diabetes | 94 (16.1) | 56 (13.6) | 38 (25.3) | 0.001 |
Hemiplegia | 43 (7.7) | 32 (7.8) | 11 (7.3) | 0.864 |
Chronic kidney disease (CKD) | 6 (1.1) | 4 (1.0) | 2 (1.3) | 0.712 |
Cancer | 69 (12.3) | 51 (12.4) | 18 (12.0) | 0.904 |
AIDS | 0 | 0 | 0 | - |
Peripheral vascular disease (PVD) | 252 (44.8) | 212 (51.5) | 40 (26.7) | <0.001 |
Hypertension (HTN) | 262 (46.6) | 194 (47.1) | 68 (45.3) | 0.712 |
Number of comorbidities (NUMCOM) | 0.018 | |||
0 | 67 (12.0) | 40 (9.8) | 27 (18.1) | |
1 | 156 (27.9) | 114 (27.8) | 42 (28.2) | |
2 | 140 (25.0) | 113 (27.6) | 27 (18.1) | |
3 | 100 (17.9) | 66 (16.1) | 34 (22.8) | |
4 | 64 (11.4) | 49 (12.0) | 15 (10.1) | |
5 | 20 (3.6) | 17 (4.1) | 3 (2.0) | |
6 | 9 (1.6) | 8 (2.0) | 1 (0.7) | |
7 | 3 (0.5) | 3 (0.7) | 0 | |
Osteopenia/Osteoporosis | 429 (76.3) | 337 (81.8) | 92 (61.3) | <0.001 |
Women | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 |
---|---|---|---|---|---|---|---|
n1 = 20 | n2 = 81 | n3 = 72 | n4 = 25 | n5 = 68 | n6 = 17 | n7 = 129 | |
Age (y) | 62.9 ± 2.2 | 66.2 ± 4.9 | 66.1 ± 4.2 | 66.4 ± 4.3 | 73.3 ± 4.9 | 76.3 ± 4.8 | 77.1 ± 5.5 |
Gait/Height (1/s) | 0.804 ± 0.162 | 0.747 ± 0.140 | 0.666 ± 0.114 | 0.666 ± 0.111 | 0.746 ± 0.127 | 0.559 ± 0.094 | 0.536 ± 0.153 |
Grip/BMI (m2) | 0.951 ± 0.140 | 0.781 ± 0.139 | 0.545 ± 0.166 | 0.646 ± 0.128 | 0.524 ± 0.179 | 0.652 ± 0.215 | 0.433 ± 0.139 |
Balance (s) | 39.0 ± 12.5 | 43.0 ± 6.8 | 42.6 ± 6.1 | 8.2 ± 6.2 | 31.7 ± 15.1 | 7.9 ± 7.2 | 4.8 ± 6.8 |
LAM% (%) | 24.8 ± 1.4 | 22.3 ± 1.2 | 19.9 ± 1.2 | 20.0 ± 1.0 | 23.2 ± 1.8 | 24.6 ± 1.3 | 20.8 ± 2.0 |
Fat% (%) | 34.6 ± 2.9 | 40.9 ± 2.8 | 46.3 ± 2.7 | 45.8 ± 2.1 | 38.7 ± 4.2 | 34.4 ± 3.4 | 44.3 ± 4.3 |
CI | 1 (5.0) | 8 (9.9) | 8 (11.1) | 2 (8.0) | 5 (7.4) | 2 (11.8) | 30 (23.3) |
ADLD | 1 (5.0) | 3 (3.7) | 4 (5.6) | 4 (16.0) | 5 (7.4) | 2 (11.8) | 29 (22.5) |
FF | 5 (25.0) | 39 (48.1) | 48 (66.7) | 16 (64.0) | 44 (64.7) | 11 (64.7) | 105 (81.4) |
EDUC (y) | 13.9 ± 4.6 | 13.7 ± 5.9 | 14.2 ± 5.2 | 12.8 ± 5.3 | 14.1 ± 4.2 | 12.2 ± 6.1 | 11.6 ± 5.6 |
PVD | 9 (45.0) | 40 (49.4) | 35 (48.6) | 11 (44.0) | 25 (36.8) | 8 (47.1) | 84 (65.1) |
HTN | 3 (15.0) | 22 (27.2) | 28 (38.9) | 11 (44.0) | 40 (58.8) | 7 (41.2) | 83 (64.3) |
NUMCOM | |||||||
0 | 3 (15.0) | 14 (17.3) | 8 (11.1) | 3 (12.0) | 7 (10.3) | 2 (12.5) | 3 (2.3) |
1 | 8 (40.0) | 20 (24.7) | 25 (34.7) | 8 (32.0) | 21 (30.9) | 5 (31.1) | 27 (21.1) |
2 | 4 (20.0) | 30 (37.0) | 22 (30.6) | 3 (12.0) | 17 (25.0) | 4 (25.0) | 33 (25.8) |
3 | 3 (15.0) | 13 (16.0) | 7 (9.7) | 6 (24.0) | 9 (13.2) | 2 (12.5) | 26 (20.3) |
4 | 2 (10.0) | 2 (2.5) | 6 (8.3) | 4 (16.0) | 12 (17.6) | 2 (12.5) | 21 (16.4) |
≥5 | 0 | 2 (2.5) | 4 (5.6) | 1 (4.0) | 2 (2.9) | 1 (6.3) | 18 (14.1) |
Women | Cluster | ||||||
---|---|---|---|---|---|---|---|
1 | |||||||
Cluster | 2 | <Grip/BMI | |||||
<LAM% | Cluster | ||||||
>Fat% | 2 | ||||||
3 | <Gait/height | <Gait/height | |||||
<Grip/BMI | <Grip/BMI | ||||||
<LAM% | <LAM% | Cluster | |||||
>Fat% | >Fat% | 3 | |||||
4 | <Gait/height | ||||||
<Grip/BMI | <Grip/BMI | >Grip/BMI | |||||
<Balance | <Balance | <Balance | |||||
<LAM% | <LAM% | Cluster | |||||
>Fat% | >Fat% | 4 | |||||
5 | >Age | >Age | >Age | >Age | |||
>Gait/height | |||||||
<Grip/BMI | <Grip/BMI | <Grip/BMI | |||||
<Balance | <Balance | >Balance | |||||
<LAM% | >LAM% | >LAM% | >LAM% | Cluster | |||
<Fat% | <Fat% | 5 | |||||
6 | >Age | >Age | >Age | >Age | |||
<Gait/height | <Gait/height | <Gait/height | <Gait/height | <Gait/height | |||
<Grip/BMI | |||||||
<Balance | <Balance | <Balance | <Balance | ||||
>LAM% | >LAM% | >LAM% | >LAM% | Cluster | |||
<Fat% | <Fat% | <Fat% | 6 | ||||
7 | >Age | >Age | >Age | >Age | |||
<Gait/height | <Gait/height | <Gait/height | <Gait/height | <Gait/height | |||
<Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | ||
<Balance | <Balance | <Balance | <Balance | ||||
<LAM% | <LAM% | >LAM% | >LAM% | <LAM% | <LAM% | ||
>Fat% | >Fat% | <Fat% | >Fat% | >Fat% |
Women | Cluster | ||||||
---|---|---|---|---|---|---|---|
1 | |||||||
Cluster | 2 | ||||||
Cluster | |||||||
2 | |||||||
3 | 6.0 FF | 2.2 FF | |||||
Cluster | |||||||
3 | |||||||
4 | 5.0 ADLD | ||||||
5.3 FF | Cluster | ||||||
4.5 HTN | 4 | ||||||
5 | 5.5 FF | 2.0 FF | |||||
8.1 HTN | 3.8 HTN | 2.2 HTN | Cluster | ||||
5 | |||||||
6 | 5.5 FF | ||||||
Cluster | |||||||
6 | |||||||
7 | 2.8 CI | 2.4 CI | 3.8 CI | ||||
7.6 ADLD | 5.0 ADLD | 3.7 ADLD | |||||
13.7 FF | 4.9 FF | 2.3 FF | 2.6 FF | 2.5 FF | |||
0.93 EDUC | 0.91 EDUC | 0.91 EDUC | |||||
1.2 PVD | 2.0 PVD | 3.2 PVD | |||||
10.2 HTN | 4.8 HTN | 2.8 HTN | |||||
1.7 NUMCOM | 1.6 NUMCOM | 1.5 NUMCOM | 1.4 NUMCOM |
Men | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 |
---|---|---|---|---|---|---|---|
n1 = 27 | n2 = 21 | n3 = 29 | n4 = 31 | n5 = 27 | n6 = 10 | n7 = 5 | |
Age, (y) | 70.0 ± 5.1 | 65.2 ± 3.5 | 67.9 ± 5.2 | 78.4 ± 4.7 | 71.8 ± 5.4 | 78.5 ± 7.2 | 75.8 ± 6.4 |
Gait/Height, (1/s) | 0.760 ± 0.151 | 0.690 ± 0.110 | 0.708 ± 0.112 | 0.504 ± 0.139 | 0.635 ± 0.113 | 0.640 ± 0.142 | 0.418 ± 0.124 |
Grip/BMI, (m2) | 1.440 ± 0.238 | 1.106 ± 0.168 | 1.054 ± 0.222 | 1.077 ± 0.194 | 0.888 ± 0.213 | 0.685 ± 0.193 | 0.469 ± 0.144 |
Balance, (s) | 44.1 ± 4.8 | 34.4 ± 15.8 | 43.5 ± 4.9 | 8.3 ± 9.1 | 5.4 ± 5.1 | 39.1 ± 8.6 | 5.0 ± 9.1 |
LAM%, (%) | 30.0 ± 1.6 | 28.7 ± 1.0 | 25.5 ± 1.4 | 28.1 ± 2.3 | 25.5 ± 1.5 | 24.7 ± 1.3 | 22.7 ± 1.4 |
Fat%, (%) | 26.4 ± 3.5 | 30.5 ± 2.5 | 35.3 ± 2.6 | 29.5 ± 4.3 | 34.6 ± 3.0 | 35.5 ± 3.3 | 40.6 ± 5.3 |
PVD | 6(22.2) | 1(4.8) | 5(17.2) | 12(38.7) | 9(33.3) | 6(60.0) | 1(20.0) |
HTN | 8 (29.6) | 5 (23.8) | 9 (31.0) | 21 (67.7) | 16 (59.3) | 5 (50.0) | 4 (80.0) |
NUMCOM | |||||||
0 | 4 (15.4) | 9 (42.9) | 9 (31.0) | 2 (6.5) | 2 (7.4) | 1 (10.0) | 0 |
1 | 13 (50.0) | 7 (33.3) | 8 (27.6) | 4 (12.9) | 8 (29.6) | 1 (10.0) | 1 (20.0) |
2 | 5 (19.2) | 4 (19.0) | 5 (17.2) | 7 (22.6) | 6 (22.2) | 0 | 0 |
3 | 2 (7.7) | 1 (4.8) | 6 (20.7) | 10 (32.3) | 9 (33.3) | 4 (40.0) | 2 (40.0) |
4 | 1 (3.8) | 0 | 1 (3.4) | 6 (19.4) | 2 (7.4) | 4 (40.0) | 1 (20.0) |
≥5 | 1 (3.8) | 0 | 0 | 2 (6.4) | 0 | 0 | 1 (20.0) |
Men | Cluster | ||||||
---|---|---|---|---|---|---|---|
1 | |||||||
Cluster | 2 | <Age | |||||
<Grip/BMI | Cluster | ||||||
>Fat% | 2 | ||||||
3 | <Grip/BMI | ||||||
<LAM% | <LAM% | Cluster | |||||
>Fat% | >Fat% | 3 | |||||
4 | >Age | >Age | >Age | ||||
<Gait/height | <Gait/height | <Gait/height | |||||
<Grip/BMI | |||||||
<Balance | <Balance | <Balance | |||||
<LAM% | >LAM% | Cluster | |||||
<Fat% | 4 | ||||||
5 | >Age | <Age | |||||
<Gait/height | >Gait/height | ||||||
<Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | ||||
<Balance | <Balance | <Balance | |||||
<LAM% | <LAM% | <LAM% | Cluster | ||||
>Fat% | >Fat% | >Fat% | 5 | ||||
6 | >Age | >Age | >Age | >Age | |||
<Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | ||||
>Balance | >Balance | ||||||
<LAM% | <LAM% | <LAM% | Cluster | ||||
>Fat% | >Fat% | >Fat% | 6 | ||||
7 | >Age | >Age | |||||
<Gait/height | <Gait/height | <Gait/height | <Gait/height | <Gait/height | |||
<Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | <Grip/BMI | |||
<Balance | <Balance | <Balance | <Balance | ||||
<LAM% | <LAM% | <LAM% | |||||
>Fat% |
Men | Cluster | ||||||
---|---|---|---|---|---|---|---|
1 | |||||||
Cluster | 2 | ||||||
Cluster | |||||||
2 | |||||||
3 | |||||||
Cluster | |||||||
3 | |||||||
4 | 12.6 PVD | ||||||
5.0 HTN | 6.7 HTN | 4.7 HTN | Cluster | ||||
1.8 NUMCOM | 3.1 NUMCOM | 1.9 NUMCOM | 4 | ||||
5 | 10.0 PVD | ||||||
3.5 HTN | 4.7 HTN | 3.2 HTN | Cluster | ||||
2.4 NUMCOM | 5 | ||||||
6 | 5.3 PVD | 30.0 PVD | 7.2 PVD | ||||
2.0 NUMCOM | 3.4 NUMCOM | 2.1 NUMCOM | Cluster | ||||
6 | |||||||
7 | 12.8 HTN | ||||||
2.2 NUMCOM | 3.7 NUMCOM | 2.3 NUMCOM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra-Rodríguez, L.; Reyes-Ramírez, E.; Jiménez-Andrade, J.L.; Carrillo-Calvet, H.; García-Peña, C. Self-Organizing Maps to Multidimensionally Characterize Physical Profiles in Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 12412. https://doi.org/10.3390/ijerph191912412
Parra-Rodríguez L, Reyes-Ramírez E, Jiménez-Andrade JL, Carrillo-Calvet H, García-Peña C. Self-Organizing Maps to Multidimensionally Characterize Physical Profiles in Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(19):12412. https://doi.org/10.3390/ijerph191912412
Chicago/Turabian StyleParra-Rodríguez, Lorena, Edward Reyes-Ramírez, José Luis Jiménez-Andrade, Humberto Carrillo-Calvet, and Carmen García-Peña. 2022. "Self-Organizing Maps to Multidimensionally Characterize Physical Profiles in Older Adults" International Journal of Environmental Research and Public Health 19, no. 19: 12412. https://doi.org/10.3390/ijerph191912412
APA StyleParra-Rodríguez, L., Reyes-Ramírez, E., Jiménez-Andrade, J. L., Carrillo-Calvet, H., & García-Peña, C. (2022). Self-Organizing Maps to Multidimensionally Characterize Physical Profiles in Older Adults. International Journal of Environmental Research and Public Health, 19(19), 12412. https://doi.org/10.3390/ijerph191912412