Perceptions of Heat Stress, Heat Strain and Mitigation Practices in Wildfire Suppression across Southern Europe and Latin America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument
2.2. Data Collation
2.3. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Perception of Heat Strain
3.3. Heat Strain Mitigation Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Marroyo, J.A.; López-Satue, J.; Pernía, R.; Carballo, B.; García-López, J.; Foster, C.; Villa, J.G. Physiological Work Demands of Spanish Wildland Firefighters during Wildfire Suppression. Int. Arch. Occup. Environ. Health 2012, 85, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Sol, J.A.; West, M.R.; Domitrovich, J.W.; Ruby, B.C. Evaluation of Environmental Conditions on Self-Selected Work and Heat Stress in Wildland Firefighting. Wilderness Environ. Med. 2021, 32, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Payne, W.; Lord, C.; Netto, K.; Nichols, D.; Aisbett, B. Identification of Physically Demanding Tasks PerforMed. during Bushfire Suppression by Australian Rural Firefighters. Appl. Ergon. 2012, 43, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Leyenda, B.; Villa, J.G.; López-Satué, J.; Rodríguez-Marroyo, J.A. Wildland Firefighters’ Thermal Exposure in Relation to Suppression Tasks. Int. J. Wildland Fire 2021, 30, 475. [Google Scholar] [CrossRef]
- Navarro, K.M.; Kleinman, M.T.; Mackay, C.E.; Reinhardt, T.E.; Balmes, J.R.; Broyles, G.A.; Ottmar, R.D.; Naher, L.P.; Domitrovich, J.W. Wildland Firefighter Smoke Exposure and Risk of Lung Cancer and Cardiovascular Disease Mortality. Environ. Res. 2019, 173, 462–468. [Google Scholar] [CrossRef]
- Larsen, B.; Snow, R.; Vincent, G.; Tran, J.; Wolkow, A.; Aisbett, B. Multiple Days of Heat Exposure on Firefighters’ Work Performance and Physiology. PLoS ONE 2015, 10, e0136413. [Google Scholar] [CrossRef]
- Carballo-Leyenda, B.; Villa, J.G.; López-Satué, J.; Collado, P.S.; Rodríguez-Marroyo, J.A. Fractional Contribution of Wildland Firefighters’ Personal Protective Equipment on Physiological Strain. Front. Physiol. 2018, 9, 1139. [Google Scholar] [CrossRef]
- Williams-Bell, F.M.; Aisbett, B.; Murphy, B.A.; Larsen, B. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions. Front. Physiol. 2017, 8, 815. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.H.; Lee, H.H.; Lee, J.Y. Frequency of Firefighters’ Heat-Related Illness and Its Association with Removing Personal Protective Equipment and Working Hours. Ind. Health 2019, 57, 370–380. [Google Scholar] [CrossRef]
- Cuddy, J.S.; Ruby, B.C. High Work Output Combined with High Ambient Temperatures Caused Heat Exhaustion in a Wildland Firefighter despite High Fluid Intake. Wilderness Environ. Med. 2011, 22, 122–125. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.A.; Ross, J.M.; Szalma, J.L. A Meta-Analysis of Performance Response under Thermal Stressors. Hum. Fact. 2007, 49, 851–877. [Google Scholar] [CrossRef] [PubMed]
- Cardil, A.; Molina, D.M. Factors Causing Victims of Wildland Fires in Spain (1980–2010). Hum. Ecol. Risk Assess. Int. J. 2015, 21, 67–80. [Google Scholar] [CrossRef]
- Cheung, S.S.; Lee, J.K.W.; Oksa, J. Thermal Stress, Human Performance, and Physical Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S148–S164. [Google Scholar] [CrossRef]
- Brearley, M.; Walker, A. Water Immersion for Post Incident Cooling of Firefighters; a Review of Practical Fire Ground Cooling Modalities. Extrem. Physiol. Med. 2015, 4, 15. [Google Scholar] [CrossRef]
- Cuddy, J.S.; Sol, J.A.; Hailes, W.S.; Ruby, B.C. Work Patterns Dictate Energy Demands and Thermal Strain during Wildland Firefighting. Wilderness Environ. Med. 2015, 26, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Lui, B.; Cuddy, J.S.; Hailes, W.S.; Ruby, B.C. Seasonal Heat Acclimatization in Wildland Firefighters. J. Therm. Biol 2014, 45, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.; Driller, M.; Brearley, M.; Argus, C.; Rattray, B. Cold-Water Immersion and Iced-Slush Ingestion Are Effective at Cooling Firefighters Following a Simulated SeArch. and Rescue Task in a Hot Environment. Appl. Physiol. Nutr. Metab. 2014, 39, 1159–1166. [Google Scholar] [CrossRef]
- Watkins, E.R.; Hayes, M.; Watt, P.; Richardson, A.J. Practical Pre-Cooling Methods for Occupational Heat Exposure. Appl. Ergon. 2018, 70, 26–33. [Google Scholar] [CrossRef]
- Pryor, R.R.; Suyama, J.; Guyette, F.X.; Reis, S.E.; Hostler, D. The Effects of Ice Slurry Ingestion before Exertion in Wildland Firefighting Gear. Prehospital Emerg. Care 2015, 19, 241–246. [Google Scholar] [CrossRef]
- Rossi, R. Fire Fighting and Its Influence on the Body. Ergonomics 2003, 46, 1017–1033. [Google Scholar] [CrossRef]
- Willi, J.M.; Horn, G.P.; Madrzykowski, D. Characterizing a Firefighter’s Immediate Thermal Environment in Live-Fire Training Scenarios. Fire Technol. 2016, 52, 1667–1696. [Google Scholar] [CrossRef]
- McLellan, T.M.; Havenith, G. Protective Clothing Ensembles and Physical Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S121–S130. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.; Gregson, W.; Sutton, L.; Reilly, T. A Practical Cooling Strategy for Reducing the Physiological Strain Associated with Firefighting Activity in the Heat. Ergonomics 2009, 52, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Schlicht, E.; Caruso, R.; Denby, K.; Matias, A.; Dudar, M.; Ives, S.J. Effects of Wrist Cooling on Recovery from Exercise-Induced Heat Stress with Firefighting Personal Protective Equipment. J. Occup. Environ. Med. 2018, 60, 1049–1055. [Google Scholar] [CrossRef]
- Fullagar, H.H.K.; Schwarz, E.; Richardson, A.; Notley, S.R.; Lu, D.; Duffield, R. Australian Firefighters Perceptions of Heat Stress, Fatigue and Recovery Practices during Fire-Fighting Tasks in Extreme Environments. Appl. Ergon. 2021, 95, 103449. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.J.E.; Maley, M.J.; Minett, G.M.; Stewart, I.B. Occupational Cooling Practices of Emergency First Responders in the United States: A Survey. Temperature 2018, 5, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Watkins, E.R.; Hayes, M.; Watt, P.; Richardson, A.J. Fire Service Instructors’ Working Practices: A UK Survey. Arch. Environ. Occup. Health 2019, 74, 322–330. [Google Scholar] [CrossRef]
- Morrissey, M.C.; Casa, D.J.; Brewer, G.J.; Adams, W.M.; Hosokawa, Y.; Benjamin, C.L.; Grundstein, A.J.; Hostler, D.; McDermott, B.P.; McQuerry, M.L.; et al. Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect U.S Workers. Geohealth 2021, 5, e2021GH000443. [Google Scholar] [CrossRef]
- Morris, N.B.; Levi, M.; Morabito, M.; Messeri, A.; Ioannou, L.G.; Flouris, A.D.; Samoutis, G.; Pogačar, T.; Bogataj, L.K.; Piil, J.F.; et al. Health vs. Wealth: Employer, Employee and Policy-Maker Perspectives on Occupational Heat Stress across Multiple European Industries. Temperature 2021, 8, 284–301. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human Exposure and Sensitivity to Globally Extreme Wildfire Events. Nat. Ecol. Evol. 2017, 1, 58. [Google Scholar] [CrossRef]
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.; Silva, C.A.; Cardil, A. Analysis of Forest Fire Fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85. [Google Scholar] [CrossRef]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ Health and Productivity under Occupational Heat Strain: A Systematic Review and Meta-Analysis. Lancet Planet Health 2018, 2, e521–e531. [Google Scholar] [CrossRef]
- Jacklitsch, B.; Williams, W.; Musolin, K.; Coca, A.; Kim, J.H.; Turner, N. NIOSH Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments; National Institute on Drug Abuse: Cincinnati, OH, USA, 2016. [Google Scholar]
- McLellan, T.M.; Selkirk, G.A. Heat Stress While Wearing Long Pants or Shorts under Firefighting Protective Clothing. Ergonomics 2004, 47, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Sköldström, B. Physiological Responses of Fire Fighters to Workload and Thermal Stress. Ergonomics 1987, 30, 1589–1597. [Google Scholar] [CrossRef]
- Bruce-Low, S.S.; Cotterrell, D.; Jones, G.E. Effect of Wearing Personal Protective Clothing and Self-Contained Breathing Apparatus on Heart Rate, Temperature and Oxygen Consumption during Stepping Exercise and Live Fire Training Exercises. Ergonomics 2007, 50, 80–98. [Google Scholar] [CrossRef]
- Smith, D.L.; Petruzzello, S.J.; Kramer, J.M.; Misner, J.E. The Effects of Different Thermal Environments on the Physiological and Psychological Responses of Firefighters to a Training Drill. Ergonomics 1997, 40, 500–510. [Google Scholar] [CrossRef]
- Holmér, I. Protective Clothing in Hot Environments Environmental Stress and Protective Clothing. Ind. Health 2006, 44, 404–413. [Google Scholar] [CrossRef]
- Quintela, D.A.; Gaspar, A.R.; Raimundo, A.M.; Oliveira, A.V.M. Working Conditions of Firefighters: Physiological Measurements, Subjective Assessments and Thermal Insulation of Protective Clothing. In Occupational Safety and Hygiene; CRC Press: Boca Raton, FL, USA, 2013; pp. 521–526. [Google Scholar]
- Dorman, L.E.; Havenith, G. The Effects of Protective Clothing on Energy Consumption during Different Activities. Eur. J. Appl. Physiol. 2009, 105, 463–470. [Google Scholar] [CrossRef]
- Son, S.Y.; Lee, J.Y.; Tochihara, Y. Occupational Stress and Strain in Relation to Personal Protective Equipment of Japanese Firefighters Assessed by a Questionnaire. Ind. Health 2013, 51, 214–222. [Google Scholar] [CrossRef]
- Barker, R.; Fang, X.; Deaton, S.; DenHartog, E.; Gao, H.; Tutterow, R.; Schmid, M. Identifying Factors That Contribute to Structural Firefighter Heat Strain in North America. Int. J. Occup. Saf. Ergon. 2021, 1–10. [Google Scholar] [CrossRef]
- McLellan, T.M.; Aoyagi, Y. Heat Strain in Protective Clothing Following Hot-Wet or Hot-Dry Heat Acclimation. Can. J. Appl. Physiol. 1996, 21, 90–108. [Google Scholar] [CrossRef] [PubMed]
- West, M.R.; West, M.R.; Costello, S.; Sol, J.A.; Domitrovich, J.W. Risk for Heat-Related Illness among Wildland Firefighters: Job Tasks and Core Body Temperature Change. Occup. Environ. Med. 2020, 77, 433–438. [Google Scholar] [CrossRef] [PubMed]
- USDA Forest Service. Chapter 50—Employee Safety, Security, and Health. In Handbook Number 6709.11—Health and Safety Code; USDA Forest Service: Washington, WA, USA, 2018. [Google Scholar]
WFF | WFMM | FRO | SFF | FFMM | HM | Total | |
---|---|---|---|---|---|---|---|
Spain | 561 (47.2) * | 199 (16.7) | 113 (9.5) | 61 (5.1) | 47 (4.0) | 208 (17.5) | 1189 (81.5) |
Italy | 25 (31.6) | 28 (35.4) * | 0 | 5 (6.3) | 1 (1.3) | 20 (25.3) | 79 (5.4) |
Portugal | 0 | 7 (12.5) | 0 | 30 (53.6) * | 7 (12.5) | 12 (21.4) | 56 (3.8) |
Argentina | 9 (25.0) | 16 (28.6) * | 4 (7.1) | 2 (3.6) | 1 (1.8) | 4 (7.1) | 36 (2.5) |
LATAM | 20 (20.2) | 25 (25.3) | 0 | 2 (2.0) | 1 (1.0) | 51 (51.5) * | 99 (6.8) |
Total | 615 (42.2) | 275 (18.8) | 117 (8.0) | 100 (6.9) | 57 (3.9) | 295 (20.2) | 1459 (100) |
Heat Strain | Thermal Environment | |
---|---|---|
Spain | 8.5 ± 1.8 | 7.7 ± 1.6 |
Italy | 8.6 ± 1.8 | 6.6 ± 1.5 ‡,§,* |
Portugal | 8.7 ± 1.7 | 7.7 ± 1.5 |
Argentina | 9.6 ± 0.6 ‡,†,§ | 7.4 ± 2.2 |
LATAM | 9.0 ± 1.6 ‡,† | 8.0 ± 2.0 |
WFF | 8.6 ± 1.9 | 7.9 ± 1.6 1,2,3,4 |
SFF | 8.8 ± 1.9 | 7.4 ± 1.6 |
WFMM | 8.5 ± 1.7 | 7.8 ± 1.7 1,2,3,4 |
FRO | 8.6 ± 1.10 | 6.9 ± 1.6 |
FFMM | 9.1 ± 1.4 | 7.2 ± 1.5 |
HM | 8.8 ± 1.7 | 7.6 ± 1.7 |
Total | 8.7 ± 1.8 | 7.7 ± 1.7 |
Ambient Temperature | Flames | Sun Radiation | Wind | Physical Exertion | PPE | Smoke | |
---|---|---|---|---|---|---|---|
Spain | 8.1 ± 1.6 C,D,E,G | 8.0 ± 1.6 *,C,D,E,G | 9.1 ± 1.2 D,E,F,G | 6.4 ± 2.2 E,F,G | 8.5 ± 1.4 F,G | 7.9 ± 1.6 G | 7.4 ± 2.3 |
Italy | 7.6 ± 1.6 *,C,D,E | 7.6 ± 1.6 *,C,D,E | 8.8 ± 1.4 D,F,G | 5.8 ± 2.3 *,E,F,G | 8.7 ± 1.2 F,G | 7.8 ± 1.7 G | 7.0 ± 2.7 |
Portugal | 7.4 ± 1.8 *,‡,C | 7.2 ± 2.2 *,‡,§,C | 8.8 ± 1.7 D | 6.9 ± 2.3 † | 8.0 ± 2.0 | 7.6 ± 2.1 | 7.8 ± 2.1 |
Argentina | 7.9 ± 1.7 D | 8.3 ± 1.5 *,D | 9.1 ± 1.7 D,F,G | 6.2 ± 2.6 | 8.4 ± 1.6 | 7.3 ± 2.0 C | 7.2 ± 2.4 C |
LATAM | 8.5 ± 1.6 G | 8.7 ± 1.4 F,G | 9.2 ± 1.3 D,E,F,G | 7.1 ± 2.2 E,F | 8.3 ± 1.6 | 7.9 ± 1.9 | 7.7 ± 2.3 |
WFF | 8.1 ± 1.6 C,D,E,G | 8.1 ± 1.6 C,G | 9.2 ± 1.3 1,3,D,E,F,G | 6.5 ± 2.2 E,F,G | 8.4 ± 1.4 F,G | 7.8 ± 1.7 C,D,E | 7.8 ± 2.2 1,2 |
SFF | 8.0 ± 1.8 C,D | 7.9 ± 1.8 C,D | 8.8 ± 1.6 D,F,G | 6.8 ± 2.1 E,F,G | 8.4 ± 1.7 G | 7.9 ± 1.8 | 7.7 ± 2.2 1 |
WFMM | 8.0 ± 1.6 C,D,F,G | 7.8 ± 1.6 C,D,E | 9.2 ± 1.2 1,3,D,E,F,G | 6.4 ± 2.3 A,B,C | 8.5 ± 1.4 F,G | 7.9 ± 1.7 | 7.4 ± 2.41 |
FRO | 8.1 ± 1.4 C,D,E,G | 8.0 ± 1.6 C,D,E,G | 9.1 ± 1.1 F,G | 6.0 ± 2.2 E,F,G | 8.7 ± 1.2 F,G | 7.7 ± 1.5 | 7.1 ± 2.11 |
FFMM | 8.1 ± 1.6 C,D | 8.1 ± 1.4 C,D | 9.1 ± 1.0 D,G | 7.1 ± 1.72 E,F | 8.5 ± 1.5 G | 8.2 ± 1.6 D | 7.2 ± 2.02 A,C,E,F |
HM | 8.0 ± 1.7 C,D,E,G | 8.1 ± 1.5 C,D,G | 8.9 ± 1.4 D,G | 6.3 ± 2.3 E,F | 8.6 ± 1.5 F,G | 7.8 ± 1.7 G | 6.7 ± 2.5 A,B,C,E,F |
Total | 8.0 ± 1.7 C,D,E,F,G | 8.0 ± 1.4 C,D,E,F,G | 9.0 ± 1.6 D,E,F,G | 6.5 ± 2.2 E,F,G | 8.5 ± 1.5 F,G | 7.8 ± 1.8 G | 7.3 ± 2.3 A,B,C,E,F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carballo-Leyenda, B.; Villa-Vicente, J.G.; Delogu, G.M.; Rodríguez-Marroyo, J.A.; Molina-Terrén, D.M. Perceptions of Heat Stress, Heat Strain and Mitigation Practices in Wildfire Suppression across Southern Europe and Latin America. Int. J. Environ. Res. Public Health 2022, 19, 12288. https://doi.org/10.3390/ijerph191912288
Carballo-Leyenda B, Villa-Vicente JG, Delogu GM, Rodríguez-Marroyo JA, Molina-Terrén DM. Perceptions of Heat Stress, Heat Strain and Mitigation Practices in Wildfire Suppression across Southern Europe and Latin America. International Journal of Environmental Research and Public Health. 2022; 19(19):12288. https://doi.org/10.3390/ijerph191912288
Chicago/Turabian StyleCarballo-Leyenda, Belén, José Gerardo Villa-Vicente, Giuseppe M. Delogu, Jose A. Rodríguez-Marroyo, and Domingo M. Molina-Terrén. 2022. "Perceptions of Heat Stress, Heat Strain and Mitigation Practices in Wildfire Suppression across Southern Europe and Latin America" International Journal of Environmental Research and Public Health 19, no. 19: 12288. https://doi.org/10.3390/ijerph191912288
APA StyleCarballo-Leyenda, B., Villa-Vicente, J. G., Delogu, G. M., Rodríguez-Marroyo, J. A., & Molina-Terrén, D. M. (2022). Perceptions of Heat Stress, Heat Strain and Mitigation Practices in Wildfire Suppression across Southern Europe and Latin America. International Journal of Environmental Research and Public Health, 19(19), 12288. https://doi.org/10.3390/ijerph191912288