Effect of Seat Angle when Sleeping in a Car on Quality of Sleep and Its Impact on Calculation Performance the Following Day
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measurements
2.3.1. Room and Bedclothes Climate
2.3.2. Objective Sleep Assessment
2.3.3. Subjective Sleep Assessment
Subjective Sleep Assessment
Subjective Sleep Quality and Sleep Satisfaction
Comfort in Sleeping Environment
2.3.4. Calculation Performance
2.3.5. Statistical Analysis
3. Results
3.1. Thermal Environment during Experimental Day
3.2. Objective Sleep Assessment
3.3. Subjective Sleep Assessment
3.3.1. Subjective Sleepiness
3.3.2. Subjective Sleep Quality and Sleep Satisfaction
3.3.3. Comfort in Sleeping Environment
3.3.4. Correlation between Variables of OSA Sleep Inventory and Those of Sleeping Comfort Questionnaire
3.4. Calculation Performance
Correlation between the Result of Calculation Performance and Objective/Subjective Sleep Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Disasters Report 2020, Come Heat of High Water. Available online: https://oldmedia.ifrc.org/ifrc/wp-content/uploads/2020/11/20201116_WorldDisasters_Full.pdf (accessed on 20 June 2022).
- Japan International Cooperation Agency. Available online: https://www.jica.go.jp/publication/mundi/1710/ku57pq000022jpbu-att/02.pdf#page=2 (accessed on 20 June 2022). (In Japanese)
- Sueta, D.; Akahoshi, R.; Okamura, Y.; Kojima, S.; Ikemoto, T.; Yamamoto, E.; Izumiya, Y.; Tsujita, K.; Kaikita, K.; Katabuchi, H.; et al. Venous thromboembolism due to oral contraceptive intake and spending nights in a vehicle—A case from the 2016 Kumamoto earthquakes. Intern. Med. 2017, 56, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Sueta, D.; Sakamoto, K.; Usuku, H.; Fujisue, K.; Yamanaga, K.; Arima, Y.; Takashio, S.; Suzuki, S.; Yamamoto, E.; Kaikita, K.; et al. Clinical features of disaster-related deaths after the Kumamoto earthquake 2016―Comparison with the great East Japan earthquake 2011. Circ. Rep. 2019, 1, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Sueta, D.; Hokimoto, S.; Hashimoto, Y.; Sakamoto, K.; Hosokawa, H.; Nishigami, K.; Sato, K.; Fujisue, K.; Kojima, S.; Takahashi, T.; et al. Kumamoto Earthquake T, Embolism Protection Project I. Venous thromboembolism caused by spending a night in a vehicle after an earthquake (night in a vehicle after the 2016 Kumamoto earthquake). Can. J. Cardiol. 2018, 34, 813.e9–813.e10. [Google Scholar] [CrossRef] [PubMed]
- Cabinet Office Japan. Report on Care Studies of Support for Disaster Victims at Evacuation Shelter in 2016. Available online: https://www.bousai.go.jp/taisaku/hinanjo/pdf/houkokusyo.pdf (accessed on 29 June 2020). (In Japanese)
- Nicholson, A.N.; Stone, B.M. Influence of back angle on the quality of sleep in seats. Ergonomics 1987, 30, 1033–1041. [Google Scholar] [CrossRef]
- Aeschbach, D.; Cajochen, C.; Tobler, I.; Dijk, D.J.; Borbély, A.A. Sleep in a sitting position: Effect of triazolam on sleep stages and EEG power spectra. Psychopharmacology 1994, 114, 209–214. [Google Scholar] [CrossRef]
- Horne, J.A.; Reyner, L.A. Counteracting driver sleepiness: Effects of napping, caffeine, and placebo. Psychophysiology 1996, 33, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Abe, A. Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle. Sleep Biol. Rhythms. 2008, 6, 34–41. [Google Scholar] [CrossRef]
- Ogata, H.; Kayaba, M.; Kaneko, M.; Ogawa, K.; Kiyono, K. Evaluation of sleep quality in a disaster evacuee environment. Int. J. Environ. Res. Public Health 2020, 17, 4252. [Google Scholar] [CrossRef]
- Roach, G.D.; Matthews, R.; Naweed, A.; Kontou, T.G.; Sargent, C. Flat-out napping: The quantity and quality of sleep obtained in a seat during the daytime increase as the angle of recline of the seat increases. Chronobiol. Int. 2018, 35, 872–883. [Google Scholar] [CrossRef]
- Van Dongen, H.P.A.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Lowe, C.J.; Safati, A.; Hall, P.A. The neurocognitive consequences of sleep restriction: A meta-analytic review. Neurosci. Biobehav. Rev. 2017, 80, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 2005, 25, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Minowa, M.; Uchiyama, M.; Okawa, M.; Shibui, K.; Kamei, Y. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res. 2000, 97, 165–172. [Google Scholar] [CrossRef]
- Ishihara, K.; Miyashita, A.; Inugami, M.; Fukuda, K.; Yamazaki, K.; Miyata, Y. The results of investigation by the Japanese version of morningness-eveningness questionnaire. Shinrigaku Kenkyu 1986, 57, 87–91. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events Summary of Updates in Version 2.6. Available online: https://j2vjt3dnbra3ps7ll1clb4q2-wpengine.netdna-ssl.com/wp-content/uploads/2020/01/Summary-of-Updates-in-v2.6.pdf (accessed on 2 February 2020).
- Nonoue, S.; Mashita, M.; Haraki, S.; Mikami, A.; Adachi, H.; Yatani, H.; Yoshida, A.; Taniike, M.; Kato, T. Inter-scorer reliability of sleep assessment using EEG and EOG recording system in comparison to polysomnography. Sleep Biol. Rhythm. 2017, 15, 39–48. [Google Scholar] [CrossRef]
- Kanemura, T.; Kadotani, H.; Matsuo, M.; Masuda, F.; Fujiwara, K.; Ohira, M.; Yamada, N. Evaluation of a portable two-channel electroencephalogram monitoring system to analyze sleep stages. J. Oral Sleep Med. 2016, 2, 101–108. [Google Scholar]
- Hoddes, E.; Dement, W.; Zarcone, V. The development and use of the Stanford sleepiness scale (SSS). Psychophysiology 1972, 9, 150. [Google Scholar]
- Yamamoto, Y.; Tanaka, H.; Takase, M.; Yamazaki, K.; Shirakawa, S. Standardization of revised version of OSA sleep inventory for middle age and aged. Brain Sci. Ment. Disord. 1999, 10, 401–409. (In Japanese) [Google Scholar]
- Kogure, T.; Nishimura, Y.; Nishimura, A.; Shirakawa, S. The Relationship between the Comfort in a Hypnagogic Posture and Sleep. Japan Soc. Physiol. Anthropol. 2007, 12, 171–176. (In Japanese) [Google Scholar]
- Japan Psychiatric Technology Institute, Inc. Available online: https://www.nsgk.co.jp/uk (accessed on 29 May 2020). (In Japanese).
- Japan Meteorological Agency. Search Past Weather Data. Available online: https://www.data.jma.go.jp/obd/stats/etrn/view/nml_amd_ym.php?prec_no=67&block_no=0683&year=&month=&day=&view=.20 (accessed on 29 May 2020).
- Mochizuki, Y.; Maeda, K.; Tsuzuki, K.; Nabeshima, Y. A study to example the thermal environment on sleep and physiological responses in shelter-analogue settings in winter. J. Environ. Eng. 2018, 83, 465–472. [Google Scholar] [CrossRef]
- Laffan, A.; Caffo, B.; Swihart, B.J.; Punjabi, N.M. Utility of sleep stage transitions in assessing sleep continuity. Sleep 2010, 33, 1681–1686. [Google Scholar] [PubMed]
- Cicolin, A.; Magliola, U.; Giordano, A.; Terreni, A.; Bucca, C.; Mutani, R. Effects of levetiracetam on nocturnal sleep and daytime vigilance in healthy volunteers. Epilepsia 2006, 47, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Chervin, R.D.; Aldrich, M.S.; Pickett, R.; Guilleminault, C. Comparison of the results of the Epworth Sleepiness Scale and the Multiple Sleep Latency Test. J Psychosom. Res. 1997, 42, 145–155. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef]
- Aoki, K.; Yamamoto, R.; Shinzawa, M.; Kimura, Y.; Adachi, H.; Fujii, Y.; Tomi, R.; Nakanishi, K.; Taneike, M.; Nishida, M.; et al. Sleep debt and prevalence of proteinuria in subjects with short sleep duration on weekdays: A cross-sectional study. Clin. Exp. Nephrol. 2020, 24, 143–150. [Google Scholar] [CrossRef]
- Cordi, M.J.; Ackermann, S.; Rasch, B. Effects of relaxing music on healthy sleep. Sci. Rep. 2019, 9, 9079. [Google Scholar] [CrossRef]
- Czempik, P.F.; Jarosińska, A.; Machlowska, K.; Pluta, M.P. Impact of sound levels and patient-related factors on sleep of patients in the intensive care unit: A cross-sectional cohort study. Sci. Rep. 2020, 10, 19207. [Google Scholar] [CrossRef]
Home Trial | 45° Trial | 60° Trial | p-Value | ||
---|---|---|---|---|---|
TST | (min) | 437.5 ± 53.4 | 428.8 ± 54.3 | 405.8 ± 40.5 | n.s |
REM latency | (min) | 16.2 ± 13.9 | 36.3 ± 58.5 | 30.6 ± 34.1 | n.s |
Sleep latency | (min) | 87.9 ± 30.3 | 110.6 ± 59.0 | 128.2 ± 66.8 | n.s |
Sleep efficiency | (%) | 95.0 ± 3.7 | 89.3 ± 11.3 | 85.1 ± 9.0 § | 0.008 |
WASO | (%) | 1.5 ± 1.1 | 3.2 ± 2.5 | 9.0 ± 8.3 † ⁑ | 0.001 |
REM | (%) | 22.7 ± 4.2 | 23.4 ± 4.1 | 20.6 ± 5.4 | n.s |
NREM 1 | (%) | 2.4 ± 0.9 | 3.4 ± 2.0 | 4.7 ± 3.3 | 0.026 |
NREM 2 | (%) | 53.8 ± 7.0 | 52.4 ± 5.8 | 52.8 ± 7.6 | n.s |
SWS | (%) | 19.6 ± 4.6 | 17.6 ± 5.9 | 12.9 ± 5.0 † ⁑ | <0.001 |
Stage shift | (times) | 41.1 ± 15.6 | 51.9 ± 24.8 | 60.6 ± 38.1 | n.s |
Home Trial | 45° Trial | 60° Trial | p-Value | |
---|---|---|---|---|
Sleepiness on rising | 18.5 ± 3.9 | 11.9 ± 5.0 * | 11.0 ± 6.6 † | <0.001 |
Initiation and maintenance of sleep | 15.1 ± 6.2 | 11.7 ± 5.8 | 8.9 ± 5.8 † | 0.006 |
Frequency dreaming | 19.0 ± 8.0 | 18.7 ± 8.9 | 19.0 ± 7.2 | n.s |
Refreshing | 20.6 ± 4.5 | 11.8 ± 8.0 * | 11.0 ± 6.9 † | <0.001 |
Sleep length | 21.6 ± 7.7 | 17.9 ± 4.0 | 14.9 ± 6.7 | 0.048 |
Home Trial | 45° Trial | 60° Trial | p-Value | |
---|---|---|---|---|
Warmth feeling | 3.2 ± 0.6 | 3.7 ± 0.7 | 3.7 ± 0.8 | n.s |
Hardness | 3.3 ± 0.6 | 2.3 ± 0.8 * | 2.1 ± 0.8 † | <0.001 |
Comfort | 4.2 ± 0.8 | 2.7 ± 0.8 * | 1.9 ± 0.8 † | <0.001 |
Humid feeling | 3.1 ± 0.6 | 3.3 ± 0.7 | 3.3 ± 0.7 | n.s |
Turning over | 3.4 ± 1.0 | 2.0 ± 0.8 * | 1.5 ± 0.6 † | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, H.; Nishikawa, T.; Kayaba, M.; Kaneko, M.; Ogawa, K.; Kiyono, K. Effect of Seat Angle when Sleeping in a Car on Quality of Sleep and Its Impact on Calculation Performance the Following Day. Int. J. Environ. Res. Public Health 2022, 19, 12270. https://doi.org/10.3390/ijerph191912270
Ogata H, Nishikawa T, Kayaba M, Kaneko M, Ogawa K, Kiyono K. Effect of Seat Angle when Sleeping in a Car on Quality of Sleep and Its Impact on Calculation Performance the Following Day. International Journal of Environmental Research and Public Health. 2022; 19(19):12270. https://doi.org/10.3390/ijerph191912270
Chicago/Turabian StyleOgata, Hitomi, Tomohiro Nishikawa, Momoko Kayaba, Miki Kaneko, Keiko Ogawa, and Ken Kiyono. 2022. "Effect of Seat Angle when Sleeping in a Car on Quality of Sleep and Its Impact on Calculation Performance the Following Day" International Journal of Environmental Research and Public Health 19, no. 19: 12270. https://doi.org/10.3390/ijerph191912270
APA StyleOgata, H., Nishikawa, T., Kayaba, M., Kaneko, M., Ogawa, K., & Kiyono, K. (2022). Effect of Seat Angle when Sleeping in a Car on Quality of Sleep and Its Impact on Calculation Performance the Following Day. International Journal of Environmental Research and Public Health, 19(19), 12270. https://doi.org/10.3390/ijerph191912270