High-Energy-Density Organic Amendments Enhance Soil Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Property Measurement
2.3. Soil DNA Extraction and High-Throughput Sequencing
2.4. Plant Analysis
2.5. Data Analysis
3. Results and Discussions
3.1. Soil Health Indicators and N Loss under Different VO Application Rates
3.2. Microbial Responses to the Input of Fertilizers and VO
3.3. Crop Responses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. Int. J. Environ. Sci. Technol. 2022, 1–24. [Google Scholar] [CrossRef]
- Cameron, K.; Di, H.; Moir, J. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Burauel, P.; BaBmann, F. Soils as filter and buffer for pesticides—Experimental concepts to understand soil functions. Environ. Pollut. 2005, 133, 11–16. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Fierer, N.; Wood, S.A.; Bueno, deM.; Clifton, P. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Coban, O.; De Deyn Gerlinde, B.; van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef]
- Hannula, S.E.; Elly, M. Will fungi solve the carbon dilemma? Geoderma 2022, 413, 115767. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahzad, S.M.; Chatterjee, N.; Arif, M.S.; Farooq, T.H.; Altaf, M.M.; Tufail, M.A.; Dar, A.A.; Mehmood, T. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. J. Environ. Manag. 2021, 285, 112170. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediatedsoil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Moreno, J.; Ros, M.; García, C.; Hernández, T. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 2008, 40, 318–329. [Google Scholar] [CrossRef]
- Ros, M.; Pascual, J.; Garcia, C.; Hernandez, M.; Insam, H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 2006, 38, 3443–3452. [Google Scholar] [CrossRef]
- Rui, Y.; Jackson, R.D.; Cotrufo, M.F.; Sanford, G.R.; Spiesman, B.J.; Deiss, L.; Culman, S.W.; Liang, C.; Ruark, M.D. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc. Nalt. Acad. Sci. USA 2022, 119, e2118931119. [Google Scholar] [CrossRef] [PubMed]
- Houot, S.; Chaussod, R. Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biol. Fertil. Soils 1995, 19, 309–316. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, X.; Sun, F.; Zhao, Y.; Sun, W.; Guo, J.; Zhang, T. Sensitivity of soil fungal and bacterial community compositions to nitrogen and phosphorus additions in a temperate meadow. Plant Soil 2022, 471, 477–490. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhang, S.; Li, H.; Zhang, L.M.; Song, H.L.; Wang, Y.W. Effects of voltage on sulfadiazine degradation and the response of sul genes and microbial communities in biofilm-electrode reactors. Ecotoxicol. Environ. Saf. 2018, 151, 272–278. [Google Scholar] [CrossRef]
- Maria, M.; Wanek, W.; Hämmerle, I.; Fuchslueger, L.; Hofhansl, F.; Knoltsch, A.; Schnecker, J.; Takriti, M.; Watzka, M.; Wild, B.; et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 2014, 5, 3694. [Google Scholar]
- Kandeler, E.; Stemmer, M.; Klimanek, E.M. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol. Biochem. 1999, 31, 261–273. [Google Scholar] [CrossRef]
- Högberg, M.N.; Högberg, P.; Myrold, D.D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 2007, 150, 590–601. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Z.; He, Z.; Yu, Z.; Wang, M.; Davis, M.R.; Yang, Y. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 2015, 387, 103–116. [Google Scholar] [CrossRef]
- Zhang, J.; Ai, Z.; Liu, H.; Tang, D.; Yang, X.; Wang, G.; Liu, Y.; Liu, G.; Morriën, E.; Xue, S. Short-term N addition in a Pinus tabuliformis plantation: Microbial community composition and interactions show different linkages with ecological stoichiometry. Appl. Soil Ecol. 2022, 74, 104422. [Google Scholar] [CrossRef]
- Sun, J.J.; Li, Y.Y.; Wang, Z.P.; Ma, M.S.; Ma, W. Effect of biochar on the migration and biodegradation of nitrogen during river-based groundwater recharge with reclaimed water: An indoor experimental study. Desalin. Water Treat. 2017, 96, 143–152. [Google Scholar] [CrossRef]
- Pang, Q.; Xu, W.; He, F.; Peng, F.; Zhu, X.; Xu, B.; Yu, J.; Jiang, Z.; Wang, L. Functional genera for efficient nitrogen removal under low C/N ratio influent at low temperatures in a two-stage tidal flow constructed wetland. Sci. Total Environ. 2021, 804, 150142. [Google Scholar] [CrossRef]
- Spain, A.M.; Krumholz, L. Cooperation of three denitrifying bacteria in nitrate removal of acidic aitrate-and uranium-contaminated groundwater. Geomicrobiol. J. 2012, 29, 830–842. [Google Scholar] [CrossRef]
- Monteiro, R.A.; Balsanelli, E.; Wassem, R.; Marin, A.M.; Brusamarello-Santos, L.C.C.; Schmidt, M.A.; Tadra-Sfeir, M.Z.; Pankievicz, V.C.S.; Cruz, L.M.; Chubatsu, L.S.; et al. Herbaspirillum-plant interactions: Microscopical, histological and molecular aspects. Plant Soil 2012, 356, 175–196. [Google Scholar] [CrossRef]
- Kang, S.; Khan, A.L.; Waqas, M.; You, Y.H.; Kim, J.H.; Kim, J.G.; Hamayun, M.; Lee, I.J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 2014, 9, 673–682. [Google Scholar] [CrossRef]
- Peng, S.; Hong, D.; Xin, Y.; Jun, L.; Hong, W. Sphingobacterium yanglingense sp nov., isolated from the nodule surface of soybean. Int. J. Syst. Evol. Microbiol. 2015, 64, 3862–3866. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, D.; Zhao, C.; Zhang, L.; Chen, L.; Duan, W. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests. Acta Pedol. Sin. 2019, 56, 1221–1234. [Google Scholar]
- Kim, S.-J.; Cho, H.; Ahn, J.-H.; Weon, H.-Y.; Joa, J.-H.; Hong, S.-B.; Seok, S.-J.; Kim, J.-S.; Kwon, S.-W. Chitinophaga rhizosphaerae sp nov., isolated from rhizosphere soil of a tomato plant. Int. J. Syst. Evol. Microbiol. 2017, 67, 3435–3439. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, N.; Sun, B.; Liang, Y. Community structure of Burkholderiales and its diversity in typical maize rhizosphere soil. Acta Pedol. Sin. 2020, 57, 975–985. [Google Scholar]
- Conte, G.; Dimauro, C.; Daghio, M.; Serra, A.; Mannelli, F.; McAmmond, B.M.; van Hamme, J.D.; Buccioni, A.; Viti, C.; Mantino, A.; et al. Exploring the relationship between bacterial genera and lipid metabolism in bovine rumen. Anim. Int. J. Anim. Biosci. 2022, 16, 100520. [Google Scholar] [CrossRef] [PubMed]
- Sieber, J.R.; Crable, B.R.; Hurst, G.B.; Mcinerney, M.J. Proteomic analysis of the syntrophic, fatty acid-oxidizing organism, Syntrophomonas wolfei. Abstr. Gen. Meet. Am. Soc. Microbiol. 2011, 111, 2285. [Google Scholar]
- Komelli, A. Molecular mechanisms of magnetosome formation. Annu. Rev. Biochem. 2007, 76, 351–366. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Wu, Y.; Tong, C.; Lin, F. Effects of Medicago sativa-Triticale wittmack intercropping system on rhizosphere soil nutrients and bacterial community in semi-arid region of Northwest China. Yingyong Shengtai Xuebao 2020, 31, 1645–1652. [Google Scholar]
- Li, G.X. Extracellular Respiration Mechanism of Sulfate-Reducing Bacteria Using Sulfur as Electron Transport in Paddy Soil. Master’s Thesis, University of Chinese Academy of Science, Beijing, China, 2019. [Google Scholar]
- Sandona, K.; Tobias, T.L.B.; Hutchinson, M.I.; Natvig, D.O.; Porras-Alfaro, A. Diversity of thermophilic and thermotolerant fungi in corn rain. Mycologia 2019, 111, 719–729. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella species as the plant growth-promoting fungi Present in the agricultural soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Bai, N.; Li, S.; Zhang, J.; Lv, W. Responses of soil bacterial and fungal communities to organic and conventional farming systems in east China. J. Microbiol. Biotechnol. 2019, 29, 441–453. [Google Scholar] [CrossRef]
- Silva, L.K.; de Assis, C.O.Y.; Heitor, C.; Eurya, K.E. Ammonia-oxidizing bacteria and fungal denitrifier diversity are associated with N2O production in tropical soils. Soil Biol. Biochem. 2022, 166, 108563. [Google Scholar]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
VO (g/kg) | SOC (mg/kg) | STN (mg/kg) | BA (1010 copies/g) | FA (1010 copies/g) | FA/BA | C Loss (mg/kg) | N Loss (mg/kg) | |
---|---|---|---|---|---|---|---|---|
MI-8 | 0 | 7355 ± 90 a | 950 ± 21 a | 0.095 ± 0.01 a | 0.0052 ± 0.00 a | 0.054 ± 0.03 a | 2851 ± 90 a | 323 ± 21 e |
5 | 9357 ± 418 b | 1007 ± 17 b | 0.72 ± 0.10 b | 0.082 ± 0.01 b | 0.11 ± 0.02 b | 2387 ± 500 b | 265 ± 18 d | |
10 | 11,210 ± 650 c | 1182 ± 22 c | 0.73 ± 0.15 b | 0.70 ± 0.05 c | 0.97 ± 0.15 c | 3092 ± 704 c | 91 ± 23 c | |
20 | 16,933 ± 611 d | 1221 ± 16 d | 1.44 ± 0.13 d | 2.19 ± 0.05 e | 1.52 ± 0.10 e | 3166 ± 611 d | 51 ± 6 b | |
40 | 30,165 ± 1822 e | 1242 ± 15 e | 1.24 ± 0.08 c | 1.69 ± 0.08 d | 1.36 ± 0.05 d | 3775 ± 182 e | 31 ± 14 a | |
MI-24 | 0 | 6932 ± 135 a | 909 ± 27 a | 0.078 ± 0.01 a | 0.0089 ± 0.00 a | 0.11 ± 0.01 a | 707 ± 135 a | 364 ± 28 d |
5 | 9200 ± 543 b | 865 ± 27 a | 0.085 ± 0.00 b | 0.17 ± 0.00 b | 2.00 ± 0.14 b | 2545 ± 581 b | 407 ± 17 d | |
10 | 11,240 ± 885 c | 995 ± 56 b | 0.48 ± 0.02 c | 1.56 ± 0.17 c | 3.18 ± 0.24 c | 3062 ± 731 c | 277 ± 59 c | |
20 | 17,260 ± 1621 d | 1100 ± 45 b | 1.27 ± 0.18 e | 4.55 ± 0.41 d | 3.58 ± 0.18 d | 2840 ± 163 c | 172 ± 47 b | |
40 | 27,690 ± 2230 e | 1195 ± 37 c | 0.85 ± 0.11 d | 5.47 ± 0.05 e | 6.45 ± 0.73 e | 6250 ± 223 d | 78 ± 38 a | |
MI-48 | 0 | 5833 ± 55 a | 715 ± 21 a | 0.077 ± 0.01 a | 0.0072 ± 0.00 a | 0.093 ± 0.00 b | 1807 ± a | 558 ± 22 d |
5 | 8466 ± 65 b | 733 ± 12 a | 0.78 ± 0.09 b | 0.0089 ± 0.00 b | 0.011 ± 0.00 a | 3279 ± 55 b | 539 ± 12 d | |
10 | 9366 ± 64 c | 852 ± 9 b | 1.24 ± 0.11 c | 5.47 ± 0.49 d | 4.49 ± 0.04 e | 4936 ± 89 c | 421 ± 8 c | |
20 | 15,760 ± 658 d | 939 ± 11 c | 2.53 ± 0.13 d | 1.66 ± 0.03 c | 0.66 ± 0.11 c | 3255 ± 155 b | 333 ± 11 b | |
40 | 21,902 ± 409 e | 1041 ± 20 d | 1.26 ± 0.02 c | 1.56 ± 0.09 c | 1.26 ± 0.01 d | 12,038 ± 2235 d | 232 ± 17 a | |
PC-48 | 0 | 6973 ± 90 a | 750 ± 21 a | 0.34 ± 0.14 a | 0.052 ± 0.00 a | 0.15 ± 0.08 a | 666 ± 41 a | 296 ± 30 e |
5 | 10,306 ± 500 b | 836 ± 18 b | 1.56 ± 0.10 c | 3.20 ± 0.15 b | 2.06 ± 0.19 b | 1273 ± 195 b | 257 ± 23 d | |
10 | 10,612 ± 764 b | 1043 ± 23 c | 1.24 ± 0.01 b | 5.98 ± 0.16 e | 4.83 ± 0.06 e | 3778 ± 99 c | 128 ± 55 c | |
20 | 15,233 ± 612 c | 1076 ± 16 c | 2.00 ± 0.10 d | 4.88 ± 0.20 d | 2.44 ± 0.15 d | 4866 ± 629 d | 83 ± 14 b | |
40 | 22,746 ± 1822 d | 1200 ± 14 d | 2.30 ± 0.10 e | 3.90 ± 0.21 c | 1.71 ± 0.13 c | 11,193 ± 1844 e | 45 ± 15 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Zhao, X.; Cheng, Q.; Lin, H.; Zheng, H.; Zhou, Q. High-Energy-Density Organic Amendments Enhance Soil Health. Int. J. Environ. Res. Public Health 2022, 19, 12212. https://doi.org/10.3390/ijerph191912212
Shi F, Zhao X, Cheng Q, Lin H, Zheng H, Zhou Q. High-Energy-Density Organic Amendments Enhance Soil Health. International Journal of Environmental Research and Public Health. 2022; 19(19):12212. https://doi.org/10.3390/ijerph191912212
Chicago/Turabian StyleShi, Feifan, Xinyue Zhao, Qilu Cheng, Hui Lin, Huabao Zheng, and Qifa Zhou. 2022. "High-Energy-Density Organic Amendments Enhance Soil Health" International Journal of Environmental Research and Public Health 19, no. 19: 12212. https://doi.org/10.3390/ijerph191912212
APA StyleShi, F., Zhao, X., Cheng, Q., Lin, H., Zheng, H., & Zhou, Q. (2022). High-Energy-Density Organic Amendments Enhance Soil Health. International Journal of Environmental Research and Public Health, 19(19), 12212. https://doi.org/10.3390/ijerph191912212