Associations of Problematic Internet Use, Weight-Related Self-Stigma, and Nomophobia with Physical Activity: Findings from Mainland China, Taiwan, and Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants, Recruitment, and Ethical Concerns
2.1.1. Mainland China
2.1.2. Taiwan
2.1.3. Malaysia
2.2. Measures
2.2.1. Physical Activity
2.2.2. Weight-Related Self-Stigma
2.2.3. Problematic Internet Use (PIU)
2.2.4. Nomophobia
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; WHO: Geneva, Switzerland, 2018.
- Aira, T.; Vasankari, T.; Heinonen, O.J.; Korpelainen, R.; Kotkajuuri, J.; Parkkari, J.; Savonen, K.; Uusitalo, A.; Valtonen, M.; Villberg, J.; et al. Physical activity from adolescence to young adulthood: Patterns of change, and their associations with activity domains and sedentary time. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Corder, K.; Winpenny, E.; Love, R.; Brown, H.E.; White, M.; Sluijs, E.V. Change in physical activity from adolescence to early adulthood: A systematic review and meta-analysis of longitudinal cohort studies. Br. J. Sports. Med. 2019, 53, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.R.; Gupta, C.C.; Crowther, M.E.; Ferguson, S.A.; Tuckwell, G.A.; Vincent, G.E. Sleep, and physical activity in university students: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 58, 101482. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Suárez-Iglesias, D.; Sanchez-Lastra, M.A.; Ayán, C. Impact of COVID-19 pandemic on university students’ physical activity levels: An early systematic review. Front. Psychol. 2021, 11, 624567. [Google Scholar] [CrossRef]
- Bevan, N.; O’Brien, K.S.; Lin, C.-Y.; Latner, J.D.; Vandenberg, B.; Jeanes, R.; Puhl, R.M.; Chen, I.-H.; Moss, S.; Rush, G. The relationship between weight stigma, physical appearance concerns, and enjoyment and tendency to avoid physical activity and sport. Int. J. Environ. Res. Public Health 2021, 18, 9957. [Google Scholar] [CrossRef] [PubMed]
- Pearl, R.L.; Wadden, T.A.; Jakicic, J.M. Is weight stigma associated with physical activity? A systematic review. Obesity 2021, 29, 1994–2012. [Google Scholar] [CrossRef] [PubMed]
- Saffari, M.; Chen, J.-S.; Wu, H.-C.; Fung, X.C.C.; Chang, C.-C.; Chang, Y.-L.; Kamolthip, R.; Potenza, M.N.; Lin, I.-C.; Lin, C.-Y. Effects of weight-related self-stigma and smartphone addiction on female university students’ physical activity levels. Int. J. Environ. Res. Public Health 2022, 19, 2631. [Google Scholar] [CrossRef] [PubMed]
- Pearl, R.L.; Puhl, R.M. Weight bias internalization and health: A systematic review. Obes. Rev. 2018, 19, 1141–1163. [Google Scholar] [CrossRef]
- Fung, X.C.C.; Pakpour, A.H.; Wu, Y.-K.; Fan, C.-W.; Lin, C.-Y.; Tsang, H.W.H. Psychosocial variables related to weight-related self-stigma in physical activity among young adults across weight status. Int. J. Environ. Res. Public Health 2020, 17, 64. [Google Scholar] [CrossRef] [Green Version]
- Meadows, A.; Bombak, A.E. Yes, we can (no, you can’t): Weight stigma, exercise self-efficacy, and active fat identity development. Fat Stud. 2019, 8, 135–153. [Google Scholar] [CrossRef]
- Ali, Y.; Meadows, A. Motivations to Exercise: The Good, the Bad, and the Ugly. In Proceedings of the 8th Annual International Weight Stigma Conference, Berlin, Germany, 14–15 July 2022. [Google Scholar] [CrossRef]
- Xu, P.; Chen, J.S.; Chang, Y.-L.; Wang, X.; Jiang, X.; Griffiths, M.D.; Pakpour, A.; Lin, C.-Y. Gender differences in the associations between physical activity, smartphone use, and weight stigma. Front. Public Health 2022, 10, 862829. [Google Scholar] [CrossRef] [PubMed]
- Meadows, A.; Higgs, S. The multifaceted nature of Weight-Related Self-Stigma: Validation of the Two-Factor Weight Bias Internalization Scale (WBIS-2F). Front. Psychol. 2019, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- Maïano, C.; Lepage, G.; Aimé, A. Perceived weight-related victimization and physical activity outcomes among adolescents with overweight and obesity: Indirect role of perceived physical abilities and fear of enacted stigma. Psychol. Sport Exerc. 2018, 34, 70–78. [Google Scholar] [CrossRef]
- Cellini, N.; Canale, N.; Mioni, G.; Costa, S. Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J. Sleep Res. 2020, 29, e13074. [Google Scholar] [CrossRef]
- Islam, M.S.; Sujan, M.S.H.; Tasnim, R.; Mohona, R.A.; Ferdous, M.Z.; Kamruzzaman, S.; Toma, T.Y.; Sakib, M.N.; Pinky, K.N.; Islam, M.R.; et al. Problematic smartphone and social media use among Bangladeshi college and university students amid COVID-19: The role of psychological well-being and pandemic related factors. Front. Psychiatry 2021, 12, 647386. [Google Scholar] [CrossRef] [PubMed]
- Fung, X.C.C.; Siu, A.M.H.; Potenza, M.N.; O’Brien, K.S.; Latner, J.D.; Chen, C.-Y.; Chen, I.-H.; Lin, C.-Y. Problematic use of internet-related activities and perceived weight stigma in schoolchildren: A longitudinal study across different epidemic periods of COVID-19 in China. Front. Psychiatry 2021, 12, 675839. [Google Scholar] [CrossRef]
- Clark, O.; Lee, M.M.; Jingree, M.L.; O’Dwyer, E.; Yue, Y.; Marrero, A.; Tamez, M.; Bhupathiraju, S.N.; Mattei, J. Weight stigma and social media: Evidence and public health solutions. Front. Nutr. 2021, 8, 739056. [Google Scholar] [CrossRef] [PubMed]
- Eow, S.Y.; Gan, W.Y. Social media use, body image, and body weight status: Comparison between university students with and without disordered eating in Universiti Putra Malaysia. IJPHCS 2018, 5, 129–145. [Google Scholar]
- Kwok, C.; Leung, P.Y.; Poon, K.Y.; Fung, X.C.C. The effects of internet gaming and social media use on physical activity, sleep, quality of life, and academic performance among university students in Hong Kong: A preliminary study. Asian J. Soc. Health Behav. 2021, 4, 36–44. [Google Scholar]
- Notara, V.; Vagka, E.; Gnardellis, C.; Lagiou, A. The emerging phenomenon of nomophobia in young adults: A systematic review study. Addict. Health 2021, 13, 120–136. [Google Scholar] [PubMed]
- AlMarzooqi, M.A.; Alhaj, O.A.; Alrasheed, M.M.; Helmy, M.; Trabelsi, K.; Ebrahim, A.; Hattab, S.; Jahrami, H.A.; Saad, H.B. Symptoms of nomophobia, psychological aspects, insomnia and physical activity: A cross-sectional study of esports players in Saudi Arabia. Healthcare 2022, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modelling, 4th ed.; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Gefen, D.; Rigdon, E.E.; Straub, D. An update and extension to SEM guidelines for administrative and social science research. MIS Q. 2011, 35, iii–xiv. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Lillis, J.; Luoma, J.B.; Levin, M.E.; Hayes, S.C. Measuring weight self-stigma: The weight self-stigma questionnaire. Obesity 2010, 18, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Csibi, S.; Griffiths, M.D.; Cook, B.; Demetrovics, Z.; Szabo, A. The psychometric properties of the smartphone application-based addiction scale (SABAS). Int. J. Ment. Health Addict. 2018, 16, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, C.; Correia, A.-P. Exploring the dimensions of nomophobia: Development and validation of a self-reported questionnaire. Comput. Hum. Behav. 2015, 49, 130–137. [Google Scholar] [CrossRef]
- Cain, M.K.; Zhang, Z.; Yuan, K.-H. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behav. Res. Methods 2017, 49, 1716–1735. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3. Bönningstedt: SmartPLS, 2015. Available online: http://www.smartpls.com (accessed on 23 June 2022).
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial least squares structural equation modeling. In Handbook of Market Research, 1st ed.; Homburg, C., Klarmann, M., Vomberg, A.E., Eds.; Springer International Publishing: New York, NY, USA, 2021; Chapter 15; pp. 1–47. [Google Scholar]
- Sarstedt, M.; Hair, J.F.; Pick, M.; Liengaard, B.D.; Radomir, L.; Ringle, C.M. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol. Mark. 2022, 39, 1035–1064. [Google Scholar] [CrossRef]
- Gerbing, D.W.; Anderson, J.C. An updated paradigm for scale development incorporating unidimensionality and its assessment. J. Mark. Res. 1988, 25, 186–192. [Google Scholar] [CrossRef]
- Poon, W.C.; Tung, S.E.H. The rise of online food delivery culture during the COVID-19 pandemic: An analysis of intention and its associated risk. Eur. J. Manag. Bus. Econ. 2022; in press. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publication, Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar]
- Hair, J.F.; Babin, B.J.; Krey, N. Covariance-based structural equation modeling in the Journal of Advertising: Review and recommendations. J. Advert. 2017, 46, 163–177. [Google Scholar] [CrossRef]
- Poon, W.C.; Tung, S.E.H. Consumer risk perception of online food delivery during the COVID-19 Movement Control Order (MCO) in Malaysia. J. Foodserv. Bus. Res. 2022, in press. [CrossRef]
- Hu, L.T.; Bentler, P.M. Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Farič, N.; Potts, H.W.; Rowe, S.; Beaty, T.; Hon, A.; Fisher, A. Running app “Zombies, Run!” users’ engagement with physical activity: A qualitative study. Games Health J. 2021, 10, 420–429. [Google Scholar] [CrossRef]
- Zsila, A.; Orosz, G.; Bothe, B.; Toth-Kiraly, I.; Kiraly, O.; Griffiths, M.; Demetrovics, Z. An empirical study on the motivations underlying augmented reality games: The case of Pokémon Go during and after Pokémon fever. Pers. Individ. Differ. 2018, 133, 56–66. [Google Scholar] [CrossRef]
- Corrigan, P.W.; Larson, J.E.; Rusch, N. Self-stigma and the “why try” effect: Impact on life goals and evidence-based practices. World Psychiatry 2009, 8, 75–81. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, I.H.; O’Brien, K.S.; Latner, J.D.; Lin, C.Y. Psychological distress and internet-related behaviors between schoolchildren with and without overweight during the COVID-19 outbreak. Int. J. Obes. 2021, 45, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Daei, A.; Ashrafi-rizi, H.; Soleymani, M.R. Nomophobia and health hazards: Smartphone use and addiction among university students. Int. J. Prev. Med. 2019, 10, 202. [Google Scholar] [PubMed]
- Oluwole, L.O.; Obadeji, A.; Dada, M.U. Surfing over masked distress: Internet addiction and psychological well-being among a population of medical students. Asian J. Soc. Health Behav. 2021, 4, 56–61. [Google Scholar] [CrossRef]
- Patel, V.K.; Chaudhary, P.; Kumar, P.; Vasavada, D.A.; Tiwari, D.S. A study of correlates of social networking site addiction among the undergraduate health professionals. Asian J. Soc. Health Behav. 2021, 4, 30–35. [Google Scholar]
- Ranjan, L.K.; Gupta, P.R.; Srivastava, M.; Gujar, N.M. Problematic internet use and its association with anxiety among undergraduate students. Asian J. Soc. Health Behav. 2021, 4, 137–141. [Google Scholar]
- Puhl, R.; Suh, Y. Health consequences of weight stigma: Implications for obesity prevention and treatment. Curr. Obes. Rep. 2015, 4, 182–190. [Google Scholar] [CrossRef]
Characteristics | N (%) or M (SD) | |||
---|---|---|---|---|
Overall (N = 4357) | China (N = 3135) | Taiwan (N = 600) | Malaysia (N = 622) | |
Age | 20.66 (3.37) | 19.65 (2.38) | 22.81 (3.75) | 23.68 (4.35) |
Gender | ||||
Male | 1712 (39.3) | 1337 (42.6) | 209 (34.8) | 166 (26.7) |
Female | 2645 (60.7) | 1798 (57.4) | 391 (65.2) | 456 (73.3) |
Education level | ||||
Undergraduate | 3901 (89.5) | 3023 (96.4) | 395 (65.8) | 483 (77.7) |
Postgraduate | 456 (10.5) | 112 (3.6) | 205 (34.2) | 139 (22.3) |
Body mass index (BMI) | 23.37 (7.07) | 23.89 (7.87) | 21.98 (3.72) | 22.05 (4.48) |
Underweight | 877 (20.1) | 678 (21.6) | 86 (14.3) | 113 (18.2) |
Normal weight | 2427 (55.7) | 1645 (52.5) | 396 (66.0) | 386 (62.0) |
Overweight | 430 (9.9) | 243 (7.8) | 100 (16.7) | 87 (14.0) |
Obese | 623 (14.3) | 569 (18.1) | 18 (3.0) | 36 (5.8) |
Physical activity | 4329.72 (3976.54) | 5359.25 (4110.28) | 2115.74 (1869.39) | 2512.58 (3129.87) |
Weight stigma | 28.45 (10.17) | 27.78 (9.64) | 30.62 (10.35) | 29.74 (12.03) |
Smartphone addiction | 20.15 (6.26) | 19.26 (6.09) | 22.80 (5.44) | 22.10 (6.67) |
Social media addiction | 15.39 (4.92) | 14.87 (4.70) | 15.92 (4.78) | 17.51 (5.51) |
Nomophobia | 78.83 (26.92) | 75.56 (26.52) | 93.04 (21.83) | 81.55 (28.58) |
Composite/Indicators | Indicator Loading | Composite Reliability | Cronbach’s Alpha | AVE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Model | China Model | Taiwan Model | Malaysia Model | Overall Model | China Model | Taiwan Model | Malaysia Model | Overall Model | China Model | Taiwan Model | Malaysia Model | Overall Model | China Model | Taiwan Model | Malaysia Model | |
Social media addiction | 0.910 | 0.913 | 0.904 | 0.899 | 0.882 | 0.886 | 0.872 | 0.865 | 0.629 | 0.636 | 0.610 | 0.596 | ||||
BSMAS1 | 0.724 | 0.720 | 0.718 | 0.743 | ||||||||||||
BSMAS2 | 0.798 | 0.786 | 0.824 | 0.786 | ||||||||||||
BSMAS3 | 0.814 | 0.828 | 0.794 | 0.768 | ||||||||||||
BSMAS4 | 0.812 | 0.814 | 0.807 | 0.770 | ||||||||||||
BSMAS5 | 0.817 | 0.827 | 0.796 | 0.805 | ||||||||||||
BSMAS6 | 0.789 | 0.806 | 0.742 | 0.760 | ||||||||||||
Nomophobia | 0.976 | 0.980 | 0.954 | 0.968 | 0.974 | 0.978 | 0.950 | 0.965 | 0.671 | 0.709 | 0.512 | 0.604 | ||||
NMP1 | 0.784 | 0.803 | 0.685 | 0.720 | ||||||||||||
NMP2 | 0.778 | 0.800 | 0.683 | 0.724 | ||||||||||||
NMP3 | 0.789 | 0.799 | 0.732 | 0.771 | ||||||||||||
NMP4 | 0.806 | 0.828 | 0.654 | 0.749 | ||||||||||||
NMP5 | 0.809 | 0.836 | 0.642 | 0.736 | ||||||||||||
NMP6 | 0.810 | 0.845 | 0.687 | 0.739 | ||||||||||||
NMP7 | 0.815 | 0.838 | 0.636 | 0.760 | ||||||||||||
NMP8 | 0.841 | 0.858 | 0.670 | 0.818 | ||||||||||||
NMP9 | 0.810 | 0.827 | 0.672 | 0.777 | ||||||||||||
NMP10 | 0.810 | 0.817 | 0.748 | 0.817 | ||||||||||||
NMP11 | 0.797 | 0.810 | 0.688 | 0.760 | ||||||||||||
NMP12 | 0.820 | 0.826 | 0.705 | 0.815 | ||||||||||||
NMP13 | 0.843 | 0.861 | 0.763 | 0.797 | ||||||||||||
NMP14 | 0.857 | 0.877 | 0.766 | 0.828 | ||||||||||||
NMP15 | 0.855 | 0.883 | 0.787 | 0.789 | ||||||||||||
NMP16 | 0.848 | 0.895 | 0.807 | 0.785 | ||||||||||||
NMP17 | 0.841 | 0.869 | 0.791 | 0.813 | ||||||||||||
NMP18 | 0.847 | 0.877 | 0.811 | 0.806 | ||||||||||||
NMP19 | 0.782 | 0.824 | 0.658 | 0.749 | ||||||||||||
NMP20 | 0.831 | 0.859 | 0.682 | 0.778 | ||||||||||||
Smartphone addiction | 0.909 | 0.909 | 0.876 | 0.910 | 0.879 | 0.879 | 0.830 | 0.881 | 0.626 | 0.626 | 0.544 | 0.628 | ||||
SABAS1 | 0.682 | 0.666 | 0.584 | 0.711 | ||||||||||||
SABAS2 | 0.755 | 0.747 | 0.712 | 0.811 | ||||||||||||
SABAS3 | 0.801 | 0.800 | 0.700 | 0.797 | ||||||||||||
SABAS4 | 0.821 | 0.821 | 0.772 | 0.824 | ||||||||||||
SABAS5 | 0.835 | 0.843 | 0.813 | 0.803 | ||||||||||||
SABAS6 | 0.840 | 0.854 | 0.817 | 0.804 | ||||||||||||
Weight stigma | 0.951 | 0.955 | 0.939 | 0.949 | 0.944 | 0.948 | 0.928 | 0.941 | 0.620 | 0.641 | 0.563 | 0.610 | ||||
WSSQ1 | 0.728 | 0.731 | 0.700 | 0.740 | ||||||||||||
WSSQ2 | 0.742 | 0.728 | 0.679 | 0.769 | ||||||||||||
WSSQ3 | 0.813 | 0.808 | 0.775 | 0.818 | ||||||||||||
WSSQ4 | 0.809 | 0.815 | 0.806 | 0.822 | ||||||||||||
WSSQ5 | 0.703 | 0.728 | 0.604 | 0.667 | ||||||||||||
WSSQ6 | 0.772 | 0.770 | 0.746 | 0.758 | ||||||||||||
WSSQ7 | 0.730 | 0.753 | 0.605 | 0.683 | ||||||||||||
WSSQ8 | 0.827 | 0.851 | 0.818 | 0.812 | ||||||||||||
WSSQ9 | 0.816 | 0.834 | 0.761 | 0.837 | ||||||||||||
WSSQ10 | 0.835 | 0.836 | 0.848 | 0.839 | ||||||||||||
WSSQ11 | 0.848 | 0.866 | 0.816 | 0.850 | ||||||||||||
WSSQ12 | 0.812 | 0.866 | 0.797 | 0.755 |
Overall Model | Mainland China Model | Taiwan Model | Malaysia Model | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
1. Nomophobia | -- | -- | -- | -- | ||||||||||||||||
2. PA | 0.138 | -- | 0.694 | -- | 0.081 | -- | 0.047 | -- | ||||||||||||
3. SA | 0.634 | 0.163 | -- | 0.617 | 0.651 | -- | 0.699 | 0.089 | -- | 0.570 | 0.053 | -- | ||||||||
4. SMA | 0.513 | 0.147 | 0.723 | -- | 0.499 | 0.590 | 0.688 | -- | 0.517 | 0.058 | 0.747 | -- | 0.554 | 0.045 | 0.808 | -- | ||||
5. WS | 0.451 | 0.110 | 0.538 | 0.473 | -- | 0.477 | 0.757 | 0.572 | 0.476 | -- | 0.340 | 0.030 | 0.488 | 0.504 | -- | 0.379 | 0.071 | 0.407 | 0.417 | -- |
Overall | β | Std. Error | t-Value | Hypothesis Testing | R2 |
Nomophobia -> PA | 0.111 | 0.015 | 7.334 | Contradicted a | 0.021 (PA) |
Nomophobia -> WS | 0.202 | 0.017 | 11.648 | Supported | 0.296 (WS) |
SA -> Nomophobia | 0.481 | 0.018 | 26.460 | Supported | 0.368 (Nomophobia) |
SA -> WS | 0.270 | 0.020 | 13.395 | Supported | |
SMA -> Nomophobia | 0.173 | 0.017 | 9.923 | Supported | |
SMA -> WS | 0.167 | 0.019 | 8.964 | Supported | |
WS -> PA | 0.060 | 0.021 | 2.778 | Contradicted a | |
Mainland China | β | Std. Error | t-Value | Hypothesis Testing | R2 |
Nomophobia -> PA | 0.448 | 0.010 | 43.435 | Contradicted a | 0.702 (PA) |
Nomophobia -> WS | 0.216 | 0.020 | 10.913 | Supported | 0.332 (WS) |
SA -> Nomophobia | 0.461 | 0.020 | 23.160 | Supported | 0.355 (Nomophobia) |
SA -> WS | 0.312 | 0.021 | 14.514 | Supported | |
SMA -> Nomophobia | 0.188 | 0.021 | 9.186 | Supported | |
SMA -> WS | 0.150 | 0.023 | 6.591 | Supported | |
WS -> PA | 0.529 | 0.011 | 48.575 | Contradicted a | |
Taiwan | β | Std. Error | t-Value | Hypothesis Testing | R2 |
Nomophobia -> PA | −0.035 | 0.047 | 0.749 | Not Supported | 0.002 (PA) |
Nomophobia -> WS | 0.057 | 0.047 | 1.219 | Not Supported | 0.244 (WS) |
SA -> Nomophobia | 0.539 | 0.040 | 13.430 | Supported | 0.412 (Nomophobia) |
SA -> WS | 0.216 | 0.061 | 3.548 | Supported | |
SMA -> Nomophobia | 0.146 | 0.042 | 3.447 | Supported | |
SMA -> WS | 0.290 | 0.051 | 5.655 | Supported | |
WS -> PA | 0.018 | 0.043 | 0.414 | Not Supported | |
Malaysia | β | Std. Error | t-Value | Hypothesis Testing | R2 |
Nomophobia -> PA | 0.017 | 0.039 | 0.431 | Not Supported | 0.001 (PA) |
Nomophobia -> WS | 0.199 | 0.045 | 4.390 | Supported | 0.190 (WS) |
SA -> Nomophobia | 0.337 | 0.054 | 6.202 | Supported | 0.322 (Nomophobia) |
SA -> WS | 0.146 | 0.049 | 2.964 | Supported | |
SMA -> Nomophobia | 0.278 | 0.050 | 5.576 | Supported | |
SMA -> WS | 0.174 | 0.055 | 3.175 | Supported | |
WS -> PA | 0.058 | 0.049 | 1.168 | Not Supported |
Mainland China vs. Malaysia | c Value | CI 95% | Compositional Invariance? |
Nomophobia | 1.000 | [1.000, 1.000] | Yes |
PA | 1.000 | [1.000, 1.000] | Yes |
SA | 1.000 | [1.000, 1.000] | Yes |
SMA | 1.000 | [0.999, 1.000] | Yes |
WS | 1.000 | [1.000, 1.000] | Yes |
Difference in Mean Value | CI 95% | Equal Mean Value? | |
Nomophobia | −0.233 | [−0.073, 0.067] | No |
PA | −1.447 | [−0.076, 0.067] | No |
SA | −0.449 | [−0.069, 0.073] | No |
SMA | −0.541 | [−0.075, 0.073] | No |
WS | −0.199 | [−0.071, 0.071] | No |
Difference in Variances Ratio | CI 95% | Equal Variance? | |
Nomophobia | −0.233 | [−0.094, 0.100] | No |
PA | −1.447 | [−0.712, 0.701] | No |
SA | −0.449 | [−0.091, 0.100] | No |
SMA | −0.541 | [−0.109, 0.105] | No |
WS | −0.199 | [−0.096, 0.105] | No |
Mainland China vs. Taiwan | c Value | CI 95% | Compositional Invariance? |
Nomophobia | 1.000 | [1.000, 1.000] | Yes |
PA | 1.000 | [1.000, 1.000] | Yes |
SA | 1.000 | [1.000, 1.000] | Yes |
SMA | 0.999 | [0.999, 1.000] | Yes |
WS | 1.000 | [1.000, 1.000] | Yes |
Difference in Mean Value | CI 95% | Equal Mean Value? | |
Nomophobia | −0.652 | [−0.072, 0.070] | No |
PA | −1.79 | [−0.076, 0.067] | No |
SA | −0.56 | [−0.073, 0.068] | No |
SMA | −0.222 | [−0.074, 0.075] | No |
WS | −0.293 | [−0.078, 0.072] | No |
Difference in Variances Ratio | CI 95% | Equal Variance? | |
Nomophobia | 0.375 | [−0.098, 0.103] | No |
PA | −5.771 | [−0.364, 0.405] | No |
SA | 0.211 | [−0.095, 0.102] | No |
SMA | −0.04 | [−0.109, 0.116] | No |
WS | −0.135 | [−0.095, 0.100] | No |
Taiwan vs. Malaysia | c Value | CI 95% | Compositional Invariance? |
Nomophobia | 0.999 | [0.999, 1.000] | Yes |
PA | 1.000 | [1.000, 1.000] | Yes |
SA | 0.999 | [0.999, 1.000] | Yes |
SMA | 1.000 | [0.999, 1.000] | Yes |
WS | 1.000 | [0.999, 1.000] | Yes |
Difference in Mean Value | CI 95% | Equal Mean Value? | |
Nomophobia | 0.426 | [−0.091, 0.087] | No |
PA | −0.153 | [−0.093, 0.093] | No |
SA | 0.117 | [−0.097, 0.091] | No |
SMA | −0.298 | [−0.092, 0.091] | No |
WS | 0.077 | [−0.096, 0.083] | Yes |
Difference in Variances Ratio | CI 95% | Equal Variance? | |
Nomophobia | −0.520 | [−0.113, 0.112] | No |
PA | −1.031 | [−0.458, 0.444] | No |
SA | −0.401 | [−0.118, 0.114] | No |
SMA | −0.282 | [−0.119, 0.122] | No |
WS | −0.293 | [−0.113, 0.111] | No |
Mainland China vs. Malaysia. | Path Coefficients (China) | Path Coefficients (Malaysia) | Diff (China–Malaysia) | t-Value | Henseler MGA p-Value |
Nomophobia -> PA | 0.448 | 0.017 | 0.431 | 14.620 | <0.001 |
Nomophobia -> WS | 0.216 | 0.199 | 0.017 | 0.334 | 0.751 |
SA -> Nomophobia | 0.461 | 0.337 | 0.125 | 2.539 | 0.025 |
SA -> Weight Stigma | 0.312 | 0.146 | 0.166 | 3.097 | 0.001 |
SMA -> Nomophobia | 0.188 | 0.278 | −0.090 | 1.773 | 0.082 |
SMA -> WS | 0.150 | 0.174 | −0.023 | 0.437 | 0.681 |
WS -> PA | 0.529 | 0.058 | 0.471 | 14.258 | <0.001 |
Mainland China vs. Taiwan | Path Coefficients (China) | Path Coefficients (Taiwan) | Diff (China–Taiwan) | t-Value | Henseler MGA p-value |
Nomophobia -> PA | 0.448 | −0.035 | 0.483 | 15.308 | <0.001 |
Nomophobia -> WS | 0.216 | 0.057 | 0.160 | 2.998 | 0.004 |
SA -> Nomophobia | 0.461 | 0.539 | −0.077 | 1.573 | 0.107 |
SA -> Weight Stigma | 0.312 | 0.216 | 0.096 | 1.648 | 0.153 |
SMA -> Nomophobia | 0.188 | 0.146 | 0.042 | 0.863 | 0.379 |
SMA -> WS | 0.150 | 0.290 | −0.140 | 2.490 | 0.011 |
WS -> PA | 0.529 | 0.018 | 0.511 | 16.136 | <0.001 |
Taiwan vs. Malaysia | Path Coefficients (Taiwan) | Path Coefficients (Malaysia) | Diff (Taiwan–Malaysia) | t-Value | Henseler MGA p-value |
Nomophobia -> PA | 0.017 | −0.035 | −0.052 | 0.879 | 0.380 |
Nomophobia -> WS | 0.199 | 0.057 | −0.143 | 1.997 | 0.046 |
SA -> Nomophobia | 0.337 | 0.539 | 0.202 | 3.157 | 0.001 |
SA -> Weight Stigma | 0.146 | 0.216 | 0.070 | 0.877 | 0.385 |
SMA -> Nomophobia | 0.278 | 0.146 | −0.132 | 2.045 | 0.045 |
SMA -> WS | 0.174 | 0.290 | 0.116 | 1.552 | 0.114 |
WS -> PA | 0.058 | 0.018 | −0.040 | 0.593 | 0.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Chen, J.-S.; Gan, W.Y.; Poon, W.C.; Tung, S.E.H.; Lee, L.J.; Xu, P.; Chen, I.-H.; Griffiths, M.D.; Lin, C.-Y. Associations of Problematic Internet Use, Weight-Related Self-Stigma, and Nomophobia with Physical Activity: Findings from Mainland China, Taiwan, and Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 12135. https://doi.org/10.3390/ijerph191912135
Liu W, Chen J-S, Gan WY, Poon WC, Tung SEH, Lee LJ, Xu P, Chen I-H, Griffiths MD, Lin C-Y. Associations of Problematic Internet Use, Weight-Related Self-Stigma, and Nomophobia with Physical Activity: Findings from Mainland China, Taiwan, and Malaysia. International Journal of Environmental Research and Public Health. 2022; 19(19):12135. https://doi.org/10.3390/ijerph191912135
Chicago/Turabian StyleLiu, Wei, Jung-Sheng Chen, Wan Ying Gan, Wai Chuen Poon, Serene En Hui Tung, Ling Jun Lee, Ping Xu, I-Hua Chen, Mark D. Griffiths, and Chung-Ying Lin. 2022. "Associations of Problematic Internet Use, Weight-Related Self-Stigma, and Nomophobia with Physical Activity: Findings from Mainland China, Taiwan, and Malaysia" International Journal of Environmental Research and Public Health 19, no. 19: 12135. https://doi.org/10.3390/ijerph191912135
APA StyleLiu, W., Chen, J.-S., Gan, W. Y., Poon, W. C., Tung, S. E. H., Lee, L. J., Xu, P., Chen, I.-H., Griffiths, M. D., & Lin, C.-Y. (2022). Associations of Problematic Internet Use, Weight-Related Self-Stigma, and Nomophobia with Physical Activity: Findings from Mainland China, Taiwan, and Malaysia. International Journal of Environmental Research and Public Health, 19(19), 12135. https://doi.org/10.3390/ijerph191912135