The Demographic Specific Abdominal Fat Composition and Distribution Trends in US Adults from 2011 to 2018
Abstract
:1. Introduction
2. Method
2.1. Abdominal Fat Composition and Distribution
2.2. Confounding Variables
2.3. Data Analysis
3. Results
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.; Davy, O.; Fink, S.; Fryar, C.D.; Gu, Q.; Hales, C.M.; Hughes, J.P.; et al. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. Natl. Health Stat. Rep. 2021. [Google Scholar] [CrossRef]
- Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 2012, 85, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, Y.; Nakagawa, T.; Yamamoto, S.; Takahashi, Y.; Yokoyama, T.; Noda, M.; Mizoue, T. Associations of visceral and subcutaneous fat areas with the prevalence of metabolic risk factor clustering in 6,292 Japanese individuals: The Hitachi Health Study. Diabetes Care. 2010, 33, 2117–2119. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Nakamura, T.; Shimomura, I.; Nishida, M.; Yoshida, S.; Kotani, K.; Kameda-Takemuara, K.; Tokunaga, K.; Matsuzawa, Y. Insulin resistance and body fat distribution. Diabetes Care 1996, 19, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, Y. Establishment of a concept of visceral fat syndrome and discovery of adiponectin. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 131–141. [Google Scholar] [CrossRef]
- Tchernof, A.; Despr’es, J.-P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Kuk, J.L.; Katzmarzyk, P.T.; Nichaman, M.Z.; Church, T.S.; Blair, S.N.; Ross, R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity 2006, 14, 336–341. [Google Scholar] [CrossRef]
- Shah, R.V.; Murthy, V.L.; Abbasi, S.A.; Blankstein, R.; Kwong, R.Y.; Goldfine, A.B.; Jerosch-Herold, M.; Lima, J.A.; Ding, J.; Allison, M.A. Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA Study. JACC Cardiovasc. Imaging 2014, 7, 1221–1235. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Nakao, Y.M.; Masuda, I.; Higashiyama, A.; Takegami, M.; Nishimura, K.; Watanabe, M.; Ohkubo, T.; Okamura, T.; Miyamoto, Y. Risk for metabolic diseases in normal weight individuals with visceral fat accumulation: A cross-sectional study in Japan. BMJ Open 2017, 7, e013831. [Google Scholar] [CrossRef]
- Miazgowski, T.; Krzyżanowska-Świniarska, B.; Dziwura-Ogonowska, J.; Widecka, K. The associations between cardiometabolic risk factors and visceral fat measured by a new dual-energy X-ray absorptiometry-derived method in lean healthy Caucasian women. Endocrine 2014, 47, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.H.; Moon, J.H.; Kim, H.J.; Kong, M.H. Visceral-to-subcutaneous fat ratio as a predictor of the multiple metabolic risk factors for subjects with normal waist circumference in Korea. Diabetes Metab. Syndr. Obes. 2017, 10, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Kaess, B.M.; Pedley, A.; Massaro, J.M.; Murabito, J.; Hoffmann, U.; Fox, C.S. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 2012, 55, 2622–2630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, Y.; Zhao, Y.; Zhou, X.; Ji, L. Is visceral abdominal fat area a better indicator for hyperglycemic risk? Results from the Pinggu metabolic disease study. J. Diabetes Investig. 2020, 11, 888–895. [Google Scholar] [CrossRef]
- Kwon, S.; Han, A.L. The Correlation between the Ratio of Visceral Fat Area to Subcutaneous Fat Area on Computed Tomography and Lipid Accumulation Product as Indexes of Cardiovascular Risk. J. Obes. Metab. Syndr. 2019, 28, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Kim, H.K.; Lee, M.J.; Bae, S.J.; Choe, J.; Jung, C.H.; Kim, C.H.; Park, J.Y.; Lee, W.J. Sex Differences of Visceral Fat Area and Visceral-to-Subcutaneous Fat Ratio for the Risk of Incident Type 2 Diabetes Mellitus. Diabetes Metab. J. 2022, 46, 486–498. [Google Scholar] [CrossRef]
- Demerath, E.W.; Sun, S.S.; Rogers, N.; Lee, M.; Reed, D.; Choh, A.C.; Couch, W.; Czerwinski, S.A.; Chumlea, W.C.; Siervogel, R.M.; et al. Anatomical patterning of visceral adipose tissue: Race, sex, and age variation. Obesity 2007, 15, 2984–2993. [Google Scholar] [CrossRef]
- Hill, J.O.; Sidney, S.; Lewis, C.E.; Tolan, K.; Scherzinger, A.L.; Stamm, E.R. Racial differences in amounts of visceral adipose tissue in young adults: The CARDIA (Coronary Artery Risk Development in Young Adults) study. Am. J. Clin. Nutr. 1999, 69, 381–387. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Bray, G.A.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E., Jr.; Ryan, D.H.; Smith, S.R.; Bouchard, C. Racial differences in abdominal depot-specific adiposity in white and African American adults. Am. J. Clin. Nutr. 2010, 91, 7–15. [Google Scholar] [CrossRef]
- França, G.V.A.; De Lucia Rolfe, E.; Horta, B.L.; Gigante, D.P.; Yudkin, J.S.; Ong, K.K.; Victora, C.G. Genomic ancestry and education level independently influence abdominal fat distributions in a Brazilian admixed population. PLoS ONE 2017, 12, e0179085. [Google Scholar] [CrossRef]
- Okosun, I.S.; Annor, F.B.; Seale, J.P.; Eriksen, M.P. Abdominal adiposity and family income-to-poverty ratio in American women. Obes. Res. Clin. Pract. 2014, 8, e201–e211. [Google Scholar] [CrossRef]
- O’Hearn, M.; Lauren, B.N.; Wong, J.B.; Kim, D.D.; Mozaffarian, D. Trends and disparities in cardiometabolic health among U.S. adults, 1999–2018. J. Am. Coll. Cardiol. 2022, 80, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Du, Y.; Wu, Y.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Trends in obesity and adiposity measures by race or ethnicity among adults in the United States 2011–2018: Population based study. BMJ 2021, 372, n365. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. Available online: https://wwwn.cdc.gov/nchs/nhanes (accessed on 12 November 2021).
- National Center for Health Statistics. NHANES Questionnaires, Datasets, and Related Documentation. Available online: https://wwwn.cdc.gov/nchs/nhanes/default.aspx (accessed on 20 January 2022).
- Xu, F.; Earp, J.E.; LoBuono, D.L.; Greene, G.W. The Relationship of Physical Activity and Dietary Quality with Android Fat Composition and Distribution in US Adults. Nutrients 2022, 14, 2804. [Google Scholar] [CrossRef] [PubMed]
- Elffers, T.W.; de Mutsert, R.; Lamb, H.J.; de Roos, A.; Willems van Dijk, K.; Rosendaal, F.R.; Jukema, J.W.; Trompet, S. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS ONE 2017, 12, e0185403. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Greene, G.W.; Earp, J.E.; Adami, A.; Delmonico, M.J.; Lofgren, I.E.; Greaney, M.L. Relationships of Physical Activity and Diet Quality with Body Composition and Fat Distribution in US Adults. Obesity 2020, 28, 2431–2440. [Google Scholar] [CrossRef]
- National Center for Health Statistics. NHANES Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx#estimation-and-weighting-procedures (accessed on 20 March 2022).
- Ford, E.S.; Maynard, L.M.; Li, C. Trends in mean waist circumference and abdominal obesity among US adults, 1999–2012. JAMA 2014, 312, 1151–1153. [Google Scholar] [CrossRef]
- Sampaio, L.R.; Simões, E.J.; Assis, A.M.; Ramos, L.R. Validity and reliability of the sagittal abdominal diameter as a predictor of visceral abdominal fat. Arq. Bras. Endocrinol. Metabol. 2007, 51, 980–986. [Google Scholar] [CrossRef]
- Zamboni, M.; Tucato, E.; Armellini, F.; Kahn, H.S.; Zivelonghi, A.; Santanta, H.; Bergano-Andreis, I.A.; Bosello, O. Sagittal abdominal diameter as a practical predictor of visceral fat. Int. J. Obes. 1998, 22, 655–660. [Google Scholar] [CrossRef]
- Hunter, G.R.; Gower, B.A.; Kane, B.L. Age Related Shift in Visceral Fat. Int. J. Body Compos. Res. 2010, 8, 103–108. [Google Scholar]
- Fryar, C.D.; Carroll, M.D.; Afful, J. Prevalence of Overweight, Obesity, and Severe Obesity among Adults Aged 20 and Over: United States, 1960–1962 through 2017–2018; NCHS Health E-Stats: Hyattsville, MD, USA, 2020.
- Whitfield, G.P.; Carlson, S.A.; Ussery, E.N.; Fulton, J.E.; Galuska, D.A.; Petersen, R. Trends in Meeting Physical Activity Guidelines Among Urban and Rural Dwelling Adults—United States, 2008–2017. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrider, E.A.; Kollar, M.; Chen, F.; Semega, J. US Census Bureau. Income and Poverty in the United States: 2020; The Bureau: Washington, DC, USA, 2021; pp. 60–273. [Google Scholar]
- U.S. Department of Health and Human Services, Office of ASPE. Health Insurance Coverage and Access to Care among Latinos: Recent Trends and Key Challenges; Medicaid: Washington, DC, USA, 2021. Available online: https://aspe.hhs.gov/reports/health-insurance-coverage-access-care-among-latinos (accessed on 2 July 2022).
- Forum on Medical and Public Health Preparedness for Catastrophic Events; Board on Health Sciences Policy; Board on Health Care Services; Institute of Medicine. The Impacts of the Affordable Care Act on Preparedness Resources and Programs: Workshop Summary; National Academies Press: Washington, DC, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK241401/ (accessed on 6 July 2022).
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Male | Female | p-Values |
---|---|---|---|---|
n = 13,163 | n = 6638 (51.4%) | n = 6525 (48.6%) | ||
Age, n (weighted %) | ||||
18–39 yrs | 6996 (51.0) | 3657 (52.8) | 3339 (49.2) | <0.001 * |
40–59 yrs | 6167 (49.0) | 2981 (47.2) | 3186 (50.8) | <0.001 * |
Race/ethnicity, n (weighted %) | ||||
White | 4496 (61.2) | 2310 (61.2) | 2186 (61.3) | 0.967 |
Black | 2958 (11.9) | 1456 (11.4) | 1502 (12.5) | 0.004 * |
Hispanic | 3294 (17.4) | 1594 (18.0) | 1700 (16.9) | 0.014 * |
Other | 2415 (9.4) | 1278 (9.4) | 1137 (9.4) | 0.925 |
Education, n (weighted %) | ||||
High school or less | 4894 (34.8) | 2706 (38.8) | 2188 (30.7) | <0.001 * |
Some college or more | 7252 (65.2) | 3401 (61.2) | 3851 (69.3) | <0.001 * |
Ratio of family income to poverty, n (weighted %) | ||||
<1.0 | 2901 (16.6) | 1373 (15.3) | 1528 (17.9) | <0.001 * |
≥1.0 | 9137 (83.4) | 4671 (84.7) | 4466 (82.1) | <0.001 * |
Body mass index (kg/m2) | 28.98 ± 0.14 | 28.73 ± 0.14 | 29.24 ± 0.18 | 0.049 * |
Weight status, n (weighted %) | ||||
Underweight | 312 (1.9) | 138 (1.6) | 174 (2.2) | 0.030 * |
Normal | 3913 (28.9) | 1919 (26.1) | 1994 (31.8) | <0.001 * |
Overweight | 3967 (31.2) | 2304 (35.6) | 1663 (26.5) | <0.001 * |
Obese | 4897 (37.4) | 2239 (36.0) | 2658 (38.8) | 0.017 * |
Body fat percent | 32.77 ± 0.15 | 27.07 ± 0.14 | 38.58 ± 0.17 | <0.001 * |
VAT% | 0.57 ± 0.01 | 0.58 ± 0.01 | 0.57 ± 0.01 | 0.718 |
VAA (cm2) | 103.42 ± 1.20 | 110.09 ± 1.35 | 96.25 ± 1.44 | <0.001 * |
Subcutaneous fat area (cm2) | 337.20 ± 3.25 | 276.49 ± 3.34 | 402.46 ± 4.13 | <0.001 * |
VSR | 0.34 ± 0.00 | 0.45 ± 0.00 | 0.23 ± 0.00 | <0.001 * |
Variable | 2011–2012 | 2013–2014 | 2015–2016 | 2017–2018 | p-Values for Trend | |
---|---|---|---|---|---|---|
VAT% | n = 2932 | n = 3389 | n = 3007 | n = 2312 | Linear | Quadratic |
Overall | 0.57 (0.54–0.61) | 0.57 (0.56–0.59) | 0.59 (0.57–0.61) | 0.54 (0.52–0.57) | 0.139 | 0.064 |
Sex | ||||||
Male | 0.58 (0.55–0.60) | 0.58 (0.56–0.60) | 0.59 (0.58–0.61) | 0.55 (0.53–0.57) | 0.102 | 0.055 |
Female | 0.57 (0.53–0.62) | 0.57 (0.55–0.59) | 0.59 (0.56–0.62) | 0.54 (0.51–0.57) | 0.269 | 0.16 |
Age | ||||||
18–39 years | 0.45 (0.43–0.47) | 0.47 (0.45–0.48) | 0.47 (0.45–0.49) | 0.44 (0.42–0.46) | 0.055 | 0.037 * |
40–59 years | 0.70 (0.68–0.72) | 0.69 (0.67–0.71) | 0.73 (0.70–0.75) | 0.67 (0.65–0.69) | 0.153 | 0.094 |
Race/ethnicity | ||||||
White | 0.59 (0.56–0.63) | 0.58 (0.56–0.60) | 0.59 (0.57–0.62) | 0.54 (0.51–0.57) | 0.407 | 0.21 |
Black | 0.46 (0.43–0.49) | 0.45 (0.43–0.47) | 0.46 (0.44–0.48) | 0.43 (0.41–0.46) | 0.617 | 0.46 |
Hispanic | 0.62 (0.59–0.64) | 0.64 (0.61–0.66) | 0.67 (0.64–0.70) | 0.60 (0.58–0.63) | 0.001 * | 0.001 * |
Other | 0.53 (0.50–0.56) | 0.57 (0.55–0.59) | 0.59 (0.55–0.63) | 0.58 (0.55–0.61) | 0.057 | 0.115 |
Education | ||||||
High school or less | 0.63 (0.61–0.66) | 0.62 (0.61–0.64) | 0.65 (0.62–0.67) | 0.59 (0.57–0.60) | 0.118 | 0.036 * |
Some college or more | 0.56 (0.53–0.60) | 0.56 (0.54–0.58) | 0.58 (0.55–0.60) | 0.54 (0.52–0.57) | 0.267 | 0.186 |
Ratio of family income to poverty | ||||||
<1.0 | 0.53 (0.46–0.61) | 0.57 (0.53–0.60) | 0.63 (0.59–0.67) | 0.54 (0.48–0.59) | 0.040 * | 0.036 * |
≥1.0 | 0.58 (0.56–0.61) | 0.57 (0.56–0.59) | 0.59 (0.57–0.61) | 0.54 (0.52–0.57) | 0.329 | 0.164 |
VSR | n = 3117 | n = 3711 | n = 3409 | n = 2740 | ||
Overall | 0.35 (0.33–0.36) | 0.34 (0.33–0.35) | 0.35 (0.35–0.36) | 0.34 (0.32–0.35) | 0.264 | 0.214 |
Sex | ||||||
Male | 0.45 (0.44–0.46) | 0.44 (0.43–0.45) | 0.46 (0.45–0.47) | 0.44 (0.42–0.45) | 0.141 | 0.143 |
Female | 0.23 (0.22–0.25) | 0.23 (0.23–0.24) | 0.24 (0.23–0.25) | 0.22 (0.22–0.23) | 0.142 | 0.085 |
Age | ||||||
18–39 years | 0.30 (0.30–0.31) | 0.30 (0.29–0.31) | 0.31 (0.30–0.32) | 0.29 (0.28–0.30) | 0.386 | 0.33 |
40–59 years | 0.39 (0.37–0.40) | 0.38 (0.37–0.39) | 0.40 (0.39–0.41) | 0.38 (0.36–0.40) | 0.352 | 0.361 |
Race/ethnicity | ||||||
White | 0.35 (0.34–0.37) | 0.35 (0.33–0.36) | 0.36 (0.35–0.37) | 0.34 (0.32–0.36) | 0.628 | 0.571 |
Black | 0.32 (0.31–0.33) | 0.30 (0.29–0.31) | 0.32 (0.30–0.34) | 0.31 (0.29–0.33) | 0.702 | 0.69 |
Hispanic | 0.34 (0.32–0.36) | 0.34 (0.33–0.35) | 0.36 (0.35–0.37) | 0.33 (0.31–0.35) | 0.033 * | 0.024 * |
Other | 0.34 (0.33–0.35) | 0.34 (0.33–0.36) | 0.35 (0.33–0.38) | 0.33 (0.31–0.35) | 0.149 | 0.144 |
Education | ||||||
High school or less | 0.37 (0.36–0.38) | 0.37 (0.36–0.38) | 0.39 (0.38–0.40) | 0.37 (0.35–0.39) | 0.165 | 0.216 |
Some college or more | 0.33 (0.32–0.35) | 0.33 (0.32–0.34) | 0.34 (0.33–0.35) | 0.32 (0.30–0.34) | 0.495 | 0.403 |
Ratio of family income to poverty | ||||||
<1.0 | 0.34 (0.33–0.36) | 0.34 (0.32–0.36) | 0.35 (0.34–0.37) | 0.33 (0.31–0.35) | 0.504 | 0.449 |
≥1.0 | 0.35 (0.34–0.36) | 0.34 (0.33–0.35) | 0.35 (0.34–0.36) | 0.33 (0.32–0.35) | 0.344 | 0.268 |
VAA (cm 2) | n = 3117 | n = 3711 | n = 3409 | n = 2740 | ||
Overall | 102.40 (96.40–108.41) | 103.70 (100.77–106.63) | 107.47 (103.05–111.89) | 99.64 (94.26–105.03) | 0.098 | 0.072 |
Sex | ||||||
Male | 108.30 (102.02–114.57) | 110.09 (105.87–114.31) | 114.31 (109.14–119.48) | 107.37 (101.93–112.81) | 0.129 | 0.118 |
Female | 95.85 (89.13–102.57) | 96.98 (93.29–100.68) | 100.35 (95.25–105.46) | 91.10 (83.72–98.49) | 0.126 | 0.093 |
Age | ||||||
18–39 years | 77.80 (72.89–82.70) | 81.94 (77.81–86.07) | 84.01 (79.70–88.33) | 78.49 (73.78–83.19) | 0.039 * | 0.041 * |
40–59 years | 127.23 (123.34–131.13) | 125.99 (121.42–130.55) | 131.67 (125.58–137.75) | 123.71 (118.28–129.14) | 0.234 | 0.213 |
Race/ethnicity | ||||||
White | 107.25 (100.82–113.68) | 106.85 (101.95–111.74) | 110.87 (105.81–115.92) | 102.27 (94.47–110.07) | 0.262 | 0.214 |
Black | 86.85 (80.32–93.38) | 84.92 (80.45–89.38) | 86.57 (81.80–91.34) | 82.08 (76.97–87.20) | 0.786 | 0.637 |
Hispanic | 104.00 (99.18–108.82) | 111.61 (105.20–118.01) | 116.97 (111.36–122.59) | 104.64 (99.52–109.76) | <0.001 * | <0.001 * |
Other | 83.98 (77.15–90.81) | 90.52 (85.52–95.51) | 94.55 (87.30–101.80) | 96.60 (88.79–104.40) | 0.276 | 0.528 |
Education | ||||||
High school or less | 113.19 (107.55–118.84) | 111.95 (108.27–115.63) | 115.28 (110.20–120.36) | 105.25 (101.44–109.07) | 0.183 | 0.078 |
Some college or more | 100.61 (94.93–106.28) | 102.61 (98.35–106.88) | 106.28 (101.15–111.41) | 100.30 (93.02–107.57) | 0.156 | 0.175 |
Ratio of family income to poverty | ||||||
<1.0 | 91.58 (79.10–104.05) | 100.95 (94.03–107.88) | 108.92 (103.37–114.48) | 93.93 (82.85–105.01) | 0.019 * | 0.020 * |
≥1.0 | 105.08 (99.66–110.51) | 104.41 (100.86–107.95) | 108.23 (103.52–112.94) | 100.69 (94.44–106.95) | 0.247 | 0.195 |
Adjusted Coefficient β (95%CI, p for Trend) | ||||||
---|---|---|---|---|---|---|
VAT % @ | VSR & | VAA (cm2) & | ||||
Linear (β1) | Quadratic (β2) | Linear (β1) | Quadratic (β2) | Linear (β1) | Quadratic (β2) | |
Sex | ||||||
Male | 0.050 (0.008–0.092, 0.021 *) | −0.011 (−0.019–−0.002, 0.019 *) | 0.039 (0.012–0.066, 0.005 *) | −0.008 (−0.014–−0.002, 0.008 *) | 8.087 (0.443–15.732, 0.038 *) | −1.789 (−3.338–−0.241, 0.024 *) |
Female | 0.043 (−0.021–0.107, 0.186) | −0.010 (−0.022–0.003, 0.119) | 0.017 (−0.006–0.039, 0.15) | −0.004 (−0.008–0.001, 0.106) | 9.567 (0.856–18.278, 0.032 *) | −1.882 (−3.547–−0.216, 0.027 *) |
p for different time trends between male and female (sex-cycle interactions #) | 0.87 | 0.932 | 0.55 | 0.595 | 0.8 | 0.973 |
Age | ||||||
18–39 years | 0.038 (−0.009–0.085, 0.113) | −0.008 (−0.017–0.001, 0.093) | 0.020 (−0.007–0.048, 0.148) | −0.004 (−0.010–0.001, 0.11) | 4.196 (−2.676–11.068, 0.227) | −0.798 (−2.171–0.576, 0.25) |
40–59 years | 0.056 (0.003–0.110, 0.04 *) | −0.013 (−0.024–−0.002, 0.022 *) | 0.038 (0.011–0.065, 0.007 *) | −0.008 (−0.014–−0.002, 0.01 *) | 14.540 (6.359–22.722, <0.001 *) | −3.081 (−4.785–−1.376, <0.001 *) |
p for different time trends between age classification (age classification-cycle interactions #) | 0.544 | 0.391 | 0.272 | 0.295 | 0.041* | 0.031* |
Race/ethnicity | ||||||
White | 0.034 (−0.023–0.091, 0.237) | −0.009 (−0.020–0.003, 0.14) | 0.021 (−0.009–0.051, 0.165) | −0.004 (−0.010–0.002, 0.154) | 6.253 (−2.727–15.233, 0.169) | −1.326 (−3.091–0.439, 0.138) |
Black | −0.000 (−0.057–0.057, 0.989) | −0.000 (−0.012–0.011, 0.944) | −0.003 (−0.035–0.029, 0.841) | −0.000 (−0.007–0.006, 0.975) | −0.557 (−9.175–8.061, 0.898) | 0.071 (−1.657–1.798, 0.935) |
Hispanic | 0.122 (0.060–0.184, <0.001 *) | −0.024 (−0.037–−0.012, <0.001 *) | 0.058 (0.025–0.091, <0.001 *) | −0.012 (−0.019–−0.006, <0.001 *) | 22.438 (14.007–30.868, <0.001 *) | −4.505 (−6.242–−2.769, <0.001 *) |
Other | 0.072 (0.003–0.142, 0.042 *) | −0.012 (−0.026–−0.002, 0.099) | 0.051 (0.015–0.088, 0.007 *) | −0.010 (−0.018–−0.002, 0.016 *) | 10.858 (−1.101–22.816, 0.074) | −2.105 (−4.543–0.333, 0.089) |
p for different time trends between race classification (race-cycle interactions #) | 0.030 * | 0.043 * | 0.003 * | 0.004 * | 0.005 * | 0.007 * |
Education | ||||||
High school or less | 0.064 (0.020–0.108, 0.005 *) | −0.014 (−0.023–−0.005, 0.002 *) | 0.034 (0.006–0.062, 0.018 *) | −0.006 (−0.012–−0.000, 0.034 *) | 10.929 (2.781–19.077, 0.009 *) | −2.279 (−3.855–−0.703, 0.005 *) |
Some college or more | 0.038 (−0.015–0.091, 0.158) | −0.008 (−0.019–0.002, 0.113) | 0.024 (−0.001–0.050, 0.059) | −0.006 (−0.011–−0.001, 0.031 *) | 7.864 (0.865–14.863, 0.028 *) | −1.616 (−3.006–−0.227, 0.023 *) |
p for different time trends between education groups (education-cycle interactions #) | 0.247 | 0.222 | 0.659 | 0.97 | 0.519 | 0.461 |
Ratio of family income to poverty (INFMPIR) | ||||||
<1.0 | 0.104 (0.031–0.177, 0.006 *) | −0.020 (−0.034–−0.006, 0.006 *) | 0.042 (0.007–0.077, 0.018 *) | −0.008 (−0.014–−0.001, 0.028 *) | 13.343 (4.400–22.286, 0.004 *) | −2.470 (−4.200–−0.740, 0.006 *) |
≥1.0 | 0.033 (−0.012–0.078, 0.148) | −0.008 (−0.017–0.001, 0.082) | 0.025 (0.002–0.048, 0.036 *) | −0.005 (−0.010–−0.001, 0.026 *) | 7.760 (1.031–14.490, 0.025 *) | −1.678 (−2.974–−0.382, 0.012 *) |
p for different time trends between INFMPIR groups (INFMPIR-cycle interactions #) | 0.047 * | 0.08 | 0.46 | 0.707 | 0.268 | 0.409 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Earp, J.E.; Blissmer, B.J.; Lofgren, I.E.; Delmonico, M.J.; Greene, G.W. The Demographic Specific Abdominal Fat Composition and Distribution Trends in US Adults from 2011 to 2018. Int. J. Environ. Res. Public Health 2022, 19, 12103. https://doi.org/10.3390/ijerph191912103
Xu F, Earp JE, Blissmer BJ, Lofgren IE, Delmonico MJ, Greene GW. The Demographic Specific Abdominal Fat Composition and Distribution Trends in US Adults from 2011 to 2018. International Journal of Environmental Research and Public Health. 2022; 19(19):12103. https://doi.org/10.3390/ijerph191912103
Chicago/Turabian StyleXu, Furong, Jacob E. Earp, Bryan J. Blissmer, Ingrid E. Lofgren, Matthew J. Delmonico, and Geoffrey W. Greene. 2022. "The Demographic Specific Abdominal Fat Composition and Distribution Trends in US Adults from 2011 to 2018" International Journal of Environmental Research and Public Health 19, no. 19: 12103. https://doi.org/10.3390/ijerph191912103
APA StyleXu, F., Earp, J. E., Blissmer, B. J., Lofgren, I. E., Delmonico, M. J., & Greene, G. W. (2022). The Demographic Specific Abdominal Fat Composition and Distribution Trends in US Adults from 2011 to 2018. International Journal of Environmental Research and Public Health, 19(19), 12103. https://doi.org/10.3390/ijerph191912103