Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review
Abstract
:1. Introduction
2. Pathological Molecular Mechanisms
2.1. Solar Elastosis, Photoaging, Extracellular Matrix Abnormalities
2.2. Abnormal Activation of Melanocytes and Excessive Melanogenesis
2.3. Increased Number of Mast Cell
2.4. Increased Vascularization
2.5. Basement Membrane Damage
2.6. Genetic Component
3. Management
3.1. Pharmacological Treatment
Name of the Substance | Method of Application | Pathogenetic Mechanism | Side Effects | Reference |
---|---|---|---|---|
4-n-butylresorcinol (Rucinol) | Topical | Tyrosinase inhibitor Inhibitor TRP-1 | Not reported | Mohan et al. [102] Kwon et al. [103] Sarkar et al. [87] Huh et al. [104] Khemis et al. [105] |
Arbutin | Topical | Tyrosinase inhibitor Inhibitor DHICA Inhibition of melanosome maturation | Not reported | Sarkar et al. [89] Morag et al. [106] |
Ascorbic acid | Topical Oral | Decreasing the dopaquinone and DHICA oxidation Antioxidant Tyrosinase inhibitor via copper ions Photoprotective effect | Skin irritation | Espinal-Perez et al. [107] Huh et al. [108] |
Azelaic acid | Topical | Tyrosinase inhibitor Melanocyte inhibitor | Skin irritation | Baliña and Graupe [109] Farshi [110] Mazurek and Pierzchała [111] Verallo-Rowell et al. [112] |
Calcineurin inhibitors | Topical | Induction of mast cell apoptosis Anti-inflammatory effect | Burning sensation | Kirsch et al. [113] |
Cysteamine | Topical | Tyrosinase inhibitor Peroxidase inhibitor Iron and copper chelator Increase in intracellular glutathione | Skin irritation Unpleasant odor | Mansouri et al. [114] |
Dioic acid | Topical | Intranuclear PPAR receptor agonist Reduction in melanosome transfer | Skin irritation | Tirado-Sánchez et al. [115] |
Flutamide and other anti-hormonal substances (estrogen antagonists) | Topical | Anti-hormonal effect (anti-androgenic, anti-estrogenic) Reduction in the concentration of α-MSH and cAMP | Not reported | Adalatkhah et al. [116] Cohen [117] |
Glycolic acid | Topical | Tyrosinase inhibitor Increase keratinocyte turnover | Skin irritation | Sarkar et al. [118] Sahu and Dayal [119] Chaudhary and Dayal [120] Lim [121] Khunger et al. [122] Borelli and Fischer [123] Hurley et al. [124] Ilknur et al. [125] Kumari and Thappa [126] Faghihi et al. [127] Erbil et al. [128] Dayal et al. [129] |
Hydroquinone | Topical | Tyrosinase inhibitor Peroxidase inhibitor Melanocyte inhibitor Destruction of melanocyte cell membranes | Skin irritation Nail discoloration Colloid milia Transient skin discoloration Exogenous ochronosis | Tse [59] Ennes et al. [130] Sanchez et al. [33] Baliña and Graupe [109] Verallo-Rowell et al. [112] Farshi [110] Guevara and Pandya [131] |
Kojic acid | Topical | Tyrosinase inhibitor | Skin irritation | Monteiro et al. [132] Deo et al. [133] |
Linoleic, α-linolenic and oleic acid | Topical | Photoprotective effect Increase keratinocyte turnover | Not reported | Ando et al. [134] |
Metformin | Topical | Inhibition of cAMP accumulation, CREB phosphorylation and MITF accumulation | Not reported | Lehraiki et al. [98] |
Methimazole | Topical | Peroxidase inhibitor Melanocyte inhibitor | Systemic absorption was not observed | Kasraee et al. [135] Gheisari et al. [136] |
Niacinamide | Topical | Melanosome transfer inhibition Melanocyte inhibitor Reduction in solar elastosis Anti-inflammatory effect Anti-aging effect (stimulation of ceramide production) PAR-2 inhibitor | Skin irritation | Navarrete-Solis et al. [137] |
Photobiomodulation | Topical | Melanocyte inhibitor (by tyrosinase, TRP-1, MITF) Modulation of p53 expression | Not observed | Barolet [138] |
Proton pump inhibitors | Topical | Blocking ATP4A and ATP7A Increased degradation of tyrosinase | Not reported | Matsui et al. [99] |
Pycnogenol | Topical Oral | Antioxidant Anti-inflammatory effect | Not reported | Sarkar et al. [89] Lima et al. [139] |
Retinoids | Topical | Inhibition of UVB-stimulated keratinocytes Inhibition of tyrosinase transcription Reduction in melanosome transfer Increase keratinocyte turnover | Skin irritation | Griffiths et al. [72] Kang et al. [140] Shroot et al. [73] Leenutaphong et al. [74] Khunger et al. [122] Ghersetich et al. [141] Kimbrough-Green et al. [142] Truchuelo et al. [143] Dogra et el. [144] |
siRNA | Topical | Tyrosinase inhibitor MITF Inhibitor | Not reported | Yi et al. [97] |
Steroids | Topical Intradermal | Inhibition of recruitment and maturation of mast cells Anti-inflammatory effect | Skin atrophy Telangiectasia Steroid acne | Kanwar et al. [145] Nassar et al. [146] Eshghi et al. [147] |
Silymarin | Topical | Antioxidant Anti-inflammatory effect | Not reported | Nofal et al. [148] Altaei [149] |
Thiamidol | Topical | Tyrosinase inhibitor | Not reported | Arrowitz et al. [85] Roggenkamp et al. [86] Lima et al. [84] Philipp-Dormston et al. [150] |
Tranexamic acid | Oral Topical Intradermal | Tyrosinase inhibitor and melanocytes inhibitor Mast cell downregulation Plasmin inhibitor (reducing the amount of arachidonic acid and α-MSH) Reduction in solar elastosis Lowering VEGF and endothelin 1 | Oligomenorrhea Gastrointestinal disorders Skin irritation Headache Thromboembolic complications | Ebrahim et al. [151] Bala et al. [76] Janney et al. [152] Wu et al. [80] Atefi et al. [153] Lueangarun et al. [154] Banihashemi et al. [155] Laothaworn and Juntongjin [156] Xu et al. [157] Saki et al. [158] Tehranchinia et al. [159] Steiner et al. [160] Budamakuntla et al. [161] Sharma et al. [162] |
Trichloroacetic acid | Topical | Increase keratinocyte turnover | Skin irritation | Soliman et al. [163] Abdel-Majid et al. [164] Sahu and Dayal [119] Abdel-Meguid et al. [165] Murtaza et al. [166] |
Triple combination cream | Topical | Tyrosinase inhibitor Peroxidase and melanocyte inhibitor Destruction of melanocyte cell membranes Inhibition of UVB-stimulated keratinocytes Inhibition of tyrosinase transcription Reduction in melanosome transfer Increase keratinocyte turnover Inhibition of recruitment and maturation of mast cells Anti-inflammatory effect | Skin irritation Burning Dryness Pruritus | Taylor et al. [62] Torok et al. [167] Ferreira et al. [60] Chan et al. [64] Gong et al. [63] Arellano et al. [168] Grimes et al. [169] |
3.2. Chemical Peels
3.3. Laser Therapy
3.4. Mesotherapy
3.5. Prevention
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newcomer, V.D.; Lindberg, M.C.; Sternberg, T.H. A Melanosis of the Face (“Chloasma”). Arch. Dermatol. 1961, 83, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Rajanala, S.; Maymone, M.B.D.C.; Vashi, N.A. Melasma pathogenesis: A review of the latest research, pathological findings, and investigational therapies. Dermatol. Online J. 2019, 25. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Hwang, Y.-J.; Lee, S.-K.; Park, K.-C. Heterogeneous Pathology of Melasma and Its Clinical Implications. Int. J. Mol. Sci. 2016, 17, 824. [Google Scholar] [CrossRef]
- Kwon, S.H.; Na, J.I.; Choi, J.; Park, K. Melasma: Updates and perspectives. Exp. Dermatol. 2019, 28, 704–708. [Google Scholar] [CrossRef]
- Pathak, M.A.; Riley, F.C.; Fitzpatrick, T.B. Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. J. Investig. Dermatol. 1962, 39, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Grimes, P.E. Melasma. Etiologic and therapeutic considerations. Arch. Dermatol. 1995, 131, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Ailawadi, P.; Garg, S. Melasma in Men: A Review of Clinical, Etiological, and Management Issues. J. Clin. Aesthetic Dermatol. 2018, 11, 53–59. [Google Scholar]
- Hexsel, D.; Lacerda, D.A.; Cavalcante, A.S.; Filho, C.A.S.M.; Kalil, C.L.P.V.; Ayres, E.L.; Azulay-Abulafia, L.; Weber, M.B.; Serra, M.S.; Lopes, N.F.P.; et al. Epidemiology of melasma in Brazilian patients: A multicenter study. Int. J. Dermatol. 2014, 53, 440–444. [Google Scholar] [CrossRef]
- Ogbechie-Godec, O.A.; Elbuluk, N. Melasma: An Up-to-Date Comprehensive Review. Dermatol. Ther. 2017, 7, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Dlova, N.C.; Naidoo, L. Melasma and Comorbidities. In Melasma and Vitiligo in Brown Skin; Handog, E.B., Enriquez-Macarayo, M.J., Eds.; Springer: New Delhi, India, 2017; pp. 81–83. [Google Scholar]
- Deshpande, S.S.; Khatu, S.S.; Pardeshi, G.S.; Gokhale, N.R. Cross-sectional study of psychiatric morbidity in patients with melasma. Indian J. Psychiatry 2018, 60, 324–328. [Google Scholar] [CrossRef]
- Handel, A.C.; Miot, L.D.B.; Miot, H.A. Melasma: A clinical and epidemiological review. An. Bras. de Dermatol. 2014, 89, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Pawaskar, M.D.; Parikh, P.; Markowski, T.; Mcmichael, A.J.; Feldman, S.R.; Balkrishnan, R. Melasma and its impact on health-related quality of life in Hispanic women. J. Dermatol. Treat. 2007, 18, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Dabas, G.; Vinay, K.; Parsad, D.; Kumar, A.; Kumaran, M. Psychological disturbances in patients with pigmentary disorders: A cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 392–399. [Google Scholar] [CrossRef]
- Kagha, K.; Fabi, S.; Goldman, M.P. Melasma’s Impact on Quality of Life. J. Drugs Dermatol. 2020, 19, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Ikino, J.K.; Nunes, D.H.; Da Silva, V.P.M.; Fröde, T.S.; Sens, M.M. Melasma and assessment of the quality of life in Brazilian women. An. Bras. Dermatol. 2015, 90, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Harumi, O.; Goh, C.L. The Effect of Melasma on the Quality of Life in a Sample of Women Living in Singapore. J. Clin. Aesthetic Dermatol. 2016, 9, 21–24. [Google Scholar]
- Pollo, C.F.; Miot, L.D.B.; Meneguin, S.; Miot, H.A. Development and validation of a multidimensional questionnaire for evaluating quality of life in melasma (HRQ-melasma). An. Bras. Dermatol. 2018, 93, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Lieu, T.J.; Pandya, A.G. Melasma Quality of Life Measures. Dermatol. Clin. 2012, 30, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Balkrishnan, R.; McMichael, A.; Camacho, F.; Saltzberg, F.; Housman, T.; Grummer, S.; Feldman, S.; Chren, M.-M. Development and validation of a health-related quality of life instrument for women with melasma. Br. J. Dermatol. 2003, 149, 572–577. [Google Scholar] [CrossRef]
- Lee, A.-Y. Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 2015, 28, 648–660. [Google Scholar] [CrossRef]
- Kang, H.Y.; Suzuki, I.; Lee, D.J.; Ha, J.; Reiniche, P.; Aubert, J.; Deret, S.; Zugaj, D.; Voegel, J.J.; Ortonne, J.P. Transcriptional profiling shows altered expression of Wnt Pathway– and lipid Metabolism–Related genes as well as melanogenesis-related genes in melasma. J. Investig. Dermatol. 2011, 131, 1692–1700. [Google Scholar] [CrossRef]
- Burgdorf, W.H.C.; Plewig, G.; Wolff, H.H.; Gliński, W.; Czarnecka-Operacz, M.; Krasowska, D.; Serwin, A.; Wolska, H. (Eds.) Dermatologia Braun-Falco, Volume II, 3rd ed.; Czelej: Lublin, Poland, 2017. [Google Scholar]
- Kang, W.; Yoon, K.; Lee, E.-S.; Kim, J.; Lee, K.; Yim, H.; Sohn, S.; Im, S. Melasma: Histopathological characteristics in 56 Korean patients. Br. J. Dermatol. 2002, 146, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Barrera, R.; Torres-Alvarez, B.; Castanedo-Cazares, J.P.; Oros-Ovalle, C.; Moncada, B. Solar elastosis and presence of mast cells as key features in the pathogenesis of melasma. Clin. Exp. Dermatol. 2008, 33, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Torres-Álvarez, B.; Mesa-Garza, I.G.; Castanedo-Cázares, J.P.; Fuentes-Ahumada, C.; Oros-Ovalle, C.; Navarrete-Solis, J.; Moncada, B. Histochemical and Immunohistochemical Study in Melasma: Evidence of Damage in the Basal Membrane. Am. J. Dermatopathol. 2011, 33, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Burgdorf, W.H.C.; Plewig, G.; Wolff, H.H.; Gliński, W.; Czarnecka-Operacz, M.; Krasowska, D.; Serwin, A.; Wolska, H. (Eds.) Dermatologia Braun-Falco, Volume III, 3rd ed.; Czelej: Lublin, Poland, 2017. [Google Scholar]
- Luger, T.A.; Schwarz, T. Evidence for an Epidermal Cytokine Network. J. Investig. Dermatol. 1990, 95, S100–S104. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y.; Iwamoto, M.; Masuda, T.; Tagami, H. Stimulatory effect of prostaglandin e2 on the configuration of normal human melanocytes in vitro. J. Investig. Dermatol. 1987, 89, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Miyagishi, M.; Yada, Y. Endothelin-1 as a new melanogen: Coordinated expression of its gene and the tyrosinase gene in UVB-Exposed human epidermis. J. Investig. Dermatol. 1995, 105, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Smit, N.; Le Poole, I.; Wijngaard, R.V.D.; Tigges, A.; Westerhof, W.; Das, P. Expression of different immunological markers by cultured human melanocytes, Archives of Dermatological Research. Arch. Dermatol. Res. 1993, 285, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Schauer, E.; Trautinger, F.; Kock, A.; Schwarz, A.; Bhardwaj, R.; Simon, M.; Ansel, J.C.; Schwarz, T.; Luger, T.A. Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J. Clin. Investig. 1994, 93, 2258–2262. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.P.; Pathak, M.A.; Sato, S.; Fitzpatrick, T.B.; Sanchez, J.L.; Mihm, M.C. Melasma: A clinical, light microscopic, ultrastructural, and immunofluorescence study. J. Am. Acad. Dermatol. 1981, 4, 698–710. [Google Scholar] [CrossRef]
- Grimes, P.E.; Yamada, N.; Bhawan, J. Light microscopic, immunohistochemical, and ultrastructural alterations in patients with melasma. Am. J. Dermatopathol. 2005, 27, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Rzepka, Z.; Buszman, E.; Beberok, A.; Wrześniok, D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Hig. I Med. Dosw. (Online) 2016, 70, 695–708. [Google Scholar] [CrossRef]
- Bolognia, J.; Murray, M.; Pawelek, J. UVB-Induced melanogenesis may be mediated through the MSH-Receptor system. J. Investig. Dermatol. 1989, 92, 651–656. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.M.; Kwon, S.; Park, T.J.; Kang, H.Y. Senescent fibroblasts in melasma pathophysiology. Exp. Dermatol. 2019, 28, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Briganti, S.; Flori, E.; Mastrofrancesco, A.; Kovacs, D.; Camera, E.; Ludovici, M.; Cardinali, G.; Picardo, M. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: Possible implication of PPARγ. Exp. Dermatol. 2013, 22, 41–47. [Google Scholar] [CrossRef]
- Kim, J.Y.; Shin, J.Y.; Kim, M.R.; Hann, S.-K.; Oh, S.H. siRNA-mediated knock-down of COX-2 in melanocytes suppresses melanogenesis. Exp. Dermatol. 2012, 21, 420–425. [Google Scholar] [CrossRef]
- Flori, E.; Mastrofrancesco, A.; Mosca, S.; Ottaviani, M.; Briganti, S.; Cardinali, G.; Filoni, A.; Cameli, N.; Zaccarini, M.; Zouboulis, C.C.; et al. Sebocytes contribute to melasma onset. iScience 2022, 25, 103871. [Google Scholar] [CrossRef]
- Abdel-Naser, M.B.; Seltmann, H.; Zouboulis, C.C. SZ95 sebocytes induce epidermal melanocyte dendricity and proliferation in vitro. Exp. Dermatol. 2012, 21, 393–395. [Google Scholar] [CrossRef]
- Artzi, O.; Horovitz, T.; Bar-Ilan, E.; Shehadeh, W.; Koren, A.; Zusmanovitch, L.; Mehrabi, J.N.; Salameh, F.; Nelkenbaum, G.I.; Zur, E.; et al. The pathogenesis of melasma and implications for treatment. J. Cosmet. Dermatol. 2021, 20, 3432–3445. [Google Scholar] [CrossRef]
- Videira, I.F.D.S.; Moura, D.F.L.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. De Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef]
- Grimbaldeston, M.; Simpson, A.; Finlay-Jones, J.; Hart, P. The effect of ultraviolet radiation exposure on the prevalence of mast cells in human skin. Br. J. Dermatol. 2003, 148, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Iddamalgoda, A.; Le, Q.T.; Ito, K.; Tanaka, K.; Kojima, H.; Kido, H. Mast cell tryptase and photoaging: Possible involvement in the degradation of extra cellular matrix and basement membrane proteins. Arch. Dermatol. Res. 2008, 300, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Nico, B.; Ribatti, D. Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Lett. 2008, 269, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, L.G.; Toro, A.; Zhao, H.; Brown, K.; Tebbutt, S.J.; Granville, D.J. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 2015, 14, 67–77. [Google Scholar] [CrossRef]
- Yoshida, M.; Takahashi, Y.; Inoue, S. Histamine induces melanogenesis and morphologic changes by protein kinase a activation via H2 receptors in human normal melanocytes. J. Investig. Dermatol. 2000, 114, 334–342. [Google Scholar] [CrossRef]
- Malaviya, R.; Morrison, A.R.; Pentland, A.P. Histamine in Human Epidermal Cells is Induced by Ultraviolet Light Injury. J. Investig. Dermatol. 1996, 106, 785–789. [Google Scholar] [CrossRef]
- Kim, E.H.; Kim, Y.C.; Lee, E.-S.; Kang, H.Y. The vascular characteristics of melasma. J. Dermatol. Sci. 2007, 46, 111–116. [Google Scholar] [CrossRef]
- Regazzetti, C.; De Donatis, G.M.; Ghorbel, H.H.; Cardot-Leccia, N.; Ambrosetti, D.; Bahadoran, P.; Chignon-Sicard, B.; Lacour, J.-P.; Ballotti, R.; Mahns, A.; et al. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation. J. Investig. Dermatol. 2015, 135, 3096–3104. [Google Scholar] [CrossRef]
- Hughes, B.R. Melasma occurring in twin sisters. J. Am. Acad. Dermatol. 1987, 17, 841. [Google Scholar] [CrossRef]
- Ortonne, J.P.; Arellano, I.; Berneburg, M.; Cestari, T.; Chan, H.H.L.; Grimes, P.; Hexsel, D.; Im, S.; Lim, J.; Lui, H.; et al. A global survey of the role of ultraviolet radiation and hormonal influences in the development of melasma. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1254–1262. [Google Scholar] [CrossRef]
- Tamega, A.; Miot, L.; Bonfietti, C.; Gige, T.; Marques, M.; Miot, H. Clinical patterns and epidemiological characteristics of facial melasma in Brazilian women. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-H.; Lee, C.-H.; Lee, A.-Y. H19 RNA downregulation stimulated melanogenesis in melasma. Pigment. Cell Melanoma Res. 2010, 23, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, efficacy, and controversies. J. Am. Acad. Dermatol. 2013, 69, 867.e1–867.e14. [Google Scholar] [CrossRef]
- Czarnecka, A.; Odziomek, A.; Murzyn, M.; Dubis, J.; Bagłaj-Oleszczuk, M.; Anita, H.-G. Wharton’s jelly-derived mesenchymal stem cells in the treatment of four patients with alopecia areata. Adv. Clin. Exp. Med. 2021, 30, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Atef, A.; El-Rashidy, M.A.; Azeem, A.A.; Kabel, A.M. The Role of Stem Cell Factor in Hyperpigmented Skin Lesions. Asian Pac. J. Cancer Prev. 2019, 20, 3723–3728. [Google Scholar] [CrossRef] [PubMed]
- Tse, T.W. Hydroquinone for skin lightening: Safety profile, duration of use and when should we stop? J. Dermatol. Treat. 2010, 21, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Cestari, T.F.; Hassun, K.; Sittart, A.; Viegas, M.D.L. A comparison of triple combination cream and hydroquinone 4% cream for the treatment of moderate to severe facial melasma. J. Cosmet. Dermatol. 2007, 6, 36–39. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gover, M.D.; Nouri, K.; Taylor, S. The treatment of melasma: A review of clinical trials. J. Am. Acad. Dermatol. 2006, 55, 1048–1065. [Google Scholar] [CrossRef]
- Taylor, S.C.; Torok, H.; Jones, T.; Lowe, N.; Rich, P.; Tschen, E.; Menter, A.; Baumann, L.; Wieder, J.J.; Jarratt, M.M.; et al. Efficacy and safety of a new triple-combination agent for the treatment of facial melasma. Cutis 2003, 72, 67–73. [Google Scholar]
- Gong, Z.; Lai, W.; Zhao, G.; Wang, X.; Zheng, M.; Li, L.; Yang, Q.; Dang, Y.; Liu, L.; Zou, Y. Efficacy and safety of fluocinolone acetonide, hydroquinone, and tretinoin cream in Chinese patients with melasma: A randomized, double-blind, placebo-controlled, multicenter, parallel-group study. Clin. Drug Investig. 2015, 35, 385–395. [Google Scholar] [CrossRef]
- Chan, R.; Park, K.; Lee, M.; Lee, E.-S.; Chang, S.; Leow, Y.; Tay, Y.-K.; Legarda-Montinola, F.; Tsai, R.-Y.; Tsai, T.-H.; et al. A randomized controlled trial of the efficacy and safety of a fixed triple combination (fluocinolone acetonide 001, hydroquinone 4, tretinoin 005) compared with hydroquinone 4 cream in Asian patients with moderate to severe melasma. Br. J. Dermatol. 2008, 159, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Westerhof, W.; Kooyers, T.J. Hydroquinone and its analogues in dermatology-A potential health risk. J. Cosmet. Dermatol. 2005, 4, 55–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, R.; Bansal, A.; Ailawadi, P. Future therapies in melasma: What lies ahead? Indian J. Dermatol. Venereol. Leprol. 2020, 86, 8–17. [Google Scholar] [CrossRef]
- Austin, E.; Nguyen, J.; Jagdeo, J. Topical Treatments for Melasma: A Systematic Review of Randomized Controlled Trials. J. Drugs Dermatol. JDD 2019, 18, S1545961619P1156X. [Google Scholar] [PubMed]
- McKesey, J.; Tovar-Garza, A.; Pandya, A.G. Melasma Treatment: An Evidence-Based Review. Am. J. Clin. Dermatol. 2020, 21, 173–225. [Google Scholar] [CrossRef] [PubMed]
- Ortonne, J.-P. Retinoid therapy of pigmentary disorders. Dermatol. Ther. 2006, 19, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Aberdam, E.; Larnier, C.; Ortonne, J. Retinoic acid as modulator of UVB-induced melanocyte differentiation. Involvement of the melanogenic enzymes expression. J. Cell Sci. 1994, 107, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.; Finkel, L.J.; Ditre, C.M.; Hamilton, T.A.; Ellis, C.; Voorhees, J. Topical tretinoin (retinoic acid) improves melasma. A vehicle-controlled, clinical trial. Br. J. Dermatol. 1993, 129, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Shroot, B. Pharmacodynamics and pharmacokinetics of topical adapalene. J. Am. Acad. Dermatol. 1998, 39, S17–S24. [Google Scholar] [CrossRef]
- Leenutaphong, V.; Nettakul, A.; Rattanasuwon, P. Topical isotretinoin for melasma in Thai patients: A vehicle-controlled clinical trial. J. Med. Assoc. Thail. 1999, 82, 868–875. [Google Scholar]
- Kim, H.; Moon, S.; Cho, S.; Lee, J. Efficacy and Safety of Tranexamic Acid in Melasma: A Meta-analysis and Systematic Review. Acta Derm. Venereol. 2017, 97, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Bala, H.R.; Lee, S.; Wong, C.; Pandya, A.; Rodrigues, M. Oral Tranexamic Acid for the Treatment of Melasma: A Review. Dermatol. Surg. 2018, 44, 814–825. [Google Scholar] [CrossRef]
- Karn, D.; Kc, S.; Amatya, A.; Razouria, E.A.; Timalsina, M. Oral tranexamic acid for the treatment of melasma. Kathmandu Univ. Med. J. 2012, 10, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Tomita, Y. Mechanism of the Inhibitory Effect of Tranexamic Acid on Melanogenesis in Cultured Human Melanocytes in the Presence of Keratinocyte-conditioned Medium. J. Health Sci. 2007, 53, 389–396. [Google Scholar] [CrossRef]
- Sahu, P.J.; Singh, A.L.; Kulkarni, S.; Madke, B.; Saoji, V.; Jawade, S. Study of oral tranexamic acid, topical tranexamic acid, and modified Kligman’s regimen in treatment of melasma. J. Cosmet. Dermatol. 2020, 19, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Shi, H.; Wu, H.; Yan, S.; Guo, J.; Sun, Y.; Pan, L. Treatment of melasma with oral administration of tranexamic acid. Aesthetic Plast. Surg. 2012, 36, 964–970. [Google Scholar] [CrossRef]
- Tan, A.W.M.; Sen, P.; Chua, S.H.; Goh, B.K. Oral tranexamic acid lightens refractory melasma. Australas. J. Dermatol. 2017, 58, e105–e108. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Thng, T.G.S.; Goh, C.L. Oral tranexamic acid (TA) in the treatment of melasma: A retrospective analysis. J. Am. Acad. Dermatol. 2016, 75, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Vachiramon, V.; Kositkuljorn, C.; Leerunyakul, K.; Chanprapaph, K. Isobutylamido thiazolyl resorcinol for prevention of UVB-induced hyperpigmentation. J. Cosmet. Dermatol. 2021, 20, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.; Dias, J.; Cassiano, D.; Esposito, A.; Miot, L.; Bagatin, E.; Miot, H. Efficacy and safety of topical isobutylamido thiazolyl resorcinol (Thiamidol) vs. 4% hydroquinone cream for facial melasma: An evaluator-blinded, randomized controlled trial. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Arrowitz, C.; Schoelermann, A.M.; Mann, T.; Jiang, L.I.; Weber, T.; Kolbe, L. Effective Tyrosinase Inhibition by Thiamidol Results in Significant Improvement of Mild to Moderate Melasma. J. Investig. Dermatol. 2019, 139, 1691–1698.e6. [Google Scholar] [CrossRef] [PubMed]
- Roggenkamp, D.; Sammain, A.; Fürstenau, M.; Kausch, M.; Passeron, T.; Kolbe, L. Thiamidol ® in moderate-to-severe melasma: 24-week, randomized, double-blind, vehicle-controlled clinical study with subsequent regression phase. J. Dermatol. 2021, 48, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Garg, V.; Chugh, S. Newer and upcoming therapies for melasma. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, A.; Khoozani, Z.K.; Forooshani, S.Z.; Omrani, N.; Moini, A.M.; Eskandari, Y. Is Topical Zinc Effective in the Treatment of Melasma? A Double-Blind Randomized Comparative Study. Dermatol. Surg. 2014, 40, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Arora, P.; Garg, K.V. Cosmeceuticals for hyperpigmentation: What is available? J. Cutan. Aesthetic Surg. 2013, 6, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.-W.; Oh, D.-J.; Lee, D.; Kim, J.-W.; Park, S.-W. Clinical Efficacy of 25% l-Ascorbic Acid (C’ensil) in the Treatment of Melasma. J. Cutan. Med. Surg. 2009, 13, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sharquie, K.E.; Al-Mashhadani, S.A.; Salman, H.A. Topical 10% Zinc Sulfate Solution for Treatment of Melasma. Dermatol. Surg. 2008, 34, 1346–1349. [Google Scholar] [CrossRef]
- Song, M.; Mun, J.-H.; Ko, H.-C.; Kim, B.-S.; Kim, M.-B. Korean Red Ginseng Powder in the Treatment of Melasma: An Uncontrolled Observational Study. J. Ginseng Res. 2011, 35, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, T.; Bonté, F.; Archambault, J.C.; Cauchard, J.H.; Neveu, M.; Ozawa, K.; Noguchi, F.; Ikeda, A.; Nagamatsu, M.; Shinn, S. Whitening efficacy of plant extracts including orchid extracts on Japanese female skin with melasma and lentigo senilis. J. Dermatol. 2010, 37, 522–530. [Google Scholar] [CrossRef]
- Khosravan, S.; Alami, A.; Mohammadzadeh-Moghadam, H.; Ramezani, V. The Effect of Topical Use of Petroselinum Crispum (Parsley) Versus That of Hydroquinone Cream on Reduction of Epidermal Melasma: A Randomized Clinical Trial. Holist. Nurs. Pract. 2017, 31, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Mu, Y.; Gulati, O. Treatment of melasma with Pycnogenol®. Phytotherapy Res. 2002, 16, 567–571. [Google Scholar] [CrossRef]
- Babbush, K.M.; Babbush, R.A.; Khachemoune, A. Treatment of melasma: A review of less commonly used antioxidants. Int. J. Dermatol. 2021, 60, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zhao, G.; Zhang, H.; Guan, D.; Meng, R.; Zhang, Y.; Yang, Q.; Jia, H.; Dou, K.; Liu, C.; et al. MITF-siRNA Formulation Is a Safe and Effective Therapy for Human Melasma. Mol. Ther. 2011, 19, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Lehraiki, A.; Abbe, P.; Cerezo, M.; Rouaud, F.; Regazzetti, C.; Chignon-Sicard, B.; Passeron, T.; Bertolotto, C.; Ballotti, R.; Rocchi, S. Inhibition of Melanogenesis by the Antidiabetic Metformin. J. Investig. Dermatol. 2014, 134, 2589–2597. [Google Scholar] [CrossRef]
- Matsui, M.S.; Petris, M.J.; Niki, Y.; Karaman-Jurukovska, N.; Muizzuddin, N.; Ichihashi, M.; Yarosh, D.B. Omeprazole, a Gastric Proton Pump Inhibitor, Inhibits Melanogenesis by Blocking ATP7A Trafficking. J. Investig. Dermatol. 2015, 135, 834–841. [Google Scholar] [CrossRef]
- Sehgal, V.N.; Verma, P.; Srivastava, G.; Aggarwal, A.K.; Verma, S. Melasma: Treatment strategy. J. Cosmet. Laser Ther. 2011, 13, 265–279. [Google Scholar] [CrossRef]
- Arefiev, K.L.B.; Hantash, B.M. Advances in the Treatment of Melasma: A Review of the Recent Literature. Dermatol. Surg. 2012, 38, 971–984. [Google Scholar] [CrossRef]
- Shamanna, M.; Mohan, N.M.; Gowda, A.; Bc, S.K.; Shilpashree, P.; Gangaboraiah, B.; Jaiswal, A.K. Assessment of efficacy, safety, and tolerability of 4-n-butylresorcinol 0.3% cream: An Indian multicentric study on melasma. Clin. Cosmet. Investig. Dermatol. 2016, 9, 21–27. [Google Scholar] [CrossRef]
- Kwon, S.; Yang, J.H.; Shin, J.; Park, K.; Huh, C.; Na, J. Efficacy of liposome-encapsulated 4-n-butylresorcinol and resveratrol cream in the treatment of melasma. J. Cosmet. Dermatol. 2020, 19, 891–895. [Google Scholar] [CrossRef]
- Huh, S.Y.; Shin, J.-W.; NA, J.-I.; Huh, C.-H.; Youn, S.-W.; Park, K.-C. Efficacy and safety of liposome-encapsulated 4-n-butylresorcinol 0.1% cream for the treatment of melasma: A randomized controlled split-face trial. J. Dermatol. 2010, 37, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Khemis, A.; Kaiafa, A.; Queille-Roussel, C.; Duteil, L.; Ortonne, J. Evaluation of efficacy and safety of rucinol serum in patients with melasma: A randomized controlled trial. Br. J. Dermatol. 2007, 156, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Morag, M.; Nawrot, J.; Siatkowski, I.; Adamski, Z.; Fedorowicz, T.; Dawid-Pac, R.; Urbanska, M.; Nowak, G. A double-blind, placebo-controlled randomized trial of Serratulae quinquefoliae folium, a new source of β-arbutin, in selected skin hyperpigmentations. J. Cosmet. Dermatol. 2015, 14, 185–190. [Google Scholar] [CrossRef]
- Espinal-Perez, L.E.; Moncada, B.; Castanedo-Cazares, J.P. A double-blind randomized trial of 5% ascorbic acid vs. 4% hydroquinone in melasma. Int. J. Dermatol. 2004, 43, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Huh, C.-H.; Seo, K.-I.; Park, J.-Y.; Lim, J.-G.; Eun, H.-C.; Park, K.-C. A Randomized, Double-Blind, Placebo-Controlled Trial of Vitamin C Iontophoresis in Melasma. Dermatology 2003, 206, 316–320. [Google Scholar] [CrossRef]
- Baliña, L.M.; Graupe, K. The Treatment of Melasma 20% Azelaic Acid versus 4% Hydroquinone Cream. Int. J. Dermatol. 1991, 30, 893–895. [Google Scholar] [CrossRef]
- Farshi, S. Comparative study of therapeutic effects of 20% azelaic acid and hydroquinone 4% cream in the treatment of melasma. J. Cosmet. Dermatol. 2011, 10, 282–287. [Google Scholar] [CrossRef]
- Mazurek, K.; Pierzchała, E. Comparison of efficacy of products containing azelaic acid in melasma treatment. J. Cosmet. Dermatol. 2016, 15, 269–282. [Google Scholar] [CrossRef]
- Verallo-Rowell, V.M.; Verallo, V.; Graupe, K.; Lopez-Villafuerte, L.; Garcia-Lopez, M. Double-blind comparison of azelaic acid and hydroquinone in the treatment of melasma. Acta Derm.-Venereologica. Suppl. 1989, 143, 58–61. [Google Scholar]
- Kirsch, B.; Hoesly, P.M.; Jambusaria, A.; Heckman, M.G.; Diehl, N.N.; Sluzevich, J.C. Evaluating the Efficacy, Safety, and Tolerability of the Combination of Tazarotene, Azelaic Acid, Tacrolimus, and Zinc Oxide for the Treatment of Melasma: A Pilot Study. J. Clin. Aesthetic Dermatol. 2019, 12, 40–45. [Google Scholar]
- Mansouri, P.; Farshi, S.; Hashemi, Z.; Kasraee, B. Evaluation of the efficacy of cysteamine 5% cream in the treatment of epidermal melasma: A randomized double-blind placebo-controlled trial. Br. J. Dermatol. 2015, 173, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Sánchez, A.; Santamaría-Román, A.; Ponce-Olivera, R.M. Efficacy of dioic acid compared with hydroquinone in the treatment of melasma. Int. J. Dermatol. 2009, 48, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Bazargani, H.; Adalatkhah, H. The first clinical experience on efficacy of topical flutamide on melasma compared with topical hydroquinone: A randomized clinical trial. Drug Des. Dev. Ther. 2015, 9, 4219–4225. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.R. Melasma treatment: A novel approach using a topical agent that contains an anti-estrogen and a vascular endothelial growth factor inhibitor. Med. Hypotheses 2017, 101, 1–5. [Google Scholar] [CrossRef]
- Sarkar, R.; Garg, V.; Bansal, S.; Sethi, S.; Gupta, C. Comparative Evaluation of Efficacy and Tolerability of Glycolic Acid, Salicylic Mandelic Acid, and Phytic Acid Combination Peels in Melasma. Dermatol. Surg. 2016, 42, 384–391. [Google Scholar] [CrossRef]
- Sahu, P.; Dayal, S. Most worthwhile superficial chemical peel for melasma of skin of color: Authors’ experience of glycolic, trichloroacetic acid, and lactic peel. Dermatol. Ther. 2021, 34, e14693. [Google Scholar] [CrossRef]
- Chaudhary, S.; Dayal, S. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma. J. Drugs Dermatol. 2013, 12, 1149–1153. [Google Scholar]
- Lim, J.T.E.; Frcpi. Fams Treatment of Melasma Using Kojic Acid in a Gel Containing Hydroquinone and Glycolic Acid. Dermatol. Surg. 1999, 25, 282–284. [Google Scholar] [CrossRef]
- Khunger, N.; Sarkar, R.; Jain, R.K. Tretinoin Peels versus Glycolic Acid Peels in the Treatment of Melasma in Dark-Skinned Patients. Dermatol. Surg. 2004, 30, 756–760. [Google Scholar] [CrossRef]
- Borelli, C.; Fischer, S. Chemical Peelings zur Behandlung von Melasma, Pigmentstörungen und Hyperpigmentierungen. Der. Hautarzt 2020, 71, 950–959. [Google Scholar] [CrossRef]
- Hurley, M.E.; Guevara, I.L.; Gonzales, R.M.; Pandya, A.G. Efficacy of glycolic acid peels in the treatment of melasma. Arch. Dermatol. 2002, 138, 1578–1582. [Google Scholar] [CrossRef] [PubMed]
- Ilknur, T.; Biçak, M.; Demirtaşoğlu, M.; Özkan, Ş. Glycolic acid peels versus amino fruit acid peels in the treatment of melasma. Dermatol. Surg. 2010, 36, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Thappa, D.; Kumari, R. Comparative study of trichloroacetic acid versus glycolic acid chemical peels in the treatment of melasma. Indian J. Dermatol. Venereol. Leprol. 2010, 76, 447. [Google Scholar] [CrossRef]
- Faghihi, G.; Shahingohar, A.; Siadat, A.H. Comparison between 1% tretinoin peeling versus 70% glycolic acid peeling in the treatment of female patients with melasma. J. Drugs Dermatol. 2011, 10, 1439–1442. [Google Scholar]
- Erbil, H.; Sezer, E.; Taştan, B.; Arca, E.; Kurumlu, Z. Efficacy and safety of serial glycolic acid peels and a topical regimen in the treatment of recalcitrant melasma. J. Dermatol. 2007, 34, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Dayal, S.; Sahu, P.; Dua, R. Combination of glycolic acid peel and topical 20% azelaic acid cream in melasma patients: Efficacy and improvement in quality of life. J. Cosmet. Dermatol. 2017, 16, 35–42. [Google Scholar] [CrossRef]
- Ennes, S.; Paschoalick, R.; Alchorne, M.M.D.A. A double-blind, comparative, placebo-controlled study of the efficacy and tolerability of 4% hydroquinone as a depigmenting agent in melasma. J. Dermatol. Treat. 2000, 11, 173–179. [Google Scholar] [CrossRef]
- Guevara, I.L.; Pandya, A.G. Safety and efficacy of 4% hydroquinone combined with 10% glycolic acid, antioxidants, and sunscreen in the treatment of melasma. Int. J. Dermatol. 2003, 42, 966–972. [Google Scholar] [CrossRef]
- Monteiro, R.C.; Kishore, B.N.; Bhat, R.M.; Sukumar, D.; Martis, J.; Ganesh, H.K. A comparative study of the efficacy of 4% hydroquinone vs 0.75% Kojic acid cream in the treatment of facial melasma. Indian J. Dermatol. 2013, 58, 157. [Google Scholar] [CrossRef]
- Deo, K.S.; Dash, K.N.; Sharma, Y.K.; Virmani, N.C.; Oberai, C. Kojic acid vis-a-vis its combinations with hydroquinone and betamethasone valerate in melasma: A randomized, single blind, comparative study of efficacy and safety. Indian J. Dermatol. 2013, 58, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Ryu, A.; Hashimoto, A.; Oka, M.; Ichihashi, M. Linoleic acid and α-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch. Dermatol. Res. 1998, 290, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Kasraee, B.; Hügin, A.; Tran, C.; Sorg, O.; Saurat, J.-H. Methimazole Is an Inhibitor of Melanin Synthesis in Cultured B16 Melanocytes. J. Investig. Dermatol. 2004, 122, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Gheisari, M.; Dadkhahfar, S.; Olamaei, E.; Moghimi, H.R.; Niknejad, N.; Nobari, N.N. The efficacy and safety of topical 5% methimazole vs 4% hydroquinone in the treatment of melasma: A randomized controlled trial. J. Cosmet. Dermatol. 2020, 19, 167–172. [Google Scholar] [CrossRef]
- Navarrete-Solís, J.; Castanedo-Cázares, J.P.; Torres-Álvarez, B.; Oros-Ovalle, C.; Fuentes-Ahumada, C.; González, F.J.; Martínez-Ramírez, J.D.; Moncada, B. A Double-Blind, Randomized Clinical Trial of Niacinamide 4% versus Hydroquinone 4% in the Treatment of Melasma. Dermatol. Res. Pract. 2011, 2011, 379173. [Google Scholar] [CrossRef] [PubMed]
- Barolet, D. Dual Effect of Photobiomodulation on Melasma: Downregulation of Hyperpigmentation and Enhanced Solar Resistance-A Pilot Study. J. Clin. Aesthetic Dermatol. 2018, 11, 28–34. [Google Scholar]
- Lima, P.B.; Dias, J.A.F.; Esposito, A.C.C.; Miot, L.D.B.; Miot, H.A. French maritime pine bark extract (pycnogenol) in association with triple combination cream for the treatment of facial melasma in women: A double-blind, randomized, placebo-controlled trial. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 502–508. [Google Scholar] [CrossRef]
- Kang, H.Y.; Valerio, L.; Bahadoran, P.; Ortonne, J.-P. The Role of Topical Retinoids in the Treatment of Pigmentary Disorders. Am. J. Clin. Dermatol. 2009, 10, 251–260. [Google Scholar] [CrossRef]
- Ghersetich, I.; Troiano, M.; Brazzini, B.; Arunachalam, M.; Lotti, T. Melasma: Treatment with 10% tretinoin peeling mask. J. Cosmet. Dermatol. 2010, 9, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kimbrough-Green, C.K.; Griffiths, C.E.; Finkel, L.J.; Hamilton, T.A.; Bulengo-Ransby, S.M.; Ellis, C.N.; Voorhees, J.J. Topical retinoic acid (tretinoin) for melasma in black patients: A vehicle-controlled clinical trial. Arch. Dermatol. 1994, 130, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Truchuelo, M.T.; Jimenez, N.; Jaén, P. Assessment of the efficacy and tolerance of a new combination of retinoids and depigmenting agents in the treatment of melasma. J. Cosmet. Dermatol. 2014, 13, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Kanwar, A.J.; Parsad, D. Adapalene in the treatment of melasma: A preliminary report. J. Dermatol. 2002, 29, 539–540. [Google Scholar] [CrossRef]
- Kanwar, A.; Dhar, S.; Kaur, S. Treatment of Melasma with Potent Topical Corticosteroids. Dermatology 1994, 188, 170. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.A.E.; Ibrahim, A.M.; Mahmoud, A.A. Efficacy and safety of intralesional steroid injection in the treatment of melasma. J. Cosmet. Dermatol. 2021, 20, 862–867. [Google Scholar] [CrossRef]
- Eshghi, G.; Khezrian, L.; Ashari, F.E. Comparison between Intralesional Triamcinolone and Kligman’s Formula in Treatment of Melasma. Acta MEDICA Iran. 2016, 54, 67–71. [Google Scholar]
- Nofal, A.; Ibrahim, A.M.; Nofal, E.; Gamal, N.; Osman, S. Topical silymarin versus hydroquinone in the treatment of melasma: A comparative study. J. Cosmet. Dermatol. 2019, 18, 263–270. [Google Scholar] [CrossRef]
- Altaei, T. The treatment of melasma by silymarin cream. BMC Dermatol. 2012, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Philipp-Dormston, W.G.; Echagüe, A.V.; Damonte, S.H.P.; Riedel, J.; Filbry, A.; Warnke, K.; Lofrano, C.; Roggenkamp, D.; Nippel, G. Thiamidol containing treatment regimens in facial hyperpigmentation: An international multi-centre approach consisting of a double-blind, controlled, split-face study and of an open-label, real-world study. Int. J. Cosmet. Sci. 2020, 42, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, H.M.; Abdelshafy, A.S.; Khattab, F.; Gharib, K. Tranexamic Acid for Melasma Treatment: A Split-Face Study. Dermatol. Surg. 2020, 46, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Janney, M.S.; Subramaniyan, R.; Dabas, R.; Lal, S.; Das, N.M.; Godara, S.K. A Randomized Controlled Study Comparing the Efficacy of Topical 5% Tranexamic Acid Solution versus 3% Hydroquinone Cream in Melasma. J. Cutan. Aesthetic Surg. 2019, 12, 63–67. [Google Scholar] [CrossRef]
- Atefi, N.; Dalvand, B.; Ghassemi, M.; Mehran, G.; Heydarian, A. Therapeutic Effects of Topical Tranexamic Acid in Comparison with Hydroquinone in Treatment of Women with Melasma. Dermatol. Ther. 2017, 7, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Lueangarun, S.; Sirithanabadeekul, P.; Wongwicharn, P.; Namboonlue, C.; Pacharapakornpong, S.; Juntongjin, P.; Tempark, T. Intradermal Tranexamic Acid Injection for the Treatment of Melasma: A Pilot Study with 48-week Follow-up. J. Clin. Aesthetic Dermatol. 2020, 13, 36–39. [Google Scholar]
- Banihashemi, M.; Zabolinejad, N.; Jaafari, M.R.; Salehi, M.; Jabari, A. Comparison of therapeutic effects of liposomal Tranexamic Acid and conventional Hydroquinone on melasma. J. Cosmet. Dermatol. 2015, 14, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Laothaworn, V.; Juntongjin, P. Topical 3% tranexamic acid enhances the efficacy of 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser in the treatment of melasma. J. Cosmet. Laser Ther. 2018, 20, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ma, R.; Juliandri, J.; Wang, X.; Xu, B.; Wang, D.; Lu, Y.; Zhou, B.; Luo, D. Efficacy of functional microarray of microneedles combined with topical tranexamic acid for melasma: A randomized, self-controlled, split-face study, Medicine (Baltimore). Medicine 2017, 96, e6897. [Google Scholar] [CrossRef]
- Saki, N.; Darayesh, M.; Heiran, A. Comparing the efficacy of topical hydroquinone 2% versus intradermal tranexamic acid microinjections in treating melasma: A split-face controlled trial. J. Dermatol. Treat. 2017, 29, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Tehranchinia, Z.; Saghi, B.; Rahimi, H. Evaluation of Therapeutic Efficacy and Safety of Tranexamic Acid Local Infiltration in Combination with Topical 4% Hydroquinone Cream Compared to Topical 4% Hydroquinone Cream Alone in Patients with Melasma: A Split-Face Study. Dermatol. Res. Pract. 2018, 2018, 8350317. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.; Feola, C.; Bialeski, N.; Silva, F.A.; Pessanha, A.C.; Addor, F.A. Study evaluating the efficacy of topical and injected tranexamic acid in treatment of melasma, Surgical and Cosmetic Dermatology. Surg. Cosmet. Dermatol. 2009, 1, 174–177. [Google Scholar]
- Budamakuntla, L.; Loganathan, E.; Suresh, D.H.; Shanmugam, S.; Dongare, A.; Prabhu, N.; Suryanarayan, S.; Venkataramiah, L.D. A randomised, open-label, comparative study of tranexamic acid microinjections and tranexamic acid with microneedling in patients with melasma. J. Cutan. Aesthetic Surg. 2013, 6, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S.; Rawat, R.; Shiny, T.N. Therapeutic efficacy and safety of oral tranexamic acid and that of tranexamic acid local infiltration with microinjections in patients with melasma: A comparative study. Clin. Exp. Dermatol. 2017, 42, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.M.; Ramadan, S.A.-R.; Bassiouny, D.A.; Abdelmalek, M.M. Combined trichloroacetic acid peel and topical ascorbic acid versus trichloroacetic acid peel alone in the treatment of melasma: A comparative study. J. Cosmet. Dermatol. 2007, 6, 89–94. [Google Scholar] [CrossRef]
- Abdel-Majid, E.M.; Helmy, E.R.; Motaleb, A.A.A. Modified Jessner’s Solution Combined with Trichloroacetic Acid 20% Versus Glycolic Acid 70% Combined with Trichloroacetic Acid 20% in the Treatment of Melasma. Dermatol. Surg. 2021, 47, e179–e183. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Meguid, A.M.; Taha, E.A.; Ismail, S.A. Combined Jessner Solution and Trichloroacetic Acid versus Trichloroacetic Acid Alone in the Treatment of Melasma in Dark-Skinned Patients. Dermatol. Surg. 2017, 43, 651–656. [Google Scholar] [CrossRef]
- Murtaza, F.; Bangash, A.R.; Khushdil, A.; Noor, S.M. Efficacy of Trichloro-Acetic Acid Peel Alone Versus Combined Topical Magnesium Ascorbyl Phosphate for Epidermal Melasma. J. Coll. Physicians Surg. Pak. 2016, 26, 557–561. [Google Scholar] [PubMed]
- Torok, H.; Taylor, S.; Baumann, L.; Jones, T.; Wieder, J.; Lowe, N.; Jarret, M.; Rich, P.; Pariser, D.; Tschen, E.; et al. A large 12-month extension study of an 8-week trial to evaluate the safety and efficacy of triple combination (TC) cream in melasma patients previously treated with TC cream or one of its dyads. J. Drugs Dermatol. 2005, 4, 592–597. [Google Scholar] [PubMed]
- Arellano, I.; Cestari, T.; Ocampo-Candiani, J.; Azulay-Abulafia, L.; Neto, P.B.T.; Hexsel, D.; Machado-Pinto, J.; Muñoz, H.; Rivitti-Machado, M.C.; Sittart, J.; et al. Preventing melasma recurrence: Prescribing a maintenance regimen with an effective triple combination cream based on long-standing clinical severity. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 611–618. [Google Scholar] [CrossRef]
- Grimes, P.E.; Bhawan, J.; Guevara, I.L.; Colón, L.E.; Johnson, L.A.; Gottschalk, R.W.; Pandya, A.G. Continuous therapy followed by a maintenance therapy regimen with a triple combination cream for melasma. J. Am. Acad. Dermatol. 2010, 62, 962–967. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Al-Tikreety, M.M.; Al-Mashhadani, S.A. Lactic Acid as a New Therapeutic Peeling Agent in Melasma. Dermatol. Surg. 2006, 31, 149–154. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Al-Tikreety, M.M.; Al-Mashhadani, S.A. Lactic Acid Chemical Peels as a New Therapeutic Modality in Melasma in Comparison to Jessner’s Solution Chemical Peels. Dermatol. Surg. 2006, 32, 1429–1436. [Google Scholar] [CrossRef]
- Berardesca, E.; Cameli, N.; Primavera, G.; Carrera, M. Clinical and Instrumental Evaluation of Skin Improvement after Treatment with a New 50% Pyruvic Acid Peel. Dermatol. Surg. 2006, 32, 526–531. [Google Scholar] [CrossRef]
- Balevi, A.; Ustuner, P.; Özdemir, M. Salicylic acid peeling combined with vitamin C mesotherapy versus salicylic acid peeling alone in the treatment of mixed type melasma: A comparative study. J. Cosmet. Laser Ther. 2017, 19, 294–299. [Google Scholar] [CrossRef]
- Chemical peeling for acne and melasma: Current knowledge and innovations. G. Ital. Di Dermatol. E Venereol. 2020, 155, 280–285. [CrossRef]
- Singh, R.; Goyal, S.; Ahmed, Q.R.; Gupta, N.; Singh, S. Effect of 82% Lactic Acid in Treatment of Melasma. Int. Sch. Res. Not. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Effron, C.; Briden, M.E.; Green, B.A. Enhancing cosmetic outcomes by combining superficial glycolic acid (alpha-hydroxy acid) peels with nonablative lasers, intense pulsed light, and trichloroacetic acid peels. Cutis 2007, 79, 4–8. [Google Scholar]
- Passeron, T. Lasers. Ann. Dermatol. Vénéréologie 2012, 139, S159–S165. [Google Scholar] [CrossRef]
- Polder, K.D.; Landau, J.M.; Vergilis-Kalner, I.J.; Goldberg, L.H.; Friedman, P.M.; Bruce, S. Laser Eradication of Pigmented Lesions: A Review. Dermatol. Surg. 2011, 37, 572–595. [Google Scholar] [CrossRef] [PubMed]
- Fritz, K.; Salavastru, C. Laserbehandlung von Pigmentstörungen. Der Hautarzt; Z. Fur Dermatol. Venerol. Und Verwandte Geb. 2020, 71, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.R.; Parrish, J.A. Selective Photothermolysis: Precise Microsurgery by Selective Absorption of Pulsed Radiation. Science 1983, 220, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Geddes, E.R.; Robinson, D.M.; Friedman, P.M. A review of melasma treatment focusing on laser and light devices. Semin. Cutan. Med. Surg. 2016, 35, 223–232. [Google Scholar] [CrossRef]
- Trivedi, M.; Yang, F.; Cho, B. A review of laser and light therapy in melasma. Int. J. Women’s Dermatol. 2017, 3, 11–20. [Google Scholar] [CrossRef]
- Wang, C.-C.; Hui, C.-Y.; Sue, Y.-M.; Wong, W.-R.; Hong, H.-S. Intense Pulsed Light for the Treatment of Refractory Melasma in Asian Persons. Dermatol. Surg. 2004, 30, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Hong, T.; Zeng, H.; Li, P.; Li, P.; Wang, S.; Chen, J.; Li, P.; Zhou, J. A Meta-analysis-Based Assessment of Intense Pulsed Light for Treatment of Melasma. Aesthetic Plast. Surg. 2020, 44, 947–952. [Google Scholar] [CrossRef]
- Souza, L.F.; Souza, S.T. Single-session intense pulsed light combined with stable fixed-dose triple combination topical therapy for the treatment of refractory melasma. Dermatol. Ther. 2012, 25, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.P.; Gold, M.H.; Palm, M.D.; Colón, L.E.; Preston, N.; Johnson, L.A.; Gottschalk, R.W. Sequential Treatment with Triple Combination Cream and Intense Pulsed Light is More Efficacious than Sequential Treatment with an Inactive (Control) Cream and Intense Pulsed Light in Patients with Moderate to Severe Melasma. Dermatol. Surg. 2011, 37, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Shakeeb, N.; Noor, S.M.; Ullah, G.; Paracha, M.M. Efficacy of Intense Pulse Light Therapy And Tripple Combination Cream Versus Intense Pulse Light Therapy And Tripple Combination Cream Alone In Epidermal Melasma Treatment. J. Coll. Physicians Surg. Pak. 2018, 28, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.J.; Moon, H.-R.; Lee, M.-W.; Choi, J.-H.; Chang, S.-E. Combination Treatment of Low-Fluence 1,064-nm Q-Switched Nd: YAG laser with novel intense pulse light in Korean melasma patients: A prospective, randomized, controlled trial. Dermatol. Surg. 2014, 40, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Lee, J.H.; Lee, J.H. Topical tranexamic acid as an adjuvant treatment in melasma: Side-by-side comparison clinical study. J. Dermatol. Treat. 2015, 27, 373–377. [Google Scholar] [CrossRef]
- Li, Y.-H.; Chen, J.Z.; Wei, H.-C.; Wu, Y.; Liu, M.; Xu, Y.-Y.; Dong, G.-H.; Chen, H.-D. Efficacy and Safety of Intense Pulsed Light in Treatment of Melasma in Chinese Patients. Dermatol. Surg. 2008, 34, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.R.; Anderson, R.R. Ineffective Treatment of Refractory Melasma and Postinflammatory Hyperpigmentation by Q-switched Ruby Laser. J. Dermatol. Surg. Oncol. 1994, 20, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Angsuwarangsee, S.; Polnikorn, N. Combined Ultrapulse CO2 Laser and Q-Switched Alexandrite Laser Compared with Q-Switched Alexandrite Laser Alone for Refractory Melasma: Split-Face Design. Dermatol. Surg. 2003, 29, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Tse, Y.; Levine, V.J.; Mcclain, S.A.; Ashinoff, R. The Removal of Cutaneous Pigmented Lesions with the Q-switched Ruby Laser and the Q-switched Neodymium: Yttrium-Aluminum-Garnet Laser. A comparative study. J. Dermatol. Surg. Oncol. 1994, 20, 795–800. [Google Scholar] [CrossRef]
- Aurangabadkar, S. Optimizing Q-switched lasers for melasma and acquired dermal melanoses. Indian J. Dermatol. Venereol. Leprol. 2019, 85, 10–17. [Google Scholar] [CrossRef]
- Kim, J.E.; Chang, S.E.; Yeo, U.C.; Haw, S.; Kim, I.-H. Histopathological study of the treatment of melasma lesions using a low-fluence Q-switched 1064-nm neodymium:yttrium-aluminium-garnet laser. Clin. Exp. Dermatol. 2013, 38, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, H.; Park, H.C.; Kim, I.-H. Subcellular Selective Photothermolysis of Melanosomes in Adult Zebrafish Skin Following 1064-nm Q-Switched Nd:YAG Laser Irradiation. J. Investig. Dermatol. 2010, 130, 2333–2335. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.D.; Aurangabadkar, S.J. Laser toning in melasma. J. Cutan. Aesthetic Surg. 2019, 12, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kaminaka, C.; Furukawa, F.; Yamamoto, Y. The Clinical and Histological Effect of a Low-Fluence Q-Switched 1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser for the Treatment of Melasma and Solar Lentigenes in Asians: Prospective, Randomized, and Split-Face Comparative Study. Dermatol. Surg. 2017, 43, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Elkamshoushi, A.M.; Romisy, D.; Omar, S.S. Oral tranexamic acid, hydroquinone 4% and low-fluence 1064 nm Q-switched Nd:YAG laser for mixed melasma: Clinical and dermoscopic evaluation. J. Cosmet. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Wattanakrai, P.; Mornchan, R.; Eimpunth, S. Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminum Garnet (1,064 nm) Laser for the Treatment of Facial Melasma in Asians. Dermatol. Surg. 2010, 36, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-Y.; Shin, J.-B.; Yeo, U.-C.; Kim, W.-S.; Kim, I.-H. Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminum Garnet Laser for Melasma with Pre- or Post-Treatment Triple Combination Cream. Dermatol. Surg. 2010, 36, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Bansal, C.; Naik, H.; Kar, H.K.; Chauhan, A. A comparison of low-fluence 1064-nm Q-switched Nd: YAG laser with topical 20% azelaic acid cream and their combination in melasma in Indian patients. J. Cutan. Aesthetic Surg. 2012, 5, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Saleh, F.; Moftah, N.H.; Abdel-Azim, E.; Gharieb, M.G. Q-switched Nd: YAG laser alone or with modified Jessner chemical peeling for treatment of mixed melasma in dark skin types: A comparative clinical, histopathological, and immunohistochemical study. J. Cosmet. Dermatol. 2018, 17, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.B.; Suh, H.S.; Choi, Y.S. A comparative study of low-fluence 1064-nm Q-switched Nd:YAG laser with or without chemical peeling using Jessner’s solution in melasma patients. J. Dermatol. Treat. 2014, 25, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Kim, D.H.; Kim, H.K.; Li, K.; Seo, S.J.; Hong, C.K. A randomized, observer-blinded, comparison of combined 1064-nm Q-switched neodymium-doped yttrium-aluminium-garnet laser plus 30% glycolic acid peel vs. laser monotherapy to treat melasma. Clin. Exp. Dermatol. 2011, 36, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Kar, H.; Chauhan, A.; Gupta, L. A comparative study on efficacy of high and low fluence Q-switched Nd:YAG laser and glycolic acid peel in melasma. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Agamia, N.; Apalla, Z.; Salem, W.; Abdallah, W. A comparative study between oral tranexamic acid versus oral tranexamic acid and Q-switched Nd-YAG laser in melasma treatment: A clinical and dermoscopic evaluation. J. Dermatol. Treat. 2020, 32, 819–826. [Google Scholar] [CrossRef]
- Hawwam, S.A.; Ismail, M.; El-Attar, Y.A. Split-face comparative study between intradermal tranexamic acid injection alone versus intradermal tranexamic acid injection combined with Q-switched Nd:YAG laser in melasma treatment: Dermoscopic and clinical evaluation. Lasers Med. Sci. 2022, 37, 2193–2201. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.W.; Seo, S.J.; Park, K.Y. Evaluating the tolerance and efficacy of laser-assisted delivery of tranexamic acid, niacinamide, and kojic acid for melasma: A single center, prospective, split-face trial. Dermatol. Ther. 2022, 35, e15287. [Google Scholar] [CrossRef]
- Shin, J.U.; Park, J.; Oh, S.H.; Lee, J.H. Oral Tranexamic Acid Enhances the Efficacy of Low-Fluence 1064-Nm Quality-Switched Neodymium-Doped Yttrium Aluminum Garnet Laser Treatment for Melasma in Koreans: A Randomized, Prospective Trial. Dermatol. Surg. 2013, 39, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Ustuner, P.; Balevi, A.; Ozdemir, M. A split-face, investigator-blinded comparative study on the efficacy and safety of Q-switched Nd:YAG laser plus microneedling with vitamin C versus Q-switched Nd:YAG laser for the treatment of recalcitrant melasma. J. Cosmet. Laser Ther. 2017, 19, 383–390. [Google Scholar] [CrossRef]
- Kwon, H.H.; Choi, S.C.; Jung, J.Y.; Park, G.-H. Combined treatment of melasma involving low-fluence Q-switched Nd:YAG laser and fractional microneedling radiofrequency. J. Dermatol. Treat. 2019, 30, 352–356. [Google Scholar] [CrossRef]
- Kauvar, A.N. Successful treatment of melasma using a combination of microdermabrasion and Q-switched Nd:YAG lasers. Lasers Surg. Med. 2012, 44, 117–124. [Google Scholar] [CrossRef]
- Kong, S.H.; Suh, H.S.; Choi, Y.S. Treatment of Melasma with Pulsed-Dye Laser and 1,064-nm Q-Switched Nd:YAG Laser: A Split-Face Study. Ann. Dermatol. 2018, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cunha, P.R.; Pinto, C.A.L.; Mattos, C.B.; Cabrini, D.P.; Tolosa, J.L. New insight in the treatment of refractory melasma: Laser Q-switched Nd: YAG non-ablative fractionated followed by intense pulsed light. Dermatol. Ther. 2015, 28, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Vachiramon, V.; Sirithanabadeekul, P.; Sahawatwong, S. Low-fluence Q-switched Nd: YAG 1064-nm laser and intense pulsed light for the treatment of melasma. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1339–1346. [Google Scholar] [CrossRef]
- Lai, D.; Zhou, S.; Cheng, S.; Liu, H.; Cui, Y. Laser therapy in the treatment of melasma: A systematic review and meta-analysis. Lasers Med. Sci. 2022, 37, 2099–2110. [Google Scholar] [CrossRef] [PubMed]
- Parra, C.A.H.; Careta, M.F.; Valente, N.Y.S.; Osório, N.E.G.D.S.; Torezan, L.A.R. Clinical and Histopathologic Assessment of Facial Melasma After Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminium Garnet Laser. Dermatol. Surg. 2016, 42, 507–512. [Google Scholar] [CrossRef]
- Xi, Z.; Gold, M.H.; Zhong, L.; Ying, L. Efficacy and Safety of Q-Switched 1,064-nm Neodymium-Doped Yttrium Aluminum Garnet Laser Treatment of Melasma. Dermatol. Surg. 2011, 37, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Gokalp, H.; Akkaya, A.D.; Oram, Y. Long-term results in low-fluence 1064-nm Q-Switched Nd:YAG laser for melasma: Is it effective? J. Cosmet. Dermatol. 2016, 15, 420–426. [Google Scholar] [CrossRef]
- Manstein, D.; Herron, G.S.; Sink, R.K.; Tanner, H.; Anderson, R.R. Fractional Photothermolysis: A New Concept for Cutaneous Remodeling Using Microscopic Patterns of Thermal Injury. Lasers Surg. Med. 2004, 34, 426–438. [Google Scholar] [CrossRef]
- Wind, B.S.; Kroon, M.W.; Meesters, A.A.; Beek, J.F.; Van Der Veen, J.W.; Nieuweboer-Krobotová, L.; Bos, J.D.; Wolkerstorfer, A. Non-ablative 1,550 nm fractional laser therapy versus triple topical therapy for the treatment of melasma: A randomized controlled split-face study. Lasers Surg. Med. 2010, 42, 607–612. [Google Scholar] [CrossRef]
- Kroon, M.W.; Wind, B.S.; Beek, J.F.; van der Veen, J.W.; Nieuweboer-Krobotová, L.; Bos, J.D.; Wolkerstorfer, A. Nonablative 1550-nm fractional laser therapy versus triple topical therapy for the treatment of melasma: A randomized controlled pilot study. J. Am. Acad. Dermatol. 2011, 64, 516–523. [Google Scholar] [CrossRef]
- Tourlaki, A.; Galimberti, M.G.; Pellacani, G.; Bencini, P.L. Combination of fractional erbium-glass laser and topical therapy in melasma resistant to triple-combination cream. J. Dermatol. Treat. 2014, 25, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Rho, N.-K. Treatment of Melasma Using a Novel 1,927 nm Fractional Thulium Laser: A Retrospective Analysis of 68 Korean Patients. Med Lasers 2017, 6, 10–16. [Google Scholar] [CrossRef]
- Massaki, A.B.M.N.; Eimpunth, S.; Fabi, S.G.; Guiha, I.; Groff, W.; Fitzpatrick, R. Treatment of melasma with the 1,927-nm fractional thulium fiber laser: A retrospective analysis of 20 cases with long-term follow-up. Lasers Surg. Med. 2013, 45, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Aurangabadkar, S.; Salim, T.; Das, A.; Shah, S.; Majid, I.; Singh, M.; Ravichandran, G.; Godse, K.; Arsiwala, S.; et al. Lasers in Melasma: A Review with Consensus Recommendations by Indian Pigmentary Expert Group. Indian J. Dermatol. 2017, 62, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Nam, J.-H.; Kim, J.Y.; Min, J.H.; Park, K.Y.; Ko, E.J.; Kim, B.J.; Kim, W.-S. Efficacy and safety of a novel picosecond laser using combination of 1 064 and 595 nm on patients with melasma: A prospective, randomized, multicenter, split-face, 2% hydroquinone cream-controlled clinical trial. Lasers Surg. Med. 2017, 49, 899–907. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Lin, E.-T.; Chang, C.-C.; Lin, B.-S.; Chiang, H.-M.; Huang, Y.-H.; Lin, H.-Y.; Wang, K.-Y.; Chang, T.-M. Efficacy and Safety Evaluation of Picosecond Alexandrite Laser with a Diffractive Lens Array for Treatment of Melasma in Asian Patients by VISIA Imaging System. Photobiomodulation Photomed. Laser Surg. 2019, 37, 559–566. [Google Scholar] [CrossRef]
- Chalermchai, T.; Rummaneethorn, P. Effects of a fractional picosecond 1,064 nm laser for the treatment of dermal and mixed type melasma. J. Cosmet. Laser Ther. 2018, 20, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-H.; Na, J.-I.; Huh, C.-H.; Park, K.-C. A Clinical and Biochemical Evaluation of a Temperature-Controlled Continuous Non-Invasive Radiofrequency Device for the Treatment of Melasma. Ann. Dermatol. 2021, 33, 522–530. [Google Scholar] [CrossRef]
- Park, B.J.; Jung, Y.J.; Ro, Y.S.; Chang, S.E.; Kim, J.E. Therapeutic Effects of New Pulsed-Type Microneedling Radiofrequency for Refractory Facial Pigmentary Disorders. Dermatol. Surg. 2022, 48, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Alexiades, M. Microneedle Radiofrequency. Facial Plast. Surg. Clin. North Am. 2020, 28, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Cameli, N.; Abril, E.E.; Mariano, M.; Berardesca, E. Combined use of monopolar radiofrequency and transdermal drug delivery in the treatment of melasma. Dermatol. Surg. 2014, 40. [Google Scholar] [CrossRef]
- Khalili, M.; Amiri, R.; Iranmanesh, B.; Zartab, H.; Aflatoonian, M. Safety and efficacy of mesotherapy in the treatment of melasma: A review article. J. Cosmet. Dermatol. 2022, 21, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.; Chandio, T.H.; Shahzad, M.K.; Hanif, N.; Anwar, S.; Rafique, S. Comparing the Efficacy of Patelet-rich Plasma (PRP) versus Tranexamic Acid (4mg/mL) as Intradermal Treatments of Melasma. J. Coll. Physicians Surg. Pak. 2021, 30, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Gupta, M. Platelet-Rich Plasma in Melasma—A Systematic Review. Dermatol. Surg. 2022, 48, 131–134. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, M.; Xiao, Q.; Zhou, R.; Li, Y.; Xiong, L.; Li, L. Efficacy and Safety of Platelet-Rich Plasma in Melasma: A Systematic Review and Meta-Analysis. Dermatol. Ther. 2021, 11, 1587–1597. [Google Scholar] [CrossRef]
- Tuknayat, A.; Bhalla, M.; Thami, G.P. Platelet-rich plasma is a promising therapy for melasma. J. Cosmet. Dermatol. 2021, 20, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.J.M.; Li, H.O.-Y.; Tan, M.G.; Cheng, W.; Dover, J.S. Microneedling as an adjuvant to topical therapies for melasma: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2022, 86, 797–810. [Google Scholar] [CrossRef]
- Sadeghzadeh-Bazargan, A.; Behrangi, E.; Nobari, N.N.; Ghassemi, M.; Roohaninasab, M.; Goodarzi, A. Systematic review of clinical studies assessing the needling for treatment of melasma: Focusing on efficacy, safety, and recurrence rate. J. Cosmet. Dermatol. 2022, 21, 1857–1873. [Google Scholar] [CrossRef]
- Wu, S.Z.; Muddasani, S.; Alam, M. A Systematic Review of the Efficacy and Safety of Microneedling in the Treatment of Melasma. Dermatol. Surg. 2020, 46, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
- Morgado-Carrasco, D.; Piquero-Casals, J.; Granger, C.; Trullàs, C.; Passeron, T. Melasma: The need for tailored photoprotection to improve clinical outcomes. Photodermatol. Photoimmunol. Photomed. 2022. [Google Scholar] [CrossRef]
- Liebel, F.; Kaur, S.; Ruvolo, E.; Kollias, N.; Southall, M.D. Irradiation of Skin with Visible Light Induces Reactive Oxygen Species and Matrix-Degrading Enzymes. J. Investig. Dermatol. 2012, 132, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.H.; Ruvolo, E.; Hexsel, C.L.; Liu, Y.; Owen, M.R.; Kollias, N.; Lim, H.W.; Hamzavi, I.H. Impact of Long-Wavelength UVA and Visible Light on Melanocompetent Skin. J. Investig. Dermatol. 2010, 130, 2092–2097. [Google Scholar] [CrossRef] [PubMed]
- Zubair, R.; Lyons, A.; Vellaichamy, G.; Peacock, A.; Hamzavi, I. What’s New in Pigmentary Disorders. Dermatol. Clin. 2019, 37, 175–181. [Google Scholar] [CrossRef]
- Castanedo-Cazares, J.P.; Hernández-Blanco, D.; Carlos-Ortega, B.; Fuentes-Ahumada, C.; Torres-Álvarez, B. Near-visible light and UV photoprotection in the treatment of melasma: A double-blind randomized trial. Photodermatol. Photoimmunol. Photomed. 2014, 30, 35–42. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piętowska, Z.; Nowicka, D.; Szepietowski, J.C. Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 12084. https://doi.org/10.3390/ijerph191912084
Piętowska Z, Nowicka D, Szepietowski JC. Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review. International Journal of Environmental Research and Public Health. 2022; 19(19):12084. https://doi.org/10.3390/ijerph191912084
Chicago/Turabian StylePiętowska, Zuzanna, Danuta Nowicka, and Jacek C. Szepietowski. 2022. "Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review" International Journal of Environmental Research and Public Health 19, no. 19: 12084. https://doi.org/10.3390/ijerph191912084
APA StylePiętowska, Z., Nowicka, D., & Szepietowski, J. C. (2022). Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review. International Journal of Environmental Research and Public Health, 19(19), 12084. https://doi.org/10.3390/ijerph191912084