Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentations
2.3. Pedaling Positions
2.4. Procedures
2.5. Data Reduction and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deakon, R.T. Chronic musculoskeletal conditions associated with the cycling segment of the triathlon; prevention and treatment with an emphasis on proper bicycle fitting. Sports Med. Arthrosc. Rev. 2012, 20, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, D.J.S.; Weinrauch, P. The role of a bike fit in cyclists with hip pain. a clinical commentary. Int. J. Sports Phys. Ther. 2019, 14, 468–486. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Hug, F.; Dorel, S. Electromyographic analysis of pedaling: A review. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2009, 19, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Fintelman, D.M.; Sterling, M.; Hemida, H.; Li, F.X. Effect of different aerodynamic time trial cycling positions on muscle activation and crank torque. Scand. J. Med. Sci. Sports 2015, 26, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Candotti, C.T.; Ribeiro, J.; Soares, D.P.; De Oliveira, A.R.; Loss, J.F.; Guimaraes, A.C. Effective force and economy of triathletes and cyclists. Sports Biomech. 2007, 6, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Zameziati, K.; Mornieux, G.; Rouffet, D.; Belli, A. Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power. Eur. J. Appl. Physiol. 2006, 96, 274–281. [Google Scholar] [CrossRef]
- Barbosa, L.F.; Montagnana, L.; Denadai, B.S.; Greco, C.C. Reliability of cardiorespiratory parameters during cycling exercise performed at the severe domain in active individuals. J. Strength Cond. Res./Natl. Strength Cond. Assoc. 2014, 28, 976–981. [Google Scholar] [CrossRef]
- Temesi, J.; Mattioni Maturana, F.; Peyrard, A.; Piucco, T.; Murias, J.M.; Millet, G.Y. The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise. Eur. J. Appl. Physiol. 2017, 117, 969–978. [Google Scholar] [CrossRef]
- Swart, J.; Holliday, W. Cycling biomechanics optimization-the (R) evolution of bicycle fitting. Curr. Sports Med. Rep. 2019, 18, 490–496. [Google Scholar] [CrossRef]
- Ferrer-Roca, V.; Roig, A.; Galilea, P.; Garcia-Lopez, J. Influence of saddle height on lower limb kinematics in well-trained cyclists: Static vs. dynamic evaluation in bike fitting. J. Strength Cond. Res./Natl. Strength Cond. Assoc. 2012, 26, 3025–3029. [Google Scholar] [CrossRef]
- Bini, R.; Hume, P.A.; Croft, J.L. Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Med. 2011, 41, 463–476. [Google Scholar] [CrossRef]
- Cannon, D.T.; Kolkhorst, F.W.; Cipriani, D.J. Effect of pedaling technique on muscle activity and cycling efficiency. Eur. J. Appl. Physiol. 2007, 99, 659–664. [Google Scholar] [CrossRef]
- Bisi, M.C.; Ceccarelli, M.; Riva, F.; Stagni, R. Biomechanical and metabolic responses to seat-tube angle variation during cycling in tri-athletes. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2012, 22, 845–851. [Google Scholar] [CrossRef]
- Verma, R.; Hansen, E.A.; de Zee, M.; Madeleine, P. Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2016, 27, 78–86. [Google Scholar] [CrossRef]
- Duggan, W.; Donne, B.; Fleming, N. Effect of Seat Tube Angle and Exercise Intensity on Muscle Activity Patterns in Cyclists. Int. J. Exerc. Sci. 2017, 10, 1145–1156. [Google Scholar]
- Peveler, W.W. Effects of saddle height on economy in cycling. J. Strength Cond. Res./Natl. Strength Cond. Assoc. 2008, 22, 1355–1359. [Google Scholar] [CrossRef]
- Rainoldi, A.; Melchiorri, G.; Caruso, I. A method for positioning electrodes during surface EMG recordings in lower limb muscles. J. Neurosci. Methods 2004, 134, 37–43. [Google Scholar] [CrossRef]
- Bertucci, W.; Grappe, F.; Girard, A.; Betik, A.; Rouillon, J.D. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J. Biomech. 2005, 38, 1003–1010. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J.; Nosaka, K. Muscle architecture and optimum angle of the knee flexors and extensors: A comparison between cyclists and Australian Rules football players. J. Strength Cond. Res./Natl. Strength Cond. Assoc. 2010, 24, 717–721. [Google Scholar] [CrossRef]
- Ryan, M.M.; Gregor, R.J. EMG profiles of lower extremity muscles during cycling at constant workload and cadence. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 1992, 2, 69–80. [Google Scholar] [CrossRef]
- Sarabon, N.; Fonda, B.; Markovic, G. Change of muscle activation patterns in uphill cycling of varying slope. Eur. J. Appl. Physiol. 2012, 112, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Garside, I.; Doran, D.A. Effects of bicycle frame ergonomics on triathlon 10-km running performance. J. Sports Sci. 2000, 18, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Razanskas, P.; Verikas, A.; Olsson, C.; Viberg, P.A. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise. Sensors 2015, 15, 20480–20500. [Google Scholar] [CrossRef] [Green Version]
Muscles | Pedaling Position | 120 W | 150 W | 180 W | 210 W |
---|---|---|---|---|---|
Vastus lateralis (VL) | KFOF = 20 | 76.46 ± 36.65 | 114.93 ± 119.59 | 80.88 ± 10.47 *,a,b | 81.12 ± 6.96 |
KFOF = 0 | 77.88 ± 37.94 | 129.55 ± 145.34 | 74.49 ± 5.81 *,a | 80.82 ± 11.28 | |
KFOF = −20 | 71.82 ± 22.25 | 120.27 ± 117.40 | 72.58 ± 6.18 *,d | 79.87 ± 7.93 | |
KFOF = −40 | 88.80 ± 36.84 | 119.88 ± 124.90 | 66.64 ± 9.19 *,b,d | 79.04 ± 17.33 | |
Vastus medialis (VM) | KFOF = 20 | 61.61 ± 12.34 †,e | 68.15 ± 28.40 †,f,g | 77.60 ± 9.09 *,b,†,f | 91.43 ± 13.00 †,e,g |
KFOF = 0 | 60.47 ± 12.03 †,e | 65.65 ± 25.10 †,f,g | 74.23 ± 8.45 *,c,†,f | 90.52 ± 18.93 †,e,g | |
KFOF = −20 | 61.28 ± 9.54 | 65.71 ± 23.28 | 71.85 ± 7.66 *,d | 87.77 ± 11.96 | |
KFOF = −40 | 64.34 ± 13.12 | 65.36 ± 29.62 †,g | 68.51 ± 6.02 *,c,d | 86.36 ± 10.95 †,g | |
Semitendinosus (SEMI) | KFOF = 20 | 42.57 ± 19.96 | 21.03 ± 13.51 | 20.08 ± 13.89 | 20.04 ± 9.08 *,a |
KFOF = 0 | 44.13 ± 23.65 | 20.50 ± 14.20 | 21.63 ± 15.83 | 18.75 ± 7.57 *,ac | |
KFOF = −20 | 42.72 ± 16.54 | 22.71 ± 12.44 | 18.16 ± 10.65 | 21.54 ± 8.80 * | |
KFOF = −40 | 44.96 ± 19.96 | 21.89 ± 13.21 | 18.40 ± 10.07 | 19.81 ± 7.65 *,c | |
Biceps femoris(BF) | KFOF = 20 | 48.20 ± 16.92 | 69.48 ± 48.30 | 48.84 ± 25.89 | 57.75 ± 40.96 |
KFOF = 0 | 48.23 ± 18.68 | 66.06 ± 49.27 | 45.73 ± 25.73 | 59.13 ± 40.53 | |
KFOF = −20 | 47.29 ± 21.74 | 64.77 ± 46.41 | 41.17 ± 25.62 | 57.28 ± 39.67 | |
KFOF = −40 | 50.22 ± 14.95 | 26.70 ± 67.53 | 50.22 ± 14.95 | 26.70 ± 67.53 | |
Tensor fascia lata (TFL) | KFOF = 20 | 71.83 ± 75.74 | 38.67 ± 19.50 | 215.97 ± 265.80 | 34.23 ± 16.52 |
KFOF = 0 | 71.30 ± 71.97 | 38.92 ± 19.78 | 129.23 ± 142.97 | 31.59 ± 15.89 | |
KFOF = −20 | 112.40 ± 139.09 | 40.40 ± 22.59 | 229.77 ± 255.15 | 44.52 ± 36.08 | |
KFOF = −40 | 48.05 ± 44.12 | 9.57 ± 107.94 | 273.61 ± 343.88 | 39.94 ± 24.80 | |
Gluteus maximus (GM) | KFOF = 20 | 85.69 ± 44.64 | 99.19 ± 60.12 | 87.43 ± 26.36 | 107.49 ± 16.44 |
KFOF = 0 | 68.03 ± 32.08 | 105.83 ± 50.06 | 97.37 ± 8.69 | 115.64 ± 8.46 | |
KFOF = −20 | 80.60 ± 30.88 | 114.61 ± 39.30 | 92.77 ± 9.95 | 134.03 ± 34.88 | |
KFOF = −40 | 86.68 ± 35.86 | 89.33 ± 22.90 | 93.29 ± 23.12 | 131.95 ± 43.62 | |
Medial gastrocnemius (MG) | KFOF = 20 | 107.42 ± 27.85 | 88.44 ± 19.11 | 94.83 ± 18.40 | 81.23 ± 27.19 |
KFOF = 0 | 88.91 ± 24.31 | 85.99 ± 17.97 | 98.81 ± 19.97 | 70.75 ± 28.64 | |
KFOF = −20 | 92.68 ± 21.89 | 96.75 ± 28.77 | 93.69 ± 14.16 | 84.12 ± 41.84 | |
KFOF = −40 | 133.08 ± 48.16 | 92.84 ± 28.93 | 94.75 ± 26.21 | 77.73 ± 28.89 | |
Tibialis anterior (TA) | KFOF = 20 | 91.15 ± 62.82 | 18.81 ± 5.33 | 174.98 ± 359.42 | 73.69 ± 86.47 |
KFOF = 0 | 108.33 ± 80.84 | 15.25 ± 6.33 | 139.42 ± 253.85 | 88.90 ± 112.23 | |
KFOF = −20 | 49.39 ± 13.48 | 17.34 ± 3.48 | 50.57 ± 57.17 | 106.98 ± 125.48 | |
KFOF = −40 | 89.28 ± 61.95 | 13.76 ± 6.31 | 64.23 ± 81.73 | 114.21 ± 104.65 |
KFOF = 20 | KFOF = 0 | KFOF = −20 | KFOF = −40 | ||
---|---|---|---|---|---|
Vastus lateralis | RMS | 0.33 ± 0.10 | 0.21 ± 0.41 | 0.32 ± 0.07 | 0.27 ± 0.11 |
(VL) | MF | 0.04 ± 0.06 | 0.14 ± 0.39 | 0.04 ± 0.05 | 0.03 ± 0.03 |
Vastus medialis | RMS | 0.36 ± 0.11 | 0.35 ± 0.18 | 0.31 ± 0.07 | 0.28 ± 0.09 |
(VM) | MF | 0.00 ± 0.07 | 0.14 ± 0.34 | 0.01 ± 0.02 | 0.01 ± 0.05 |
Semitendinosus | RMS | 0.23 ± 0.12 | 0.14 ± 0.16 | 0.16 ± 0.10 | 0.45 ± 0.52 |
(SEMI) | MF | 0.01 ± 0.07 | 0.12 ± 0.28 | 0.01 ± 0.07 | −0.01 ± 0.07 |
Biceps femoris | RMS | 0.29 ± 0.09 | 0.25 ± 0.10 | 0.28 ± 0.09 | 0.26 ± 0.10 |
(BF) | MF | 0.05 ± 0.02 | 0.15 ± 0.32 | 0.06 ± 0.07 | 0.07 ± 0.07 |
Tensor fascia lata | RMS | 0.21 ± 0.40 | 0.26 ± 0.15 | 0.18 ± 0.17 | 0.09 ± 0.27 |
(TFL) | MF | 0.02 ± 0.10 | 0.15 ± 0.35 | 0.06 ± 0.06 | 0.05 ± 0.16 |
Gluteus maximus | RMS | 0.25 ± 0.13 | 0.21 ± 0.38 | 0.21 ± 0.14 | 0.28 ± 0.17 |
(GM) | MF | 0.09 ± 0.12 | 0.18 ± 0.37 | 0.10 ± 0.10 | 0.04 ± 0.05 |
Medial | RMS | 0.08 ± 0.17 | −0.04 ± 0.17 | 0.08 ± 0.26 | −0.04 ± 0.05 |
gastrocnemius (MG) | MF | −0.02 ± 0.05 | 0.04 ± 0.22 | 0.02 ± 0.15 | 0.04 ± 0.06 |
Tibialis anterior | RMS | 0.08 ± 0.50 | −0.00 ± 0.29 | −0.41 ± 0.69 | −0.01 ± 0.41 |
(TA) | MF * | 0.05 ± 0.08 a | −0.10 ± 0.10 a,b | 0.03 ± 0.13 | 0.02 ± 0.05 b |
Heart rate | 0.36 ± 0.07 | 0.41 ± 0.13 | 0.34 ± 0.07 | 0.37 ± 0.09 | |
VO2 | 9.25 ± 1.50 | 8.97 ± 3.57 | 7.10 ± 2.59 | 10.21 ± 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.-K.; Huang, C.; Liang, K.-C.; Cheng, Y.-J.; Hsieh, Y.-L.; Shih, Y.-F.; Lin, H.-C. Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists. Int. J. Environ. Res. Public Health 2022, 19, 12046. https://doi.org/10.3390/ijerph191912046
Tang C-K, Huang C, Liang K-C, Cheng Y-J, Hsieh Y-L, Shih Y-F, Lin H-C. Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists. International Journal of Environmental Research and Public Health. 2022; 19(19):12046. https://doi.org/10.3390/ijerph191912046
Chicago/Turabian StyleTang, Chun-Kai, Ching Huang, Kai-Cheng Liang, Yu-Jung Cheng, Yueh-Ling Hsieh, Yi-Fen Shih, and Hsiu-Chen Lin. 2022. "Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists" International Journal of Environmental Research and Public Health 19, no. 19: 12046. https://doi.org/10.3390/ijerph191912046
APA StyleTang, C.-K., Huang, C., Liang, K.-C., Cheng, Y.-J., Hsieh, Y.-L., Shih, Y.-F., & Lin, H.-C. (2022). Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists. International Journal of Environmental Research and Public Health, 19(19), 12046. https://doi.org/10.3390/ijerph191912046