Musculoskeletal Diseases Role in the Frailty Syndrome: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Evaluation
2.2. Quality of Life
2.3. Muscle Health
2.4. Bone Health
2.5. Statistical Analyses
3. Results
3.1. Frailty and Quality of Life
3.2. Frailty and Muscle Heath
3.3. Frailty and Bone Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Healthy Life Years Statistics—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Healthy_life_years_statistics (accessed on 8 August 2022).
- Xue, Q.-L. The Frailty Syndrome: Definition and Natural History. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Calvani, R.; Marzetti, E. Frailty in Older Persons. Clin. Geriatr. Med. 2017, 33, 293–303. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Mitnitski, A. Frailty in Relation to the Accumulation of Deficits. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A Standard Procedure for Creating a Frailty Index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef]
- Rockwood, K.; Andrew, M.; Mitnitski, A. A Comparison of Two Approaches to Measuring Frailty in Elderly People. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.Q.; Theou, O.; Yu, S.; Adams, R.J.; Tucker, G.R.; Visvanathan, R. Frailty Prevalence and Factors Associated with the Frailty Phenotype and Frailty Index: Findings from the North West Adelaide Health Study. Australas. J. Ageing 2018, 37, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Wleklik, M.; Uchmanowicz, I.; Jankowska, E.A.; Vitale, C.; Lisiak, M.; Drozd, M.; Pobrotyn, P.; Tkaczyszyn, M.; Lee, C. Multidimensional Approach to Frailty. Front. Psychol. 2020, 11, 564. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.-Y.; Bruyère, O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef]
- Antunes, A.C.; Araújo, D.A.; Veríssimo, M.T.; Amaral, T.F. Sarcopenia and Hospitalisation Costs in Older Adults: A Cross-Sectional Study. Nutr. Diet. 2017, 74, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Melton, L.J. Epidemiology and Outcomes of Osteoporotic Fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Ferguson, L.D.; Gray, S.R.; Rodríguez-Gómez, I.; Sattar, N.; Siebert, S.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Association of Sarcopenia with Incident Osteoporosis: A Prospective Study of 168,682 UK Biobank Participants. J. Cachexia Sarcopenia Muscle 2021, 12, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Tembo, M.C.; Mohebbi, M.; Holloway-Kew, K.L.; Gaston, J.; Sui, S.X.; Brennan-Olsen, S.L.; Williams, L.J.; Kotowicz, M.A.; Pasco, J.A. The Contribution of Musculoskeletal Factors to Physical Frailty: A Cross-Sectional Study. BMC Musculoskelet. Disord. 2021, 22, 921. [Google Scholar] [CrossRef]
- Vanleerberghe, P.; De Witte, N.; Claes, C.; Verté, D. The Association between Frailty and Quality of Life When Aging in Place. Arch. Gerontol. Geriatr. 2019, 85, 103915. [Google Scholar] [CrossRef]
- Rantakokko, M.; Portegijs, E.; Viljanen, A.; Iwarsson, S.; Kauppinen, M.; Rantanen, T. Changes in Life-Space Mobility and Quality of Life among Community-Dwelling Older People: A 2-Year Follow-up Study. Qual. Life Res. 2016, 25, 1189–1197. [Google Scholar] [CrossRef]
- Saraiva, M.D.; Apolinario, D.; Avelino-Silva, T.J.; De Assis Moura Tavares, C.; Gattás-Vernaglia, I.F.; Marques Fernandes, C.; Rabelo, L.M.; Tavares Fernandes Yamaguti, S.; Karnakis, T.; Kalil-Filho, R.; et al. The Impact of Frailty on the Relationship between Life-Space Mobility and Quality of Life in Older Adults during the COVID-19 Pandemic. J. Nutr. Health Aging 2021, 25, 440–447. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef]
- Schoene, D.; Heller, C.; Aung, Y.N.; Sieber, C.C.; Kemmler, W.; Freiberger, E. A Systematic Review on the Influence of Fear of Falling on Quality of Life in Older People: Is There a Role for Falls? Clin. Interv. Aging 2019, 14, 701–719. [Google Scholar] [CrossRef]
- Katz, S.; Downs, T.D.; Cash, H.R.; Grotz, R.C. Progress in Development of the Index of ADL. Gerontologist 1970, 10, 20–30. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Galeoto, G.; Sansoni, J.; Scuccimarri, M.; Bruni, V.; De Santis, R.; Colucci, M.; Valente, D.; Tofani, M. A Psychometric Properties Evaluation of the Italian Version of the Geriatric Depression Scale. Depress. Res. Treat. 2018, 2018, e1797536. [Google Scholar] [CrossRef] [PubMed]
- Cumulative Illness Rating Scale-Linn-1968-Journal of the American Geriatrics Society-Wiley Online Library. Available online: https://agsjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1532-5415.1968.tb02103.x (accessed on 6 August 2021).
- Guigoz, Y. The Mini Nutritional Assessment (MNA) Review of the Literature—What Does It Tell Us? J. Nutr. Health Aging 2006, 10, 466–485, discussion 485–487. [Google Scholar]
- Barbosa-Silva, M.C.G.; Barros, A.J.D.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bioelectrical Impedance Analysis: Population Reference Values for Phase Angle by Age and Sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Saris-Baglama, R.N.; Dewey, C.J.; Chisholm, G.B.; Plumb, E.; King, J.; Kosinski, M.; Bjorner, J.B.; Ware, J.E. QualityMetric Health OutcomesTM Scoring Software 4.0: Installation Guide; QualityMetric Incorporated: Johnston, RI, USA, 2010. [Google Scholar]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing Appendicular Skeletal Muscle Mass with Bioelectrical Impedance Analysis in Free-Living Caucasian Older Adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- De Fátima Ribeiro Silva, C.; Ohara, D.G.; Matos, A.P.; Pinto, A.C.P.N.; Pegorari, M.S. Short Physical Performance Battery as a Measure of Physical Performance and Mortality Predictor in Older Adults: A Comprehensive Literature Review. Int. J. Environ. Res. Public Health 2021, 18, 10612. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Consensus Development Conference: Diagnosis, Prophylaxis, and Treatment of Osteoporosis. Am. J. Med. 1993, 94, 646–650. [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Huang, K.-S.; Chen, K.-M.; Chou, C.-P.; Tu, Y.-K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-Analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef]
- Beaudart, C.; Biver, E.; Bruyère, O.; Cooper, C.; Al-Daghri, N.; Reginster, J.-Y.; Rizzoli, R. Quality of Life Assessment in Musculo-Skeletal Health. Aging Clin. Exp. Res. 2018, 30, 413–418. [Google Scholar] [CrossRef]
- Li, G.; Thabane, L.; Papaioannou, A.; Ioannidis, G.; Levine, M.A.H.; Adachi, J.D. An Overview of Osteoporosis and Frailty in the Elderly. BMC Musculoskelet. Disord. 2017, 18, 46. [Google Scholar] [CrossRef]
- Boettger, S.F.; Angersbach, B.; Klimek, C.N.; Wanderley, A.L.M.; Shaibekov, A.; Sieske, L.; Wang, B.; Zuchowski, M.; Wirth, R.; Pourhassan, M. Prevalence and Predictors of Vitamin D-Deficiency in Frail Older Hospitalized Patients. BMC Geriatr. 2018, 18, 219. [Google Scholar] [CrossRef]
- Liu, X.; Baylin, A.; Levy, P.D. Vitamin D Deficiency and Insufficiency among US Adults: Prevalence, Predictors and Clinical Implications. Br. J. Nutr. 2018, 119, 928–936. [Google Scholar] [CrossRef]
- D’Amelio, P.; Quacquarelli, L. Hypovitaminosis D and Aging: Is There a Role in Muscle and Brain Health? Nutrients 2020, 12, 628. [Google Scholar] [CrossRef]
- Gielen, E.; Bergmann, P.; Bruyère, O.; Cavalier, E.; Delanaye, P.; Goemaere, S.; Kaufman, J.-M.; Locquet, M.; Reginster, J.-Y.; Rozenberg, S.; et al. Osteoporosis in Frail Patients: A Consensus Paper of the Belgian Bone Club. Calcif. Tissue Int. 2017, 101, 111–131. [Google Scholar] [CrossRef]
- Verschueren, S.; Gielen, E.; O’Neill, T.W.; Pye, S.R.; Adams, J.E.; Ward, K.A.; Wu, F.C.; Szulc, P.; Laurent, M.; Claessens, F.; et al. Sarcopenia and Its Relationship with Bone Mineral Density in Middle-Aged and Elderly European Men. Osteoporos. Int. 2013, 24, 87–98. [Google Scholar] [CrossRef]
- He, H.; Liu, Y.; Tian, Q.; Papasian, C.J.; Hu, T.; Deng, H.-W. Relationship of Sarcopenia and Body Composition with Osteoporosis. Osteoporos. Int. 2016, 27, 473–482. [Google Scholar] [CrossRef]
- Rietman, M.L.; van der A, D.L.; van Oostrom, S.H.; Picavet, H.S.J.; Dollé, M.E.T.; van Steeg, H.; Verschuren, W.M.M.; Spijkerman, A.M.W. The Association between BMI and Different Frailty Domains: A U-Shaped Curve? J. Nutr. Health Aging 2018, 22, 8–15. [Google Scholar] [CrossRef]
- Mullie, L.; Obrand, A.; Bendayan, M.; Trnkus, A.; Ouimet, M.; Moss, E.; Chen-Tournoux, A.; Rudski, L.G.; Afilalo, J. Phase Angle as a Biomarker for Frailty and Postoperative Mortality: The BICS Study. J. Am. Heart Assoc. 2018, 7, e008721. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Horwitz, R.I.; Chertow, G.M. Phase Angle, Frailty and Mortality in Older Adults. J. Gen. Intern. Med. 2014, 29, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Seki, T.; Hamada, T.; Machino, M.; Ota, K.; Morozumi, M.; Kanbara, S.; Ito, S.; et al. Low Bioelectrical Impedance Phase Angle Is a Significant Risk Factor for Frailty. Biomed. Res. Int. 2019, 2019, 6283153. [Google Scholar] [CrossRef]
- Satake, S.; Shimada, H.; Yamada, M.; Kim, H.; Yoshida, H.; Gondo, Y.; Matsubayashi, K.; Matsushita, E.; Kuzuya, M.; Kozaki, K.; et al. Prevalence of Frailty among Community-Dwellers and Outpatients in Japan as Defined by the Japanese Version of the Cardiovascular Health Study Criteria. Geriatr. Gerontol. Int. 2017, 17, 2629–2634. [Google Scholar] [CrossRef]
- Van den Broeke, C.; de Burghgraeve, T.; Ummels, M.; Gescher, N.; Deckx, L.; Tjan-Heijnen, V.; Buntinx, F.; van den Akker, M. Occurrence of Malnutrition and Associated Factors in Community-Dwelling Older Adults: Those with a Recent Diagnosis of Cancer Are at Higher Risk. J. Nutr. Health Aging 2018, 22, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Gell, N.M.; Wingood, M.; Schollmeyer, J.; Tarleton, E.K. Malnutrition Risk, Rurality, and Falls among Community-Dwelling Older Adults. J. Nutr. Health Aging 2021, 25, 624–627. [Google Scholar] [CrossRef]
- Dent, E.; Hoogendijk, E.O.; Visvanathan, R.; Wright, O.R.L. Malnutrition Screening and Assessment in Hospitalised Older People: A Review. Available online: https://click.endnote.com/viewer?doi=10.1007%2Fs12603-019-1176-z&token=WzM0MjExMzEsIjEwLjEwMDcvczEyNjAzLTAxOS0xMTc2LXoiXQ.pKa6uY888IE0tSzpofOEXjqkY84 (accessed on 4 August 2022).
- Söderström, L.; Rosenblad, A.; Adolfsson, E.T.; Saletti, A.; Bergkvist, L. Nutritional Status Predicts Preterm Death in Older People: A Prospective Cohort Study. Clin. Nutr. 2014, 33, 354–359. [Google Scholar] [CrossRef]
- Cesari, M.; Gambassi, G.; Abellan van Kan, G.; Vellas, B. The Frailty Phenotype and the Frailty Index: Different Instruments for Different Purposes. Age Ageing 2014, 43, 10–12. [Google Scholar] [CrossRef]
- World’s Older Population Grows Dramatically. Available online: https://www.nih.gov/news-events/news-releases/worlds-older-population-grows-dramatically (accessed on 9 September 2022).
- Anton, S.D.; Hida, A.; Mankowski, R.; Layne, A.; Solberg, L.M.; Mainous, A.G.; Buford, T. Nutrition and Exercise in Sarcopenia. Curr. Protein Pept. Sci. 2018, 19, 649–667. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, Frailty, and Sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, G.; Giustino, V.; Messina, G.; Faraone, M.; Brusa, J.; Bordonali, A.; Barbagallo, M.; Palma, A.; Dominguez, L.-J. Walking in Natural Environments as Geriatrician’s Recommendation for Fall Prevention: Preliminary Outcomes from the “Passiata Day” Model. Sustainability 2020, 12, 2684. [Google Scholar] [CrossRef] [Green Version]
Mean ± SD (95% Confidence Interval) | p Over All | p Frail vs. Pre-Frail | ||
---|---|---|---|---|
FI (score) | Robust (55) | 0.1 ± 0.04 (0.09–0.11) | <0.001 | 0.018 |
Pre-frail (13) | 0.1 ± 0.04 (0.12–0.16) | |||
Frail (35) | 0.3 ± 0.1 (0.27–0.35) | |||
Age (y) | Robust (55) | 81 ± 6 (79.8–83) | 0.160 | 0.511 |
Pre-frail (13) | 79 ± 4 (76.3–81) | |||
Frail (35) | 80 ± 5 (77.9–81.5) | |||
Drugs/daily | Robust (55) | 4 ± 2 (3–5) | 0.024 | 0.671 |
Pre-frail (13) | 3 ± 2 (2–5) | |||
Frail (35) | 5 ± 2 (4–6) | |||
BMI | Robust (55) | 25.6 ± 3.5 (24.7–26.6) | 0.090 | 0.255 |
Pre-frail (13) | 25.5 ± 4.7 (22.7–28.4) | |||
Frail (35) | 23.7 ± 5.1 (21.9–24.4) | |||
Fat mass (%) | Robust (55) | 25 ± 4.6 (23.8–26.3) | 0.049 | 0.209 |
Pre-frail (13) | 24.7 ± 4.4 (22.1 ± 27.4) | |||
Frail (35) | 22.3 ± 6.4 (20.0 ± 24.5) | |||
Phase (°) | Robust (55) | 5.1 ± 1 (4.8–5.4) | 0.185 | 0.335 |
Pre-frail (13) | 5.7 ± 1(5.1–6.3) | |||
Frail (35) | 5 ± 1.3 (4.5–5.5) | |||
MNA (score/30) | Robust (55) | 26 ± 3.8 (25–27) | <0.0001 | <0.0001 |
Pre-frail (13) | 26 ± 2.3 (25–28) | |||
Frail (35) | 19.4 ± 5.6 (17–21) | |||
MMSE (score/30) | Robust (55) | 28 ±1 (27–28) | <0.0001 | 0.600 |
Pre-frail (13) | 27 ± 2 (26–28) | |||
Frail (35) | 27 ± 12 (26–27) | |||
CIRS (score/30) | Robust (55) | 9.3 ± 4.0 (8.2–10.4) | <0.0001 | 0.013 |
Pre-frail (13) | 10.8 ± 12.4 (9.4–12.2) | |||
Frail (35) | 13.7 ± 15.5 (11.8–15.7) | |||
GDS (score/30) | Robust (55) | 7.8 ± 5.1 (6.5–9.2) | <0.0001 | 0.007 |
Pre-frail (13) | 8.1 ± 4.3 (5.5–10.7) | |||
Frail (35) | 17.4 ± 7.6 (14.8–20) | |||
ADL (number of lost function) | Robust (55) | 0.01 ± 0.19 (0–0.9) | <0.0001 | <0.0001 |
Pre-frail (13) | 0 ± 0 (0–0) | |||
Frail (35) | 1.2 ± 1.9 (0.5–1.9) | |||
IADL (score/14) | Robust (55) | 12.5 ± 2.6 (11.8–13.2)) | <0.0001 | <0.0001 |
Pre-frail (13) | 13.5 ± 0.2 (13.1–13.9) | |||
Frail (35) | 8.2 ± 4.5 (6.6–9.8) |
Mean ± SD (95% Confidence Interval) | p Over All | p Frail vs. Pre-Frail | ||
---|---|---|---|---|
Physical functioning | Robust (55) | 84.4 ± 11 (81.4–87.3) | <0.0001 | 0.043 |
Pre-frail (13) | 73.9 ± 15.4 (64.5–83.2) | |||
Frail (35) | 41.5 ± 28 (31.7–51.2) | |||
Role physical | Robust (55) | 73.9 ± 27.5 (66.5–81.3) | <0.0001 | 0.304 |
Pre-frail (13) | 76.9 ± 27.9 (60.1–93.8) | |||
Frail (35) | 35.2 ± 32.0 (24.0–46.3) | |||
Role emotional | Robust (55) | 83.5 ± 21.3 (77.7–89.2) | <0.0001 | 0.186 |
Pre-frail (13) | 69.2 ± 23.3 (53.9–84.5) | |||
Frail (35) | 37.2 ± 32.6 (25.8–48.6) | |||
Vitality | Robust (55) | 71.7 ± 11.2 (68.3–74.7) | <0.0001 | 0.021 |
Pre-frail (13) | 62.3 ± 12.0 (55.1–69.6) | |||
Frail (35) | 39.4 ± 20.7 (32.2–46.6) | |||
Mental health | Robust (55) | 77.0 ± 13.0 (73.5–80.6) | <0.0001 | <0.0001 |
Pre-frail (13) | 74.8 ± 15.7 (65.3–84.3) | |||
Frail (35) | 52.8 ± 21.1 (45.5–60.2) | |||
Social functioning | Robust (55) | 85.5 ± 15.0 (81.4–89.5) | <0.0001 | <0.0001 |
Pre-frail (13) | 89.4 ± 6.9 (85.2–93.6) | |||
Frail (35) | 50.0 ± 33.0 (38.5–61.5) | |||
Bodily pain | Robust (55) | 76.9 ± 21.1 (71.2–82.6) | <0.0001 | 0.514 |
Pre-frail (13) | 76.2 ± 24.8 (61.2–91.1) | |||
Frail (35) | 48.3 ± 27.1 (38.8–57.2) | |||
General health | Robust (55) | 70.5 ± 13.9 (66.7–74.2) | <0.0001 | 0.002 |
Pre-frail (13) | 62.7 ± 10.1 (56.6–68.8) | |||
Frail (35) | 41.3 ± 25.9 (32.3–50.4) |
Mean ± SD (95% Confidence Interval) | p Overall | p Frail vs. Pre-Frail | ||
---|---|---|---|---|
Hand grip strength (Kg) | Robust (55) | 30.6 ± 1.1 (28.4–32.7) | <0.0001 | 0.695 |
Pre-frail (13) | 23.9 ± 1.4 (21.1–26.8) | |||
Frail (35) | 16.8 ± 5.3 (14.9–18.6) | |||
ASMM (Kg/m2) | Robust (55) | 8.3 ± 3.6 (7.3–9.2) | 0.855 | 0.800 |
Pre-frail (13) | 7.7 ± 1.3 (6.8 ± 8.5) | |||
Frail (35) | 8.0 ± 4.0 (6.6–9.4) | |||
SPPB (score/30) | Robust (55) | 9 ± 1.6 (8.5–9.4) | <0.0001 | <0.0001 |
Pre-frail (13) | 8 ± 1.2 (7.4–8.8) | |||
Frail (35) | 3.3 ± 2.5 (2.5–4.2) | |||
TUG (sec) | Robust (55) | 11 ± 3 (10.3–12.0) | <0.0001 | <0.0001 |
Pre-frail (13) | 11 ± 1 (10.3–11.8) | |||
Frail (35) | 20 ± 9 (17–23.5) | |||
Tinetti (score/28) | Robust (55) | 26 ± 3 (25–26.8) | <0.0001 | <0.0001 |
Pre-frail (13) | 24 ± 3 (22.5–26.3) | |||
Frail (35) | 15 ± 7 (12.5–17.5) |
Variable | Sarcopenic Frail or Pre-Frail (19) | Non Sarcopenic Frail or Pre-Frail (29) | p-Value |
---|---|---|---|
Age | 81 ± 3 (79–82) | 78 ± 6 (76–80) | 0.059 |
Gender | 42%(F) 58%(M) | 45% (F) 55% (M) | 0.556 |
FI | 0.28 ± 0.1 (0.2–0.3) | 0.22 ± 0.1 (0.2–0.3) | 0.125 |
BMI | 22.1 ± 5 (19.7–24.5) | 25.5 ± 4.5 (23.8–27.3) | 0.018 |
MNA | 18.7 ± 5.6 (16.0–21.4) | 22.9 ± 5.4 (20.9–24.9) | 0.012 |
Phase (°) | 4.4± 1.0(3.7–5.2) | 7.4 ± 1.2 (5.6–9.2) | 0.023 |
Numbers of drugs assumed daily | 5 ± 3 (3.6–6.4) | 4.5 ± 2.2 (3.7–5.4) | 0.591 |
CIRS | 13.8 ± 5.0 (11.3–16.3) | 12.4 ± 5.0 (10.5–14.3) | 0.356 |
ADL (number of lost functions) | 1 ± 1.7 (0.15–1.85) | 0.88 ± 1.7 (0.38–1.37) | 0.618 |
IADL (number of functions) | 8 ± 4 (6–10) | 11 ± 4 (9–12) | 0.051 |
GDS-30 | 13.4 ± 7.8 (10.4–16.4) | 17.2 ± 7.8 (13.4–21.0) | 0.109 |
MMSE | 26.4 ± 1.6 (26.3–27.2) | 27.0 ± 1.5 (26.4–27.6) | 0.188 |
Tinetti | 13.4 ± 6.4 (10.3–16.4) | 20.3 ± 7.3 (17.5–23.1) | 0.002 |
TUG | 21.6 ± 10.5 (16.2–27.0) | 14.8 ± 5.5 (12.5–17.0) | 0.008 |
Chair test | 20.4 ± 4.7 (17.0–23.7) | 16.5 ± 6.6 (13.4–19.6) | 0.106 |
BMD lumbar spine (gr/cm2) | 0.856 ± 0.196 (0.758–0.953) | 0.972 ± 0.238 (0.882–1.06) | 0.088 |
BMD femoral neck(gr/cm2) | 0.173 ± 0.129 (0.772–0.887) | 0.830 ± 0.148 (0.772–0.887) | 0.009 |
SDI | 0.78 ± 0.3 (0.2–1.36) | 1.1 ± 0.8 (0.05–2.0) | 0.444 |
Calcium (mMol/L) | 2.2 ± 0.1 (2.1–2.3) | 2.3 ± 0.2 (2.2–2.3) | 0.127 |
Phosphate (mMol/L) | 0.9 ± 0.2 (0.8–1.0) | 1.0 ± 0.2 (0.9–1.1) | 0.462 |
PTH (pg/mL) | 42.9 ± 15.7 (35.1–50.68) | 58.2 ± 37.6 (43.9–73.0) | 0.108 |
25OHvitaminD | 16.2 ± 6.9 (12.8–19.7) | 21.3 ± 12.7 (16.4–26.1) | 0.129 |
P1NP (pg/mL) | 360.9 ± 224.9 (241.1–480.8) | 443.9 ± 223.6 (342.1–545.6) | 0.272 |
OC (ng/mL) | 14.2 ± 9.8 (9.0 ± 19.4) | 13.8 ± 7.2 (10.5–17.0) | 0.869 |
TRAP5b (UI/mL) | 10.1 ± 3.7 (8.9–11.4) | 10.3 ± 3.6 (8.7–11.9) | 0.862 |
Mean ± SD (95% Confidence Interval) | p Overall | p Frail vs. Pre Frail | ||
---|---|---|---|---|
Calcium (mMol/L) | Robust (55) | 2.3 ± 0.1 (2.2–2.3) | 0.009 | 0.011 |
Pre-frail (13) | 2.4 ± 0.1 (2.3–2.4) | |||
Frail (35) | 2.2 ± 0.2 (2.2–2.3) | |||
Phosphate (mMol/L) | Robust (55) | 1.0 ± 0.1 (0.9–1.0) | 0.020 | 0.018 |
Pre-frail (13) | 1.1 ± 0.1 (1.0–1.1) | |||
Frail (35) | 0.9 ± 0.2 (0.8–1.0) | |||
PTH (pg/mL) | Robust (55) | 55.2 ± 24.0 (48.7–61.7) | 0.565 | 0.414 |
Pre-frail (13) | 46.2 ± 14.4 (37.4–54.9) | |||
Frail (35) | 54.7 ± 36.1 (42.1–67.3) | |||
TRAP5b (IU/mL) | Robust (55) | 9.5 ± 3.5 (8.4–10.6) | 0.422 | 0.470 |
Pre-frail (13) | 8.9 ± 4.5 (4.8–13.0) | |||
Frail (35) | 10.5 ± 3.6 (9.2–11.8) | |||
P1NP pg/mL | Robust (55) | 477.3 ± 192.9 (416.4–538.2) | 0.359 | 0.614 |
Pre-frail (13) | 409.0 ± 263.5 (165.3–652.6) | |||
Frail (35) | 409.0 ± 217.6 (327.8–491.2) | |||
OC (ng/mL) | Robust (55) | 15.1 ± 6.1 (13.1–17.0) | 0.440 | 0.284 |
Pre-frail (13) | 16.6 ± 11.3 (6.2–27.1) | |||
Frail (35) | 13.3 ± 7.5 (10.5–16.1) | |||
25OHvitaminD (ng/mL) | Robust (55) | 17.9 ± 9.3 (15.4–20.5) | 0.072 | 0.631 |
Pre-frail (13) | 24.0 ± 14.3 (15.4–32.7) | |||
Frail (35) | 17.5 ± 9.2 (14.3–20.7) | |||
BMD femoral neck (g/cm2) | Robust (55) | 0.853 ± 0.163 (0.807–0.898) | 0.020 | 0.058 |
Pre-frail (13) | 0.855 ± 0.181 (0.740–0.970) | |||
Frail (35) | 0.759 ± 0.133 (0.712–0.806) | |||
BMD lumbar spine (g/cm2) | Robust (55) | 1.006 ± 0.199 (0.952–1.060) | 0.165 | 0.651 |
Pre-frail (13) | 0.952 ± 0.258 (0.797–1.108) | |||
Frail (35) | 0.918± 0.219 (0.842–0.995) | |||
SDI (score) | Robust (55) | 0.95 ± 1.5 (0.53–1.36) | 0.671 | 0.690 |
Pre-frail (13) | 1.00 ± 1.73 (0.05–2.05) | |||
Frail (35) | 1.26 ±1.96 (0.58–1.95) |
A—Model 1: adjusted R square = 0.693, p < 0.001 | |||||
Introduced Variables | Standardized Beta | t | p | 95% Confidence Interval | Partial Correlation |
SPPB (score/30) | −0.080 | −0.701 | 0.486 | −0.010; 0.005 | −0.040 |
TUG (sec) | −0.146 | −1.285 | 0.202 | −0.005; 0.001 | −0.074 |
Hand grip strength (Kg) | 0.154 | 2.044 | 0.044 | 0.001; 0.066 | 0.117 |
GDS (score/30) | 0.345 | 4.392 | <0.001 | 0.003; 0.007 | 0.252 |
MMSE (score/30) | −0.021 | −0.311 | 0.756 | −0.010; 0.007 | −0.018 |
MNA (score/30) | −0.097 | −0.963 | 0.338 | −0.006; 0.002 | −0.055 |
Tinetti (score/28) | −0.496 | −4.182 | <0.001 | −0.012;−0.179 | −0.240 |
Calcium (mmol/L) | 0.089 | 1.234 | 0.221 | −0.042;−0.179 | 0.071 |
Phosphate (mmol/L) | −0.130 | −1.694 | 0.094 | −0.165; 0.013 | −0.097 |
BMD femoral neck (g/cm2) | 0.014 | 0.224 | 0.823 | −0.070; 0.088 | 0.013 |
Fat mass (%) | 0.068 | 0.922 | 0.359 | −0.001; 0.004 | 0.053 |
B—Model 2: adjusted R square = 0.736, p < 0.001 | |||||
Introduced Variables | Standardized Beta | t | p | 95% Confidence Interval | Partial Correlation |
Hand grip strength (Kg) | 0.149 | 2.262 | 0.026 | 0.004; 0.068 | 0.222 |
GDS (score/30) | 0.361 | 5.589 | <0.001 | 0.004; 0.008 | 0.490 |
Tinetti (score/28) | −0.492 | −7.149 | <0.001 | −0.010;−0.006 | −0.584 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattaneo, F.; Buondonno, I.; Cravero, D.; Sassi, F.; D’Amelio, P. Musculoskeletal Diseases Role in the Frailty Syndrome: A Case–Control Study. Int. J. Environ. Res. Public Health 2022, 19, 11897. https://doi.org/10.3390/ijerph191911897
Cattaneo F, Buondonno I, Cravero D, Sassi F, D’Amelio P. Musculoskeletal Diseases Role in the Frailty Syndrome: A Case–Control Study. International Journal of Environmental Research and Public Health. 2022; 19(19):11897. https://doi.org/10.3390/ijerph191911897
Chicago/Turabian StyleCattaneo, Francesco, Ilaria Buondonno, Debora Cravero, Francesca Sassi, and Patrizia D’Amelio. 2022. "Musculoskeletal Diseases Role in the Frailty Syndrome: A Case–Control Study" International Journal of Environmental Research and Public Health 19, no. 19: 11897. https://doi.org/10.3390/ijerph191911897