High Urban-Rural Inequities of Abdominal Obesity in Malawi: Insights from the 2009 and 2017 Malawi Noncommunicable Disease Risk Factors Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type
2.2. Study Population
2.3. Data Collection
2.4. Study Variables
2.4.1. Dependent Variable
2.4.2. Adjustment Variables
2.5. Statistical Analyses
3. Results
3.1. Sociodemographic Characteristics of Study Participants in Malawi in 2009 and 2017
3.2. Prevalence of Abdominal Obesity and Proportion of Adults Requiring Weight Management
4. Discussion
4.1. Key Results
4.2. Trend in Urban and Rural Disparities of Abdominal Obesity
4.3. Implication
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 August 2022).
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Dinsa, G.D.; Goryakin, Y.; Fumagalli, E.; Suhrcke, M. Obesity and socioeconomic status in developing countries: A systematic review. Obes. Rev. 2012, 13, 1067–1079. [Google Scholar] [CrossRef]
- World Urbanization Prospects: The 2018 Revision. Available online: https://population.un.org/wup/publications/Files/WUP2018-Report.pdf (accessed on 5 August 2022).
- Ford, N.D.; Patel, S.A.; Narayan, K.M. Obesity in Low- and Middle-Income Countries: Burden, Drivers, and Emerging Challenges. Annu. Rev. Public Health 2017, 38, 145–164. [Google Scholar] [CrossRef]
- (NCD-RisC), N.R.F.C. Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Hamjane, N.; Benyahya, F.; Mechita, M.B.; Nourouti, N.G.; Barakat, A. The complications of overweight and obesity according to obesity indicators (body mass index and waist circumference values) in a population of Tangier (northern Morocco): A cross-sectional study. Diabetes Metab. Syndr. 2019, 13, 2619–2624. [Google Scholar] [CrossRef]
- Howel, D. Trends in the prevalence of abdominal obesity and overweight in English adults (1993-2008). Obesity 2012, 20, 1750–1752. [Google Scholar] [CrossRef]
- Hu, L.; Huang, X.; You, C.; Li, J.; Hong, K.; Li, P.; Wu, Y.; Wu, Q.; Wang, Z.; Gao, R.; et al. Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. PLoS ONE 2017, 12, e0183934. [Google Scholar] [CrossRef]
- Lukács, A.; Horváth, E.; Máté, Z.; Szabó, A.; Virág, K.; Papp, M.; Sándor, J.; Ádány, R.; Paulik, E. Abdominal obesity increases metabolic risk factors in non-obese adults: A Hungarian cross-sectional study. BMC Public Health 2019, 19, 1533. [Google Scholar] [CrossRef] [Green Version]
- Martins-Silva, T.; Vaz, J.D.S.; Mola, C.L.; Assunção, M.C.F.; Tovo-Rodrigues, L. Prevalence of obesity in rural and urban areas in Brazil: National Health Survey, 2013. Rev. Bras. Epidemiol. 2019, 22, e190049. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Kim, Y.H.; Han, K.; Jung, J.H.; Rhee, E.J.; Lee, S.S.; Kim, D.J.; Lee, K.W.; Lee, W.Y. Obesity Fact Sheet in Korea, 2019: Prevalence of Obesity and Abdominal Obesity from 2009 to 2018 and Social Factors. J. Obes. Metab. Syndr. 2020, 29, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Huang, J.; Wang, J.; Chan, P.S.F.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.X.; Lao, X.Q.; Zheng, Z.J. Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 2020, 35, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Engle-Stone, R.; Nankap, M.; Ndjebayi, A.O.; Friedman, A.; Tarini, A.; Brown, K.H.; Kaiser, L. Prevalence and predictors of overweight and obesity among Cameroonian women in a national survey and relationships with waist circumference and inflammation in Yaoundé and Douala. Matern. Child Nutr. 2018, 14, e12648. [Google Scholar] [CrossRef]
- Msyamboza, K.P.; Kathyola, D.; Dzowela, T. Anthropometric measurements and prevalence of underweight, overweight and obesity in adult Malawians: Nationwide population based NCD STEPS survey. Pan Afr. Med. J. 2013, 15, 108. [Google Scholar] [CrossRef]
- Price, A.J.; Crampin, A.C.; Amberbir, A.; Kayuni-Chihana, N.; Musicha, C.; Tafatatha, T.; Branson, K.; Lawlor, D.A.; Mwaiyeghele, E.; Nkhwazi, L.; et al. Prevalence of obesity, hypertension, and diabetes, and cascade of care in sub-Saharan Africa: A cross-sectional, population-based study in rural and urban Malawi. Lancet Diabetes Endocrinol. 2018, 6, 208–222. [Google Scholar] [CrossRef]
- Soares, A.L.G.; Banda, L.; Amberbir, A.; Jaffar, S.; Musicha, C.; Price, A.J.; Crampin, A.C.; Nyirenda, M.J.; Lawlor, D.A. A comparison of the associations between adiposity and lipids in Malawi and the United Kingdom. BMC Med. 2020, 18, 181. [Google Scholar] [CrossRef]
- Malawi GoTRo: Health Sector Strategic Plan II (2017–2022). In Ministry of Health Lilongwe; Government of the Republic of Malawi: Lilongwe, Malawi, 2017.
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Malawi Go: National Multi-Sector Nutrition Policy 2018–2022; Government of Malawi, Department of Nutrition, HIV and AIDS: Lilongwe, Malawi, 2018.
- Shen, C.; Zhou, Z.; Lai, S.; Tao, X.; Zhao, D.; Dong, W.; Li, D.; Lan, X.; Gao, J. Urban-rural-specific trend in prevalence of general and central obesity, and association with hypertension in Chinese adults, aged 18–65 years. BMC Public Health 2019, 19, 661. [Google Scholar] [CrossRef]
- Ntandou, G.; Delisle, H.; Agueh, V.; Fayomi, B. Abdominal obesity explains the positive rural-urban gradient in the prevalence of the metabolic syndrome in Benin, West Africa. Nutr. Res. 2009, 29, 180–189. [Google Scholar] [CrossRef]
- World Health Organization. WHO STEPS Surveillance Manual: The WHO STEPwise Approach to Chronic Disease Risk Factor Surveillance; 9241593830; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- World Health Organization. Waist Circumference and Waist-Hip Ratio; Report of a Who Expert Consultation; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.; Han, T.S.; Morrison, C.E. Waist circumference as a measure for indicating need for weight management. BMJ 1995, 311, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Pampel, F.C.; Denney, J.T.; Krueger, P.M. Obesity, SES, and economic development: A test of the reversal hypothesis. Soc. Sci. Med. 2012, 74, 1073–1081. [Google Scholar] [CrossRef]
- Tillotson, J.E. America’s obesity: Conflicting public policies, industrial economic development, and unintended human consequences. Annu. Rev. Nutr. 2004, 24, 617–643. [Google Scholar] [CrossRef] [PubMed]
- Ladabaum, U.; Mannalithara, A.; Myer, P.A.; Singh, G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am. J. Med. 2014, 127, 717–727.e12. [Google Scholar] [CrossRef] [PubMed]
- Suter, P.M. Is alcohol consumption a risk factor for weight gain and obesity? Crit. Rev. Clin. Lab. Sci. 2005, 42, 197–227. [Google Scholar] [CrossRef]
- Olatunbosun, S.T.; Kaufman, J.S.; Bella, A.F. Central Obesity in Africans: Anthropometric Assessment of Abdominal Adiposity and its Predictors in Urban Nigerians. J. Natl. Med. Assoc. 2018, 110, 519–527. [Google Scholar] [CrossRef]
- Yayehd, K.; Pessinaba, S.; N’cho-Mottoh, M.; Prevalence and Determinants of Adult Obesity in a Low-Income Population of Western Africa: Results from a Nationwide Cross-Sectional Survey. Obesity & Control Therapies: Open Access. 2017. Available online: https://www.researchgate.net/publication/319443358_Prevalence_and_Determinants_of_Adult_Obesity_in_a_Low-Income_Population_of_Western_Africa_Results_from_a_Nationwide_Cross-Sectional_Survey (accessed on 5 August 2022).
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V. Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan Municipality, South Africa: A cross-sectional study. J. Health Popul. Nutr. 2017, 36, 54. [Google Scholar] [CrossRef] [PubMed]
- Cisse, K.; Samadoulougou, S.; Ouedraogo, M.; Kouanda, S.; Kirakoya-Samadoulougou, F. Prevalence of abdominal obesity and its association with cardiovascular risk among the adult population in Burkina Faso: Findings from a nationwide cross-sectional study. BMJ Open 2021, 11, e049496. [Google Scholar] [CrossRef]
- Kabwama, S.N.; Kirunda, B.; Mutungi, G.; Wesonga, R.; Bahendeka, S.K.; Guwatudde, D. Prevalence and correlates of abdominal obesity among adults in Uganda: Findings from a national cross-sectional, population based survey 2014. BMC Obes. 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990-2017: Results from the Global Burden of Disease Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef]
- Cameron, A.J.; Zimmet, P.Z. Expanding evidence for the multiple dangers of epidemic abdominal obesity. Circulation 2008, 117, 1624–1626. [Google Scholar] [CrossRef]
- Zhang, C.; Rexrode, K.M.; van Dam, R.M.; Li, T.Y.; Hu, F.B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: Sixteen years of follow-up in US women. Circulation 2008, 117, 1658–1667. [Google Scholar] [CrossRef]
- Agyapong, N.A.F.; Annan, R.A.; Apprey, C.; Aduku, L.N.E. Body Weight, Obesity Perception, and Actions to Achieve Desired Weight among Rural and Urban Ghanaian Adults. J. Obes. 2020, 2020, 7103251. [Google Scholar] [CrossRef] [PubMed]
- Gradidge, P.J.; Golele, P.; Cohen, E. Body weight perceptions and obesity amongst university employed South African women. Women Health 2020, 60, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Choukem, S.P.; Kengne, A.P.; Nguefack, M.L.; Mboue-Djieka, Y.; Nebongo, D.; Guimezap, J.T.; Mbanya, J.C. Four-year trends in adiposity and its association with hypertension in serial groups of young adult university students in urban Cameroon: A time-series study. BMC Public Health 2017, 17, 499. [Google Scholar] [CrossRef]
- Janzon, E.; Namusaazi, S.; Bolmsjö, I. Increasing obesity in Ugandan women due to transition from rural to urban living conditions? A qualitative study on traditional body image, changed lifestyles and unawareness of risk for heart disease. J. Res. Obes. 2015, 2015, 213083. [Google Scholar] [CrossRef]
- Puoane, T.; Fourie, J.M.; Shapiro, M.; Rosling, L.; Tshaka, N.C.; Oelefse, A. ‘Big is beautiful’—An exploration with urban black community health workers in a South African township. S. Afr. J. Clin. Nutr. 2005, 18, 6–15. [Google Scholar] [CrossRef]
- Lassek, W.D.; Gaulin, S.J. Changes in body fat distribution in relation to parity in American women: A covert form of maternal depletion. Am. J. Phys. Anthropol. 2006, 131, 295–302. [Google Scholar] [CrossRef]
- Toth, M.J.; Tchernof, A.; Sites, C.K.; Poehlman, E.T. Effect of menopausal status on body composition and abdominal fat distribution. Int. J. Obes. 2000, 24, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Jura, M.; Kozak, L.P. Obesity and related consequences to ageing. Age 2016, 38, 23. [Google Scholar] [CrossRef] [PubMed]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
Characteristics | 2009 | 2017 | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Rural (n = 4124) | Urban (n = 584) | p Value | Rural (n = 2438) | Urban (n = 616) | p Value | 2009 | 2017 | p Value | |
Sex | <0.001 | 0.004 | 0.006 | ||||||
Men | 51.9 | 41.3 | 50.4 | 38.3 | 50.7 | 49.0 | |||
Women | 48.1 | 58.7 | 49.6 | 61.7 | 49.3 | 51.0 | |||
Age (years) | <0.001 | 0.14 | <0.001 | ||||||
25–34 | 43.6 | 53.2 | 40.1 | 46.9 | 44.7 | 40.8 | |||
35–44 | 25.5 | 23.6 | 32.9 | 28.7 | 25.3 | 32.4 | |||
45–54 | 18.6 | 12.6 | 16.9 | 16.3 | 17.9 | 16.8 | |||
55–64 | 12.3 | 10.6 | 10.2 | 8.1 | 12.1 | 9.9 | |||
Marital status | 0.25 | <0.001 | <0.001 | ||||||
Single | 24.3 | 21.4 | 23.5 | 34.6 | 23.9 | 24.7 | |||
Married | 75.7 | 78.6 | 76.5 | 65.4 | 76.1 | 75.3 | |||
Level of education | <0.001 | <0.001 | <0.001 | ||||||
No Schooling | 22.8 | 13.4 | 12.6 | 6.1 | 21.7 | 11.9 | |||
Primary | 64.0 | 49.8 | 68.6 | 43.1 | 62.4 | 65.8 | |||
Secondary/higher | 13.2 | 36.8 | 18.8 | 50.8 | 15.9 | 22.4 | |||
Profession | 0.001 | 0.031 | 0.11 | ||||||
Unemployed | 49.1 | 60.9 | 43.4 | 53.2 | 49.6 | 55.5 | |||
Employed | 50.9 | 39.1 | 56.6 | 46.8 | 50.4 | 44.5 |
Characteristics * | 2009 | 2017 | Total | |||
---|---|---|---|---|---|---|
Rural | Urban | Rural | Urban | 2009 | 2017 | |
All | 24.4 (23.4–25.4) | 24.6 (23.3–25.8) | ||||
Sex | ||||||
Men | 2.3 (1.5–3.1) | 18.1 (11.6–24.5) | 2.7 (1.5–3.4) | 11.8 (7.6–16.0) | 3.6 (2.7–4.5) | 4.1 (3.0–5.2) |
Women | 40.4 (38.5–42.3) | 62.0 (57.3–66.7) | 39.2 (36.6–41.7) | 60.3 (55.7–64.9) | 43.7 (41.9–45.5) | 43.7 (41.5–45.9) |
Age | ||||||
25–34 | 18.3 (16.8–19.9) | 34.1 (29.8–38.4) | 19.2 (17.0–21.4) | 28.5 (24.0–32.9) | 20.9 (19.5–22.4) | 21.4 (19.4–23.3) |
35–44 | 23.1 (21.1–25.2) | 49.0 (40.3–57.8) | 21.5 (19.0–24.1) | 37.5 (31.3–43.7) | 26.0 (23.9–28.0) | 24.8 (22.4–27.1) |
45–54 | 27.6 (25.0–30.2) | 43.4 (31.8–54.9) | 25.3 (22.2–28.4) | 48.4 (40.6–56.2) | 28.9 (26.3–31.4) | 30.2 (27.2–33.2) |
55–64 | 25.4 (22.5–28.3) | 39.7 (28.4–51.2) | 24.5 (20.7–28.4) | 52.0 (42.3–61.7) | 26.9 (24.0–29.7) | 28.8 (25.0–32.6) |
Marital status | ||||||
Single | 20.8 (18.7–22.8) | 41.8 (28.8–54.7) | 18.9 (16.6–21.2) | 34.0 (28.4–39.7) | 22.7 (20.6–24.9) | 22.1 (19.9–24.3) |
Married or cohabiting | 22.6 (21.3–23.9) | 41.6 (37.2–45.9) | 23.0 (21.1–24.7) | 38.1 (34.1–42.1) | 25.2 (23.9–26.4) | 26.0 (24.4–27.6) |
Level of education | ||||||
No schooling | 21.3 (19.3–23.2) | 32.7 (23.7–41.7) | 21.3 (17.1–25.5) | 30.4 (21.9–38.8) | 22.1 (20.1–24.0) | 22.9 (19.0–26.7) |
Primary school | 22.6 (21.2–23.9) | 35.1 (30.2–40.0) | 20.8 (19.1–22.5) | 33.1 (28.7–37.5) | 24.0 (22.7–25.3) | 22.7 521.1–24.3) |
Secondary/higher school | 26.2 (21.3–31.1) | 57.0 (50.3–63.7) | 29.0 (24.3–33.6) | 42.2 (37.7–46.7) | 36.0 (32.2–39.8) | 35.1 (32.2–38.0) |
Profession | ||||||
Unemployed | 22.9 (21.1–24.6) | 42.1 (37.1–47.0) | 22.9 (20.3–25.4) | 39.2 (34.9–43.5) | 25.7 (24.1–27.3) | 27.4 (25.2–29.6) |
Employed | 21.4 (20.1–22.8) | 35.0 (30.2–39.8) | 20.4 (18.7–22.1) | 33.2 (28.3–38.2) | 23.1 (21.9–24.4) | 22.4 (20.8–24.0) |
Characteristics * | 2009 | 2017 | Total | |||
---|---|---|---|---|---|---|
Rural | Urban | Rural | Urban | 2009 | 2017 | |
All | 8.4 (7.7–9.1) | 11.0 (10.1–12.0) | ||||
Sex | ||||||
Men | 0.6 (0.2–1.0) | 4.5 (1.0–7.9) | 0.4 (0.1–0.9) | 4.9 (2.0–7.7) | 0.9 (0.5–1.4) | 1.2 (0.6–1.8) |
Women | 13.2 (11.9–14.5) | 28.6 (24.1–33.0) | 15.6 (13.7–17.4) | 36.8 (32.2–41.3) | 15.4 (14.1–16.6) | 20.2 (18.4–22.0) |
Age | ||||||
25–34 | 4.7 (3.7–5.5) | 12.2 (9.4–15.1) | 6.3 (4.8–7.7) | 15.3 (11.7–18.9) | 6.0 (5.1–6.9) | 8.5 (7.1–9.9) |
35–44 | 7.9 (6.4–9.3) | 16.9 (11.6–22.2) | 9.8 (7.8–11.7) | 22.8 (17.2–28.3) | 9.1 (7.7–10.5) | 12.5 (10.6–14.4) |
45–54 | 10.3 (8.4–12.2) | 27.1 (16.6–37.6) | 10.7 (8.2–13.1) | 27.5 (20.9–34.0) | 11.7 (9.7–13.6) | 14.3 (11.8–16.7) |
55–64 | 10.1 (7.9–12.3) | 20.4 (11.7–29.2) | 8.6 (6.0–11.2) | 33.0 (23.1–42.9) | 11.2 (9.1–13.3) | 12.3 (9.5–15.2) |
Marital status | ||||||
Single | 5.4 (4.4–6.4) | 10.8 (6.8–14.8) | 7.0 (5.4–8.5) | 22.0 (16.9–27.2) | 6.0 (5.0–7.0) | 10.1 (8.5–11.7) |
Married | 8.0 (7.1–8.9) | 19.1 (15.6–22.5) | 9.2 (7.9–10.5) | 20.8 (17.3–24.3) | 9.5 (8.6–10.4) | 11.6 (10.3–12.8) |
Level of education | ||||||
No Schooling | 6.0 (4.8–7.2) | 13.5 (7.6–19.4) | 5.9 (3.4–8.8.3) | 18.8 (10.6–27.1) | 6.6 (5.4–7.8) | 8.1 (5.4–10.8) |
Primary School | 7.5 (6.6–8.4) | 14.4 (11.1–17.7) | 7.7 (6.5–8.9) | 18.5 (14.6–22.4) | 8.3 (7.5–9.2) | 9.4 (8.2–10.5) |
Secondary/higher School | 8.7 (4.8–12.5) | 28.1 (21.6–34.5) | 17.9 (13.7–22.2) | 26.1 (21.8–30.4) | 15.9 (12.3–19.6) | 21.1 (18.3–24.0) |
Profession | ||||||
Unemployed | 8.1 (6.8–9.2) | 19.1 (15.1–23.0) | 8.9 (7.1–10.7) | 22.9 (18.9–26.8) | 9.8 (8.6–11.0) | 12.9 (11.2–14.7) |
Employed | 6.5 (5.6–7.4) | 13.5 (10.1–16.9) | 8.0 (6.7–9.1) | 20.9 (16.6–25.1) | 7.4 (6.5–8.2) | 10.0 (8.8–11.2) |
Variable | 2009 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
cPR (95% CI) | p-Value | aPR * (95% CI) | p-Value | cPR (95% CI) | p-Value | aPR * (95% CI) | p-Value | |
Primary outcome | ||||||||
Residence | <0.001 | <0.001 | <0.001 | <0.001 | ||||
Rural | 1 | 1 | 1 | 1 | ||||
Urban | 1.84 (1.61–2.09) | 1.51 (1.36–1.67) | 1.79 (1.51–2.12) | 1.48 (1.23–1.77) | ||||
Secondary outcome | ||||||||
Residence | <0.001 | <0.001 | <0.001 | <0.001 | ||||
Rural | 1 | 1 | 1 | 1 | ||||
Urban | 2.40 (1.87–3.07) | 1.98 (1.58–2.47) | 2.72 (2.11–3.48) | 2.03 (1.56–2.62) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadoulougou, S.; Diallo, M.; Cissé, K.; Ngwasiri, C.; Aminde, L.N.; Kirakoya-Samadoulogou, F. High Urban-Rural Inequities of Abdominal Obesity in Malawi: Insights from the 2009 and 2017 Malawi Noncommunicable Disease Risk Factors Surveys. Int. J. Environ. Res. Public Health 2022, 19, 11863. https://doi.org/10.3390/ijerph191911863
Samadoulougou S, Diallo M, Cissé K, Ngwasiri C, Aminde LN, Kirakoya-Samadoulogou F. High Urban-Rural Inequities of Abdominal Obesity in Malawi: Insights from the 2009 and 2017 Malawi Noncommunicable Disease Risk Factors Surveys. International Journal of Environmental Research and Public Health. 2022; 19(19):11863. https://doi.org/10.3390/ijerph191911863
Chicago/Turabian StyleSamadoulougou, Sékou, Mariam Diallo, Kadari Cissé, Calypse Ngwasiri, Leopold Ndemnge Aminde, and Fati Kirakoya-Samadoulogou. 2022. "High Urban-Rural Inequities of Abdominal Obesity in Malawi: Insights from the 2009 and 2017 Malawi Noncommunicable Disease Risk Factors Surveys" International Journal of Environmental Research and Public Health 19, no. 19: 11863. https://doi.org/10.3390/ijerph191911863
APA StyleSamadoulougou, S., Diallo, M., Cissé, K., Ngwasiri, C., Aminde, L. N., & Kirakoya-Samadoulogou, F. (2022). High Urban-Rural Inequities of Abdominal Obesity in Malawi: Insights from the 2009 and 2017 Malawi Noncommunicable Disease Risk Factors Surveys. International Journal of Environmental Research and Public Health, 19(19), 11863. https://doi.org/10.3390/ijerph191911863