You are currently viewing a new version of our website. To view the old version click .
  • Systematic Review
  • Open Access

14 September 2022

The Barriers to and Facilitators of Physical Activity and Sport for Oceania with Non-European, Non-Asian (ONENA) Ancestry Children and Adolescents: A Mixed Studies Systematic Review

,
,
,
,
and
1
School of Education and Social Work, Faculty of Arts and Social Sciences, The University of Sydney, Sydney, NSW 2006, Australia
2
Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
3
Faculty of Education and Arts, Australian Catholic University, Strathfield, NSW 2135, Australia
4
Sydney Conservatorium of Music, Faculty of Arts and Social Sciences, The University of Sydney, Sydney, NSW 2006, Australia
This article belongs to the Section Health Behavior, Chronic Disease and Health Promotion

Abstract

Background: Participation in sport and physical activity (PA) leads to better overall health, increased life expectancy, and decreased mortality rates across the lifespan; however, there may be a range of individual, family, and community factors that influence PA participation among ONENA children and adolescents residing in the 22 Pacific Island Countries and Territories (PICT) and Australia. This review aimed to synthesise existing quantitative and qualitative literature regarding barriers to and facilitators of PA and sport among ONENA youth. Methods: The literature was systematically searched to include studies reporting barriers to and facilitators of PA and sports participation among ONENA children and adolescents aged 0–18 years residing in the 22 PICT and Australia. Using a pre-established taxonomy based on the social-ecological model, a deductive analysis was performed. Quality appraisal was performed using the mixed methods appraisal tool. Results: Of 1388 articles, 14 studies were included, with 128 ONENA children and adolescent participants across the four qualitative studies; 156,581 ONENA children and adolescents across the seven quantitative studies; 801 parents, children, and adolescents in one quantitative study; and 642 parents in two quantitative studies. Of the 14 included studies, none were based in Australia and only 10 of the 22 PICT were reported as the participants’ residence: Palau, New Zealand, Tonga, Cook Islands, Kiribati, Samoa, Solomon Islands, Tuvalu, Vanuatu, and Fiji. Four studies reported barriers, and another four studies reported facilitators of PA and sport, with the remaining studies reporting both barriers and facilitators. Overall, there were more barriers reported (30 in total) than facilitators (27 in total). Conclusions: Research in this area is lacking, with ONENA youth living in Australia and 12 PICT not represented. Overall, there were a larger number of facilitators experienced at individual and interpersonal levels, while barriers were highest at the community level, with the policy level having facilitators and barriers equally represented. Programs that offer PA and sport participation options with embedded SDT-informed strategies for all family members; that are accessible through existing transport and related social, cultural, and physical infrastructure; and that are committed to communities through formal co-design partnerships are needed, to enhance the PA and sport participation of ONENA youth residing in PICT.

1. Introduction

Engagement in regular physical activity (PA) is associated with better overall health, increased life expectancy, and decreased mortality rates lifelong [1,2,3]. Regular PA reduces the risk for cardiovascular disease [4], Type II diabetes [5,6], certain type of cancers [7], and obesity [4,5,6,7,8]. Moreover, engagement in regular physical activity is associated with better mental health outcomes [9].
Children and adolescents should do at least an average of 60 min of moderate-to-vigorous intensity PA per day, in addition to muscle strengthening PA at least 3 days a week [10]. However, research on children and adolescents’ PA shows that the overall PA levels tend to be lower than PA recommendations, decline with age, and are substantially lower for girls and those from low socioeconomic status (SES) groups [4,11,12]. As such, it is essential to continue the research on the factors that facilitate or inhibit PA in adolescent populations. A recent updated systematic review of the qualitative literature on adolescents’ perspectives of the barriers to and facilitators of PA (a total of ~1250 adolescents from 13 countries), reported five influencing factors: (1) individual factors (e.g., psychological—motivation, self—efficacy; cognitive—knowledge, understanding; physical—motor skills); (2) social and relational factors (e.g., family, friends, significant others); (3) PA nature factors (e.g., fun, school-based PA and physical education); (4) life factors (e.g., time and competing activities; life-course); and (5) sociocultural and environmental factors (e.g., availability/access to PA facilities, programs; urban/rural zones) [13].
Several other notable reviews have also contributed to the study of PA in adolescent populations, further clarifying the barriers to and facilitators of PA in specific youth demographics [13,14,15,16,17]. In brief, some of the prevalent PA barriers identified across these four reviews were related to: (1) lack of fun, motivation, and perception of competence; (2) body image and gender bias in sport and PA; (3) lack of support from family, friends, and significant others; (4) negative experiences in PA and physical education contexts; (5) competition and highly structured PA opportunities; and (6) limited environmental opportunities. Conversely, the primary facilitators of PA in young people were reported to be (1) positive attitudes towards PA; (2) fun, motivation, and perception of competence; (3) positive perception of body image and challenging stereotypes; (4) friends, family, and significant other support for PA; (5) positive experiences in physical education and PA; (6) a safe environment; and (7) access to PA programs and recreational infrastructures. However, these reviews have focused on only specific youth demographics, such as those residing in the UK [14,15], young females [16], children with disabilities [17], or from urban contexts and high-income economy countries [13]. The literature from low- or middle-income economy countries is sparse, especially in the Pacific region.
A substantive amount of research on the facilitating or hindering factors of PA participation has come from correlates and determinants in quantitative approaches [18,19,20,21]. By combining the findings of qualitative studies in reviews, quantitative research can canvas a comprehensive overview of the essential elements to fully capture the extent and depth of the complexity of PA behaviour, and its interdependence within and across different levels and contexts. Together, qualitative and quantitative data will be able to inform and update further large-scale quantitative studies and scalable interventions.
Populations living in the Pacific are generally described using the generic and vague terminology “Pacific Islanders” and are delineated into three main geographic areas: Micronesia, Polynesia, and Melanesia. Due to the geographical dispersion in the south Pacific regions and recent influences from either Anglo-Saxon or French colonisations (post World War 2), there is incomplete information on the lifestyles, health and wellness of people living in the south Pacific region. Misrepresentations of Pacific Islanders in cohort studies and epidemiological surveys have led to persistent underestimations of their population size. However, if we consider all people living in Oceania with Non-European, Non-Asian (ONENA) ancestry, then there is a population of 11.6 million people across 22 Pacific Island Countries and Territories (PICT) [22]. While we recognise the diversity of populations and cultures living in the Pacific and the need to consider communities in their context, with their own knowledges and practices, it is also important to recognise that, as a whole, the ONENA people represent a very large group (see Figure 1).
Figure 1. Oceania and relative estimates of population subgroups. Adapted from [23].
Over the past two decades, the region has experienced a major shift in disease burden: non-communicable diseases (NCDs) have overtaken communicable diseases, with the prevalence of NCD risk factors in the Pacific region ranking among the highest in the world [24,25,26]. The leading NCD risk factors in the Pacific Island region have been identified as unhealthy diets, physical inactivity, tobacco use, and alcohol misuse [27,28,29]. While NCDs account for 60% of global deaths [30], NCDs account for ~75% of all recorded deaths in the Pacific region [27]. A significant proportion of NCD morbidity, disability, and premature deaths within the region could be prevented through population-based PA interventions, even though current prevalence rates of PA among the ONENA population are not reported [31]. In 2012, a stocktake of PA programs in the PICT’s, found 84 PA initiatives had been conducted in 20 PICT’s, with 17 of these initiatives implemented in a school setting [31]. However, an evaluation of program efficacy found that these school-based PA programs were limited by low participation rates and reach. Only two studies conducted in New Caledonia showed the effectiveness of a digital PA intervention among ONENA adolescents [32], as well as the influence of socioeconomic status, place of living (e.g., tribal, rural, urban), ethnicity (European, ONENA, Asian), and safety in urban areas on PA for adolescents [32,33,34,35]. Therefore, little is known about the barriers to and facilitators of PA faced by ONENA adolescents residing in PICT and Australia.
There may be a range of individual, family, and community factors that can influence participation in PA for ONENA children and adolescents [29,32,36]. Various models such as the social-ecological model have been used to explore barriers to and facilitators of PA [4], as the model explores the interactive effects of individual, interpersonal, institutional, and community features, as well as public policy, on behaviour. In a narrative review conducted by May [37], a social-ecological model was used to further evaluate how individual engagement in PA was influenced by cultural and environmental factors, and vice versa. For example, macro-social factors including colonialism, discrimination, and dispossession were identified as negatively impacting on Aboriginal and Torres Strait Islander health. Conversely, at the individual level, some urban Aboriginal and Torres Strait Islander young people reported that they used PA to manage stress. Differing cultural views on PA and exercise were identified: From a Western perspective, the concept of exercise was related to an individual taking care of their health, whereas engagement in PA for Aboriginal and Torres Strait Islander People was more related to social roles and communal activities [38]. Economic and social disadvantage were identified as limiting opportunities for young Aboriginal and Torres Strait Islander People to participate in sport and PA. While barriers and facilitators were not systematically explored in May’s [37] review, it does highlight the complex interaction of social-ecological levels that affect Aboriginal and Torres Strait Islander participation in PA [38] and provides insights that might be relevant for other first nation populations, such as ONENA people residing in the PICT.
The present systematic review aims to address the aforementioned gaps by (1) synthesising the findings of existing research that focused on the barriers to, and facilitators of, participating in PA and sport for ONENA children and adolescents (0–18 years of age) living in the PICT and Australia; and (2) evaluating the quality of the studies conducted. To the authors knowledge, this is the first published review to synthesise the barriers to and facilitators of sport/PA participation among ONENA children and adolescents residing in PICT, and of Australia (but not including Aboriginal and Torres Strait Islander people, due to recent reviews with this sub-population group [37,38]). The findings have the potential to inform practice through supporting the development of future experimental PA and sport studies and program evaluations designed with and for ONENA children and adolescents residing in PICT and Australia.

2. Methodology

2.1. Protocol and Registration

This systematic review was pre-registered with the International Prospective Register of Systematic Reviews (PROSPERO) (registration number: CRD42021290746) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [39].

2.2. Eligibility Criteria

To be included in the review, original research articles needed to be published in English in a peer-reviewed journal, with a protocol that followed an observational (e.g., cross-sectional, cohort, case control, qualitative) or experimental (e.g., acute or experimental randomized or quasi trial) study design. Our original search included articles published between 1 January 1946 (after World War 2) and 31 August 2021. Reviews, protocol papers and conference abstracts were excluded.
Additional eligibility criteria were established using Population, Intervention or Exposures, Comparator, and Outcome (PICO) study criteria [40]. Articles were included if they reported on populations in early childhood (birth through 6 years at baseline) and up to the end stage of adolescence (18 years of age). Articles were also included if adults (parents/family/community members and service providers) reported on barriers to and facilitators of PA on behalf of children and adolescent individuals (0–18 years of age). Exposures for observational studies included participation in physical activity (i.e., any bodily movement that resulted in energy expenditure), sport, leisure activities, or fitness (e.g., cardiorespiratory or muscular fitness). Exposures for experimental studies included acute bouts (i.e., a single session) of physical activity or a physical activity or fitness intervention. Comparators were defined as the non-exposed group (e.g., less physically active compared with more physically active) or the participant sample (e.g., qualitative study) in observational studies; and the standard care, alternative condition, or intervention group(s) in experimental studies. Outcome variables were objective or subjective measures of correlates, facilitators, barriers, and socioecological factors.

2.3. Information Sources and Search Strategy

A systematic literature search was conducted using Boolean strategies, with a predefined list of keywords (i.e., various terms for physical activity, cognition, school readiness skills, and youth) in PubMed, PsycINFO, Sports Discus, ERIC, MedlinePlus, and Scopus. A manual search was also conducted using citation chaining of the included studies. Our list of search terms was developed from a compilation of key terms used in PA and youth review papers [13,16,41] and through refinement during preliminary searches (e.g., search terms were assessed for comparability across databases). Specific search terms used were
Populations: “pacific island*”, “oceanic ancestry group”, “small island developing state*”, polynesia*, micronesia*, melanesia*, Pasifika* PLUS the name of the 21 PICs AND keywords kid* OR child* OR adolescent* OR student* OR “young people” OR “youth” OR teen* OR “high school” OR “middle school” OR minor* OR juvenile* AND Contexts: Sport* OR Recreation OR “Physical Activ*” OR Exercis* OR Fitness* OR “sport program*” OR “physical education” OR active OR movement OR leisure OR inactive AND Outcomes: correlate* OR determinant* OR facilitator* OR barrier* OR “factor influen*” OR “socio-ecological factors” OR “psychosocial factor*” OR “environmental factor*” AND Study methods: “evidence-based” OR effective* OR treatment* OR intervention* OR outcome* OR “experimental stud*” OR “quasi-experiment*” OR “case stud*” OR “case-control stud*” OR “cross-sectional” OR “cohort stud*” OR observational OR “promising practice*” OR “randomized control trial*” OR interview* OR “focus group*” OR narrative* OR qualitative OR survey OR “pre-experiment*” OR evaluation OR perspective* OR voice* OR experience* OR “grounded theory”.
Results from each database were imported into the reference manager software, EndNote X9 (EndNote. Endnote X9 Software; Clarivate Analytics: Philadelphia, PA, USA, 2013). These references were then imported into the online review platform, Covidence (Veritas Health Innovation, Melbourne). After duplicates were automatically removed, five authors independently screened the titles and abstracts of all included studies. A full text document was obtained for each article that met the initial screening criteria and then independently reviewed by two authors. Conflicts resulting during these stages were resolved either via consensus or by an independent reviewer. Literature was excluded during full text screening if full texts were not available.

2.4. Data Extraction

Two independent reviewers used a standardised form to extract methodological, demographic, and results data. Data were extracted on child/youth characteristics (number of participants, participant age range, gender), the location and funding of studies, study aims and outcomes, methods, and reported barriers and facilitators. Due to the inclusion of studies that used qualitative and quantitative designs, a meta-analysis of the data was deemed inappropriate. A descriptive narrative synthesis was chosen as the most relevant and suitable method of data synthesis for this review.
Data were extracted using the social-ecological model proposed by May [37], which categorised barriers to and facilitators of PA into four levels (using the socio-ecological framework): (1) Individual: characteristics including, but not limited to, personal attitudes, motivations, and self-efficacy; (2) Interpersonal: family, friends, peers, and other social support systems, as well as connection with social and cultural practices; (3) Community: the provision of sport and PA programs, facilities, resources, and transport. Climate, safety, and environment factors were also included in this category; and (4) Policy: government policy and programs, and community led programs.
The following characteristics were extracted by two independent authors: (1) first author’s name, publication year, country, and funding; (2) study aim; (3) study design and theoretical framework; (4) sample characteristics; (5) data collection and analysis procedures; and (6) study results. For the results section, a thematic analysis was conducted to determine the main themes that had been reported as barriers to and facilitators of PA [42]. This analysis involved six phases: (1) familiarisation with the data; (2) generation of initial codes; (3) identification of themes; (4) refinement of themes; (5) definition and naming of themes; and (6) production of the report. Inductive coding was undertaken by the first author and RC. A coding framework was developed by synthesising the code lists of the two independent authors, with any discrepancies between codes being resolved via author consensus. Any units of texts that were not coded during this process were discussed by the two authors, with new codes being created if necessary, thus refining and expanding the coding framework. Deductively, codes were placed under the relevant level within the social-ecological framework.

2.5. Quality Appraisal

Two independent reviewers critically assessed the methodological quality and risk of bias of the included studies using the mixed methods appraisal tool (MMAT) [43]. The MMAT was chosen for this review as it is appropriate for the appraisal of the included qualitative, quantitative, and mixed methods studies. This appraisal included two screening questions for all study types and five questions for each individual study design. These questions assessed the quality of the included studies through the evaluation of the study aims and designs, recruitment strategies, data collection methods, data analysis methods, presentation and discussion of findings, and final conclusions. Studies were scored using percentages (0–100%). Any discrepancies were discussed until a consensus was reached.

3. Results

3.1. Study Selection

Database search results included 2152 studies. These studies were imported into Covidence (Clarivate Analytics), where 764 duplicates were then automatically removed. The remaining 1388 studies were then screened according to the title and abstract for relevance, resulting in another 1278 studies being eliminated. The full texts of the remaining 110 studies were then screened, leading to another 96 studies being excluded. The main reason for exclusion was that most studies (n = 68) did not report on ONENA children and adolescents. Other reasons for exclusion are identified in Figure 2. After screening, 14 studies were selected for final data extraction and risk of bias assessment.
Figure 2. PRISMA flow diagram for study selection.

3.2. Study Characteristics

Table 1 shows the characteristics of all 14 included articles, which represent studies published between 2006 and 2020 that reported on the barriers of and facilitators to participating in PA and sport for ONENA children and adolescents (0–18 years of age) living in the PICT and Australia. Most studies measured and reported barriers and facilitators using qualitative methods (n = 9) [44,45,46,47,48,49,50,51,52] and thematic analysis (n = 4) [53,54,55,56]. The remaining study did not disclose its analysis method [57].
Table 1. Summary of the included qualitative and quantitative studies reporting barriers and facilitators associated with sport/PA participation.

3.3. Participants

There were 134 participants in total, which included 128 ONENA children and adolescent participants, across the four qualitative studies (the other 6 participants were research intervention managers and assistants) [56]; 156,581 ONENA children and adolescents across the seven quantitative studies [44,45,46,47,49,51,52]; 801 parents, children, and adolescents in one quantitative study (study did not report separate sample participant numbers for parents and children) [50]; and 642 parents in two quantitative studies [47,48]. Of the 12 studies with children and adolescent participant samples [44,45,46,47,49,50,51,52,53,54,55,57], only one included participants less than 11 years of age (8–12 year old participants; [53]). Only 10 of the 22 PICT were reported as the participant locations of residence, including: Palau [57], New Zealand [45,46,47,48,53,54], Tonga [44,49,51], Cook Islands [49], Kiribati [49,51], Samoa [49,50,51,52], Solomon Islands [49,51], Tuvalu [49,51], Vanuatu [49,51,55], and Fiji [51,56].
Six studies were conducted in New Zealand, which is considered a high-income country (Countries and Economies. Available online: https://data.worldbank.org/country (accessed on 31 January 2022)), with one other study being conducted in Palau, another recognised high-income country (Countries and Economies. Available online: https://data.worldbank.org/country [accessed on 31 January 2022]). The remaining studies were conducted in lower income countries, including two studies with upper-middle income economies (Tonga and Fiji), three with lower-middle income economies (Samoa, Solomon Islands, and Vanuatu), and two studies with lower income economies (Tuvalu and Kiribati) (Countries and Economies. Available online: https://data.worldbank.org/country [accessed on 31 January 2022]).

3.4. Quality Appraisal

Table 2 shows the quality appraisal ratings of the included studies. All the studies scored over a 60% quality rating, with ten of the fourteen studies scoring 100% [44,45,46,47,48,49,51,52,54,55]. The remaining four studies scored 60% (n = 2) [50,56], and 80% (n = 2) [53,57]. Overall, the included articles were considered moderate–high quality.
Table 2. MMAT quality appraisal results.

3.5. Barriers and Facilitators

Table 3 displays the barriers and facilitators using the social-ecological model (See Methods). Four studies reported barriers to [44,45,49,56], and facilitators of [47,48,52,55] PA and sport. There were seven individual, six interpersonal, 15 community, and two policy level barriers; and nine individual, ten interpersonal, six community and two policy level facilitators. Overall, there were more barriers reported (30 in total) than facilitators (27 in total). When focusing on studies conducted in high income countries only [45,46,47,48,53,54,57], the barriers outnumbered the facilitators (19 to 16). The studies conducted in middle to high income countries [44,56] highlighted two facilitators and no barriers, with low to middle and low-income countries reporting a greater number of barriers compared with facilitators (11 to 10).
Table 3. Barriers (B) and facilitators (F) to physical activity and sport in a socioecological framework and each study.
At the individual level, the facilitators outnumbered the barriers (9 to 7) and were mainly derived from two studies [53,54]. Fun and engaging physical activities were the most popular individual facilitators, as reported by children, adolescents, and their parents [53,54]. These activities were preferred over organised sport or structured activities [53]. The other six facilitators included preferential activities (e.g., preferred to be active rather than engaged in household chores), positive self-esteem, feelings of achievement, physical health benefits (i.e., gaining strength), improved physical appearance, and mood and confidence. These facilitators were all reported by the same two studies [53,54]. Lack of time and energy, low interest, discomfort (e.g., sweatiness), and transportation difficulties were the most common barriers. These barriers were reported in six of the 14 studies [45,46,48,50,52,53].
At the interpersonal level, the facilitators outnumbered the barriers (11 to 6). Facilitators were reported in eight studies [45,48,49,50,51,54,56,57], and barriers were reported in five studies [47,48,50,51,53]. The most important facilitators for ONENA children and adolescents were parental support and involvement in physical activity decisions [48,49,50,51], and the promotion of physical activity from friends and other role models [50,54,57]. Other facilitators included walking to school [45] and the connection of physical activities with cultural practices (e.g., traditional dance or involvement of the church) [50,56]. The barriers were, in some cases, similar to the facilitators. Two studies reported that having inactive friends, no friends, or being bullied by peers were barriers to being engaged in PA and sport [48,51]. In another study, cultural practices that promoted activity were also seen as a barrier [50]. Other barriers included financial struggles, difficulties in getting to PA venues [53], and heavy schoolbags that restricted active transportation [47].
At the community level, there were 15 reported barriers and six facilitators. Barriers at the community level included limited access to indoor sporting facilities [57], distance between sporting facilities and living/household locations [54], inadequate footpaths and cycle lanes [48,50], and limited organised or structured activities for all age-groups within the population [54,57]. Other barriers included safety concerns, such as general safety within communities and on the road [45,48,50,53,54], and a fear of dogs and dog bites [50,52]. Physical environment barriers included the hot climate [45,57]. The facilitators for PA and sport at the community level included PA support from medical practitioners [50], integration of sociocultural factors into PA and sporting programs (e.g., traditional dancing) [44], and supportive community and cultural leaders that provide youths with physically active role models [50,53,55].
At the policy level, there were two barriers to and two facilitators of PA and sport. The most common facilitators included the continuity of PA and sport program provision [54], and physical education classes being scheduled five days/week during school hours [51]. In contrast, food insecurity [51] and village curfews [50] were barriers for regular engagement in PA and sport.

4. Discussion

This review synthesised the current literature focusing on the barriers to and facilitators of PA and sports participation for ONENA children and adolescents living in PICT. There were no studies that focused on ONENA children and adolescents (excluding Aboriginal and Torres Strait Islander children and adolescents) residing in Australia and barriers to and facilitators of engagement in PA and sport. Half of the studies were conducted in high income countries such as New Zealand (n = 6) and Palau (n = 1), with the remaining half from countries with lower-medium income economies, as defined by the World Bank (Countries and Economies. Available online: https://data.worldbank.org/country (accessed on 31 January, 2022)). This study focused on the identification of barriers to and facilitators of PA for ONENA youth living in PICT at each level of the social-ecological model. From this process, there were a lower number of total facilitators, compared with barriers (27 versus 30) reported across the included studies. However, there were a larger number of facilitators experienced at the individual and interpersonal levels, with barriers highest at the community level. At the policy level, facilitators and barriers were equally represented.
Fun and engaging physical activities, which are non-organised/unstructured, were the most popular individual level facilitators that would encourage ONENA children and adolescents to engage in regular physical activity, as reported by children and adolescents themselves, as well as their parents. This finding is similar to a small group of studies within Martins and colleagues’ [13] updated systematic review of qualitative studies reporting barriers to and facilitators of PA for adolescents. Three of the 30 studies included in the Martins et al. [13] review noted that adolescents found that informal/unstructured and inclusive PA experiences facilitated engagement in PA [58,59,60], due to the activities being new, diversified, adventurous, and fun. Other individual level facilitators were experienced when the children and adolescents were engaged in PA and sport, and therefore several PA benefits were noted related to physical and mental health, including positive self-esteem, feelings of achievement, improved body image, fitness, strength, and mood. These were identified by children and adolescents in eight studies in Martin’s [13] systematic review [61,62,63,64,65,66,67,68], thus highlighting that children and adolescents’ motivational profiles are an important consideration for facilitating PA and sport and that educating young people for a lifetime of PA needs to consider motivation and meaning [69]. The application of motivational theories, such as self-determination theory (SDT), in PA or sport program development is encouraged, where there is growing evidence that, when implemented appropriately, SDT-informed pedagogical approaches can empower young people’s basic psychological needs (i.e., autonomy, competence, and relatedness) and the promotion of democratic and inclusive PA and sport experienced [70,71,72]. The most reported barriers were related to low interest and discomfort (due to sweatiness and clothing), as well as lack of motivation and time. Even though the motivational barriers were addressed through SDT-informed practices, the additional barriers to participation in PA identified (e.g., discomfort) show how the complex interactions of individual and cultural factors can be strong determinants of the personal behaviour of individuals. May’s [37] mixed studies systematic review, focusing on determining the barriers to and facilitators of physical activity and sports participation in Aboriginal and Torres Strait Islander children, highlighted the need to consider the specific cultural milieu and contexts of individuals. This also applies to ONENA children and adolescents residing in PICT. Each PICT presents its own cultural context, and to ensure that PA and sport programs are suitable, designers and practitioners need to find out from ONENA young people in each of these contexts where and what kinds of PA they are most comfortable participating in, and the appropriate timing during the day and session length, as well as suitable clothing. Furthermore, not having enough time to regularly do PA was related to the time required for family and cultural duties and other conflicting obligations. This is supported by several studies in Martins’ [13] review, where family duties were increased for those young people from ethnic minorities or those living in lower to middle income economy countries [63,64,65,68,73].
Family and friends who were active was one of the most reported facilitators at the interpersonal level; and if they were inactive this was a barrier. This highlights the importance of participation in PA and sport for ONENA children and adolescents, and their respective family members; in that they act as role models. This was also supported by May’s [37] review, which highlighted the need for adult level barriers and facilitators to be considered in future research, due to their influence on young people. For example, providing family PA and sporting opportunities, and adult sport and PA options, where parents and other family members can interact and participate together, provides support and encouragement. At the same time, transportation barriers will be overcome. In addition, ONENA young people in PICT are more likely to engage in PA and sport if the PA and sport experience have strong connections with cultural practices, such as traditional dance or involvement of the church. Addressing sociocultural factors in PA and sport programs (such as traditional, cultural dance) in PICT and having community and cultural leaders as role models and facilitators is an important recommendation for overcoming interpersonal and community level barriers and enhancing facilitators.
At the community level, barriers far outweighed facilitators. The barriers to participation in PA and sport included lack of access to sporting facilities, large distances between sporting facilities and residential areas, inadequate footpaths and cycle lanes, reduced number of organised PA opportunities and sport programs, and transport to and from venues. Living in a “hot and sweaty” climate was an additional barrier for many ONENA young people living in PICTs. Again, this finding is supported by Martins et al.’s [13] and May et al.’s [37] review, as well as a recent study aiming to determine the effects of heat on children and early adolescents’ physiological responses [74], in which there are several physical and physiological barriers experienced by young people who live in hot or tropical climates. Another barrier experienced by ONENA youth was safety, which led to the facilitators that highlighted the importance of parent and community member engagement with youth in PA and sport. This finding is supported by another study conducted with adolescents living in rural and urban New Caledonia (a PICT), which indicated that safety was an important driver for engagement in PA, particularly for younger children and adolescent females [35].
Adolescents living in Samoa voiced, not only general safety and road safety as barriers, similar with other international research focusing on adolescents and PA [75,76], but fear of dogs and dog bites [50,51,52]. Few studies have focused on dogs and dog bites in decreasing or limiting adolescents’ PA levels outside of Samoa, and therefore future PA promoting programs in Samoa should consider this barrier and design alternatives to engaging in PA in external locations for adolescents (e.g., use internal community facilities).
It is not surprising that the facilitators for PA and sport at the community level included medical and doctor support, addressing sociocultural factors in PA and sport programs, and having community and cultural leaders as role models and facilitators. Using these facilitators, future PA and sport programs for ONENA youth in PICT need to consider co-design processes, implement PA and sport programs that are readily accessible for all community members (not just youth) to improve safety and enhance role modelling, accessed by medical support to encourage community members to participate safely, and are connected to a central location that celebrates culture (e.g., church).
The continuity of programs and village curfews were a barrier, and, as such, program provision with curfew-free times was a facilitator, even if these programs were designed and implemented by others. This contrasts with May et al.’s [37] findings that “welfarism”, where communities were disempowered by external organizations’ coordinating programs, was a barrier to PA and sport engagement in Australian Aboriginal communities. Another facilitator for PA at the policy level was if PE was offered five days/week during school hours, with this supported by several international studies [13,77,78]. Other barriers to engagement in PA and sport included food insecurity. As shown in several recent studies, food insecurity reduces PA engagement for youth and families [79,80,81]. In Fram and colleagues’ [79] study, children with the highest level of food insecurity participated in 17 min/d less PA compared with those children who were food secure. This was supported in To and colleagues’ [81] study, where they reported that food insecure children did less moderate to vigorous PA, and food insecure adults were less likely to adhere to PA guidelines than those without food insecurity. In Gunter et al.’s [80] study, after adjusting for education, race, ethnicity, and eligibility for federal meal programs, readiness to encourage and provide opportunities for PA was significantly lower among food insecure families who resided in rural areas. Therefore, future PA and sport program designers and practitioners should consider food security, especially when co-designing with communities who reside in rural, remote, and/or low to middle income countries, and when determining program designs and assessment of child health and well-being.
Although every effort was made to ensure the rigour of this mixed-methods systematic review, by registering the review with PROSPERO, using the PRISMA guidelines [39] and an established quality appraisal tool [43], as well as an ecological theoretical framework to capture facilitators and barriers (as used in previous research [13,37]), future research focusing on physical activity promotion with youth may need to consider adopting the social determinants framework proposed by the Centers for Disease Control and Prevention (CDC) Healthy People 2020 [82]. The social determinants framework categorizes facilitators and barriers via the social determinants of health (i.e., economic stability, education, food, neighbourhood and physical environment, community and social context, and healthcare system) [82]. As the social determinants are specific and contextually relevant across and within countries, each determinant can be explored in greater depth individually and then collectively to capture the interactions and complexity of youth PA promotion.

5. Conclusions

Programs which offer PA and sport participation options with embedded SDT-informed strategies for all family members; that are accessible through existing transport and related social, cultural, and physical infrastructure; and are committed to communities through formal partnerships are needed. There are unique barriers in PICT including climate, safety, and food security factors, and a lack of (ongoing) sporting and PA programs, which will need targeted approaches to overcome.

Author Contributions

L.R.P. had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: L.R.P., R.L.C., W.C., S.M., O.G. and C.C. Acquisition, analysis, or interpretation of data: L.R.P., R.L.C. and W.C. Drafting of the manuscript: L.R.P., R.L.C., S.M., O.G. and C.C. Critical revision of the manuscript for important intellectual content: all authors. All authors have read and agreed to the published version of the manuscript.

Funding

There were no funding sources for this manuscript, however L.R.P, O.G and C.C are members of the University of Sydney Charles Perkins Centre Node: Children and adolescents’ health and wellbeing in the Pacific.

Institutional Review Board Statement

University ethics approval not needed as this is a review paper.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; De Gonzalez, A.B.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef] [PubMed]
  2. Balish, S.M.; Deaner, R.O.; Rathwell, S.; Rainham, D.; Blanchard, C. Gender equality predicts leisure-time physical activity: Benefits for both sexes across 34 countries. Cogent Psychol. 2016, 3, 1174183. [Google Scholar] [CrossRef]
  3. Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed]
  4. Sallis, J.F.; Floyd, M.F.; Rodrıguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef]
  5. Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes. Diabetes Care 2010, 33, e147–e167. [Google Scholar] [CrossRef]
  6. Copeland, K.C.; Silverstein, J.; Moore, K.R.; Prazar, G.E.; Raymer, T.; Shiffman, R.N.; Springer, S.C.; Thaker, V.V.; Anderson, M.; Spann, S.J.; et al. Management of newly diagnosed type 2 diabetes mellitus (T2DM) in children and adolescents. Pediatrics 2013, 131, 364–382. [Google Scholar] [CrossRef]
  7. Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T.; et al. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012, 62, 30–67. [Google Scholar] [CrossRef]
  8. Wilks, D.C.; Besson, H.; Lindroos, A.K.; Ekelund, U. Objectively measured physical activity and obesity prevention in children, adolescents and adults: A systematic review of prospective studies. Obes Rev. 2011, 12, e119–e129. [Google Scholar] [CrossRef]
  9. Biddle, S.J.; Ciaccioni, S.; Thomas, G.; Vergeer, I. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychol. Sport Exerc. 2019, 42, 146–155. [Google Scholar] [CrossRef]
  10. Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
  11. Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
  12. Marques, A.; Henriques-Neto, D.; Peralta, M.; Martins, J.; Demetriou, Y.; Schönbach, D.M.I.; De Matos, M.G. Prevalence of Physical Activity among Adolescents from 105 Low, Middle, and High-Income Countries. Int. J. Environ. Res. Public Health 2020, 17, 3145. [Google Scholar] [CrossRef]
  13. Martins, J.; Costa, J.; Sarmento, H.; Marques, A.; Farias, C.; Onofre, M.; Valeiro, M.G. Adolescents’ Perspectives on the Barriers and Facilitators of Physical Activity: An Updated Systematic Review of Qualitative Studies. Int. J. Environ. Res. Public Health 2021, 18, 4954. [Google Scholar] [CrossRef]
  14. Allender, S.; Cowburn, G.; Foster, C. Understanding participation in sport and physical activity among children and adults: A review of qualitative studies. Health Educ. Res. 2006, 21, 826–835. [Google Scholar] [CrossRef]
  15. Rees, R.; Kavanagh, J.; Harden, A.; Shepherd, J.; Brunton, G.; Oliver, S.; Oakley, A. Young people and physical activity: A systematic review matching their views to effective interventions. Health Educ. Res. 2006, 21, 806–825. [Google Scholar] [CrossRef]
  16. Corr, M.; McSharry, J.; Murtagh, E.M. Adolescent Girls’ Perceptions of Physical Activity: A Systematic Review of Qualitative Studies. Am. J. Health Promot. 2019, 33, 806–819. [Google Scholar] [CrossRef]
  17. Shields, N.; Synnot, A.J.; Barr, M. Perceived barriers and facilitators to physical activity for children with disability: A systematic review. Br. J. Sports Med. 2012, 46, 989–997. [Google Scholar] [CrossRef]
  18. Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
  19. Ferreira, I.; Van Der Horst, K.; Wendel-Vos, W.; Kremers, S.; Van Lenthe, F.J.; Brug, J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007, 8, 129–154. [Google Scholar] [CrossRef]
  20. Jaeschke, L.; Steinbrecher, A.; Luzak, A.; Puggina, A.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Chantal, S.; et al. Socio-cultural determinants of physical activity across the life course: A ‘Determinants of Diet and Physical Activity’(DEDIPAC) umbrella systematic literature review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–5. [Google Scholar] [CrossRef]
  21. Schmidt, S.C.; Schneider, J.; Reimers, A.K.; Niessner, C.; Woll, A. Exploratory determined correlates of physical activity in children and adolescents: The MoMo study. Int. J. Environ. Res. Public Health 2019, 16, 415. [Google Scholar] [CrossRef]
  22. World Health Organisation. Country Cooperation Strategy at a Glance: Pacific Island Countries. 2013. Available online: https://apps.who.int/iris/bitstream/handle/10665/136831/ccsbrief_pci_en.pdf?sequence=1&isAllowed=y (accessed on 1 September 2021).
  23. Tarantola, A.; Horwood, P.F.; Goarant, C.; Buffière, B.; Bertrand, S.; Merilles, O.E.; Pedron, T.; Klement-Frutos, E.; Sansonetti, P.; Quintana-Murci, L.; et al. Counting oceanians of Non-European, Non-Asian Descent (ONENA) in the South Pacific to make them count in global health. Trop. Med. Infect. Dis. 2019, 4, 114. [Google Scholar] [CrossRef]
  24. Tin, S.T.; Lee, C.M.; Colagiuri, R. A profile of diabetes in Pacific Island Countries and Territories. Diabetes Res. Clin. Pract. 2015, 107, 233–246. [Google Scholar] [CrossRef]
  25. Edwardes, B.; Frizelle, F. Globalisation and its impact on the South Pacific. N. Z. Med. J. 2009, 122, 1291. [Google Scholar]
  26. Khoo, S.; Morris, T. Physical activity and obesity research in the Asia-Pacific: A review. Asia Pac. J. Public Health 2012, 24, 435–449. [Google Scholar] [CrossRef]
  27. Secretariat of the Pacific Community (SPC). PIN—Pacific Islands NCDs: Promoting a healthier Pacific; Secretariat of the Pacific Community: Noumea, New Caledonia, 2010. [Google Scholar]
  28. Secretariat of the Pacific Community (SPC) and World Health Organization for the Western Pacific Region (WPRO). Pacific NCD Forum Meeting Report: 24–28 August 2009, Nadi, Fiji Islands; SPC; WPRO: Noumea, New Caledonia, 2009. [Google Scholar]
  29. Kessaram, T.; McKenzie, J.; Girin, N.; Merilles, O.E.; Pullar, J.; Roth, A.; White, P.; Hoy, D. Overweight, obesity, physical activity and sugar-sweetened beverage consumption in adolescents of Pacific islands: Results from the Global School-Based Student Health Survey and the Youth Risk Behavior Surveillance System. BMC Obes. 2015, 2, 29. [Google Scholar] [CrossRef]
  30. World Health Organization. Noncommunicable Diseases Country Profiles 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
  31. Siefken, K.; Macniven, R.; Schofield, G.; Bauman, A.; Waqanivalu, T. A stocktake of physical activity programs in the Pacific Islands. Health Promot. Int. 2012, 27, 197–207. [Google Scholar] [CrossRef]
  32. Galy, O.; Yacef, K.; Caillaud, C. Improving pacific adolescents’ physical activity toward international recommendations: Exploratory study of a digital education app coupled with activity trackers. JMIR mHealth uHealth 2019, 7, e14854. [Google Scholar] [CrossRef]
  33. Zongo, P.; Frayon, S.; Antoine-Jonville, S.; Wattelez, G.; Le Roux, P.Y.; Hue, O.; Galy, O. Anthropometric characteristics and physical fitness in rural and urban 11-to 16-year-old Melanesian adolescents: A cross-sectional study in New Caledonian Schools. Asia Pac. J. Public Health 2017, 29, 589–598. [Google Scholar] [CrossRef]
  34. Frayon, S.; Wattelez, G.; Paufique, E.; Nedjar-Guerre, A.; Serra-Mallol, C.; Galy, O. Overweight in the pluri-ethnic adolescent population of New Caledonia: Dietary patterns, sleep duration and screen time. Lancet Reg. Health-West. Pac. 2020, 2, 100025. [Google Scholar] [CrossRef]
  35. Wattelez, G.; Frayon, S.; Caillaud, C.; Galy, O. Physical Activity in Adolescents Living in Rural and Urban New Caledonia: The Role of Socioenvironmental Factors and the Association with Weight Status. Front. Public Health 2021, 9, 623685. [Google Scholar] [CrossRef] [PubMed]
  36. Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
  37. May, T.; Dudley, A.; Charles, J.; Kennedy, K.; Mantilla, A.; McGillivray, J.; Wheeler, K.; Elston, H.; Rinehart, N.J. Barriers and facilitators of sport and physical activity for Aboriginal and Torres Strait Islander children and adolescents: A mixed studies systematic review. BMC Public Health 2020, 20, 601. [Google Scholar] [CrossRef] [PubMed]
  38. Abbott, R.; Jenkins, D.; Haswell-Elkins, M.; Fell, K.; MacDonald, D.; Cerin, E. Physical activity of young people in the Torres Strait and northern peninsula region: An exploratory study. Aust. J. Rural Health 2008, 16, 278–282. [Google Scholar] [CrossRef]
  39. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 1–11. [Google Scholar] [CrossRef]
  40. Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
  41. Adams, I.K.; Okoli, C.T.; Krok-Schoen, J.L.; Hartel, L.; Keita, A.D.; Figueroa, W.; Polanin, J.R.; McElfish, P.A.; Kanesiro, M.H. Physical activity among Native Hawaiians and Pacific Islanders: A systematic review and meta-analysis. J. Nutr. Educ. Behav. 2019, 51, 245–258. [Google Scholar] [CrossRef]
  42. Clarke, V.; Braun, V. Thematic analysis. In Encyclopedia of Critical Psychology; Springer: New York, NY, USA, 2014; pp. 1947–1952. [Google Scholar]
  43. Hong, Q.N.; Gonzalez-Reyes, A.; Pluye, P. Improving the usefulness of a tool for appraising the quality of qualitative, quantitative and mixed methods studies, the Mixed Methods Appraisal Tool (MMAT). J. Eval. Clin. Pract. 2018, 24, 459–467. [Google Scholar] [CrossRef]
  44. Mandic, S.; Sandretto, S.; Bengoechea, E.G.; Hopkins, D.; Moore, A.; Rodda, J.; Wilson, G. Enrolling in the Closest School or Not? Implications of school choice decisions for active transport to school. J. Transp. Health 2017, 6, 347–357. [Google Scholar] [CrossRef]
  45. Mandic, S.; Hopkins, D.; Bengoechea, E.G.; Flaherty, C.; Coppell, K.; Moore, A.; Williams, J.; Spence, J.C. Differences in parental perceptions of walking and cycling to high school according to distance. Transp. Res. Part F Traffic Psychol. Behav. 2020, 71, 238–249. [Google Scholar] [CrossRef]
  46. Pengpid, S.; Peltzer, K. Parental involvement, health behaviour and mental health among school-going adolescents in seven Pacific Island countries. J. Hum. Behav. Soc. Environ. 2018, 28, 1068–1077. [Google Scholar] [CrossRef]
  47. Tuagalu, C. Young people’s perceptions and experiences of physical activity in Apia, Samoa. Pac. Health Dialog. 2011, 17, 55–64. [Google Scholar] [PubMed]
  48. Vancampfort, D.; Van Damme, T.; Firth, J.; Smith, L.; Stubbs, B.; Rosenbaum, S.; Hallgren, M.; Hagemann, N.; Koyanagi, A. Correlates of physical activity among 142,118 adolescents aged 12–15 years from 48 low-and middle-income countries. Prev. Med. 2019, 127, 105819. [Google Scholar] [CrossRef] [PubMed]
  49. Vargo, D.; Depasquale, J.M.; Vargo, A.M. Incidence of dog bite injuries in American Samoa and their impact on society. Hawai’i J. Med. Public Health 2012, 71, 6. [Google Scholar]
  50. Hohepa, M.; Schofield, G.; Kolt, G.S. Physical activity: What do high school students think? J. Adolesc. Health 2006, 39, 328–336. [Google Scholar] [CrossRef] [PubMed]
  51. Sheridan, S.A.; Brolan, C.E.; Fitzgerald, L.; Tasserei, J.; Maleb, M.F.; Rory, J.J.; Hill, P.S. Facilitating health and wellbeing is” everybody’s role”: Youth perspectives from Vanuatu on health and the post-2015 sustainable development goal agenda. Int. J. Equity Health 2014, 13, 1–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
  52. Waqa, G.; Moodie, M.; Schultz, J.; Swinburn, B. Process evaluation of a community-based intervention program: Healthy Youth Healthy Communities, an adolescent obesity prevention project in Fiji. Glob. Health Promot. 2013, 20, 23–34. [Google Scholar] [CrossRef]
  53. Mandic, S.; Hopkins, D.; Bengoechea, E.G.; Flaherty, C.; Williams, J.; Sloane, L.; Moore, A.; Spence, J.C. Adolescents’ perceptions of cycling versus walking to school: Understanding the New Zealand context. J. Transp. Health 2017, 4, 294–304. [Google Scholar] [CrossRef]
  54. Mandic, S.; Keller, R.; García Bengoechea, E.; Moore, A.; Coppell, K.J. School bag weight as a barrier to active transport to school among New Zealand adolescents. Children 2018, 5, 129. [Google Scholar] [CrossRef]
  55. Curtis, A.D.; Hinckson, E.A.; Water, T.C. Physical activity is not play: Perceptions of children and parents from deprived areas. N. Z. Med. J. 2012, 125, 38–47. [Google Scholar]
  56. Collier, A.F.; Daiss, S.; Temengil, E.; Russell, S.C.; Miller, J.C.; Renguul, F.M. Developing an obesity intervention in Micronesia: From needs assessment to planning. Eval. Program Plan. 2018, 69, 33–42. [Google Scholar] [CrossRef]
  57. Fotu, K.F.; Millar, L.; Mavoa, H.; Kremer, P.; Moodie, M.; Snowdon, W.; Utter, J.; Vivili, P.; Schultz, J.T.; Malakellis, M.; et al. Outcome results for the Ma’alahi Youth Project, a Tongan community-based obesity prevention programme for adolescents. Obes. Rev. 2011, 12, 41–50. [Google Scholar] [CrossRef]
  58. Laird, Y.; Fawkner, S.; Niven, A. A grounded theory of how social support influences physical activity in adolescent girls. Int. J. Qual. Stud. Health Well-Being 2018, 13, 1435099. [Google Scholar] [CrossRef]
  59. Palmer-Keenan, D.M.; Bair, K. Research to support the development of a campaign to increase physical activity among low-income, urban, diverse, inactive teens. J. Nutr. Educ. Behav. 2019, 51, 703–710. [Google Scholar] [CrossRef]
  60. James, M.; Todd, C.; Scott, S.; Stratton, G.; McCoubrey, S.; Christian, D.; Halcox, J.; Audrey, S.; Ellins, E.; Anderson, S.; et al. Teenage recommendations to improve physical activity for their age group: A qualitative study. BMC Public Health 2018, 18, 372. [Google Scholar] [CrossRef]
  61. Beltrán-Carrillo, V.J.; Devís-Devís, J.; Peiró-Velert, C. The Influence of Body Discourses on Adolescents’ (Non)Participation in Physical Activity. Sport Educ. Soc. 2018, 23, 257–269. [Google Scholar] [CrossRef]
  62. Harris, J.P.; Cale, L.; Duncombe, R.; Musson, H. Young people’s knowledge and understanding of health, fitness and physical activity: Issues, divides and dilemmas. Sport Educ. Soc. 2018, 23, 407–420. [Google Scholar] [CrossRef]
  63. Kinsman, J.; Norris, S.A.; Kahn, K.; Twine, R.; Riggle, K.; Edin, K.; Mathebula, J.; Ngobeni, S.; Monareng, N.; Micklesfield, L.K. A model for promoting physical activity among rural South African adolescent girls. Glob. Health Action 2015, 8, 28790. [Google Scholar] [CrossRef]
  64. Rajaraman, D.; Correa, N.; Punthakee, Z.; Lear, S.A.; Jayachitra, K.G.; Vaz, M.; Swaminathan, S. Perceived Benefits, Facilitators, Disadvantages, and Barriers for Physical Activity Amongst South Asian Adolescents in India and Canada. J. Phys. Act. Health 2015, 12, 931–941. [Google Scholar] [CrossRef]
  65. Stride, A.; Flintoff, A.; Scraton, S. ‘Homing in’: South Asian, Muslim young women and their physical activity in and around the home. Curric. Stud. Health Phys. Educ. 2018, 9, 253–269. [Google Scholar] [CrossRef]
  66. Devís-Devís, J.; Beltrán-Carrillo, V.J.; Peiró-Velert, C. Exploring socio-ecological factors influencing active and inactive Spanish students in years 12 and 13. Sport Educ. Soc. 2013, 20, 361–380. [Google Scholar] [CrossRef]
  67. Borhani, M.; Sadeghi, R.; Shojaeizadeh, D.; Harandi, T.F.; Vakili, M.A. Teenage girls’ experience of the determinants of physical activity promotion: A theory-based qualitative content analysis. Electron. Physician 2017, 9, 5075–5082. [Google Scholar] [CrossRef]
  68. Abdelghaffar, E.A.; Hicham, E.K.; Siham, B.; Samira, E.F.; Youness, E.A. Perspectives of adolescents, parents, and teachers on barriers and facilitators of physical activity among school-age adolescents: A qualitative analysis. Environ. Health Prev. Med. 2019, 24, 21–34. [Google Scholar] [CrossRef]
  69. Ennis, C.D. Educating Students for a Lifetime of Physical Activity: Enhancing Mindfulness, Motivation, and Meaning. Res. Q. Exerc. Sport 2017, 88, 241–250. [Google Scholar] [CrossRef]
  70. Ahmadi, A.; Noetel, M.; Parker, P.; Ryan, R.; Ntoumanis, N.; Reeve, J.; Beauchamp, M.R.; Dicke, T.; Yeung, A.; Ahmadi, M.; et al. A Classification System for Teachers’ Motivational Behaviours Recommended in Self-Determination Theory Interventions. PsyArXiv 2022. [Google Scholar] [CrossRef]
  71. Knittle, K.; Nurmi, J.; Crutzen, R.; Hankonen, N.; Beattie, M.; Dombrowski, S.U. How can interventions increase motivation for physical activity? A systematic review and meta-analysis. Health Psychol. Rev. 2018, 12, 211–230. [Google Scholar] [CrossRef]
  72. Vasconcellos, D.; Parker, P.D.; Hilland, T.; Cinelli, R.; Owen, K.B.; Kapsal, N.; Lee, J.; Antczak, D.; Ntoumanis, N.; Ryan, R.M.; et al. Self-determination theory applied to physical education: A systematic review and meta-analysis. J. Educ. Psychol. 2020, 112, 1444. [Google Scholar] [CrossRef]
  73. Baheiraei, A.; Hamzehgardeshi, Z.; Mohammadi, M.R.; Mohammadi, E.; Nedjat, S. Iranian adolescents’ insufficient physical activity: A mixed methods explanatory sequential study. Int. J. Adolesc. Med. Health 2016, 28, 79–89. [Google Scholar] [CrossRef]
  74. McGarr, G.W.; Saci, S.; King, K.E.; Topshee, S.; Richards, B.J.; Gemae, M.R.; McCourt, E.R.; Kenny, G.P. Heat strain in children during unstructured outdoor physical activity in a continental summer climate. Temperature 2021, 8, 80–89. [Google Scholar] [CrossRef]
  75. Esteban-Cornejo, I.; Carlson, J.A.; Conway, T.L.; Cain, K.L.; Saelens, B.E.; Frank, L.D.; Glanz, K.; Roman, C.G.; Sallis, J.F. Parental and adolescent perceptions of neighborhood safety related to adolescents’ physical activity in their neighborhood. Res. Q. Exer. Sport 2016, 87, 191–199. [Google Scholar] [CrossRef]
  76. Loh, V.H.; Veitch, J.; Salmon, J.; Cerin, E.; Thornton, L.; Mavoa, S.; Villanueva, K.; Timperio, A. Built environment and physical activity among adolescents: The moderating effects of neighborhood safety and social support. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
  77. Silva, D.A.; Chaput, J.P.; Katzmarzyk, P.T.; Fogelholm, M.; Hu, G.; Maher, C.; Olds, T.; Onywera, V.; Sarmiento, O.L.; Standage, M.; et al. Physical education classes, physical activity, and sedentary behavior in children. Med. Sci. Sports Exerc. 2018, 50, 995–1004. [Google Scholar] [CrossRef] [PubMed]
  78. Uddin, R.; Salmon, J.; Islam, S.M.; Khan, A. Physical education class participation is associated with physical activity among adolescents in 65 countries. Sci. Rep. 2020, 10, 22128. [Google Scholar] [CrossRef] [PubMed]
  79. Fram, M.S.; Ritchie, L.D.; Rosen, N.; Frongillo, E.A. Child experience of food insecurity is associated with child diet and physical activity. J. Nutr. 2015, 145, 499–504. [Google Scholar] [CrossRef] [PubMed]
  80. Gunter, K.B.; Jackson, J.; Tomayko, E.J.; John, D.H. Food insecurity and physical activity insecurity among rural Oregon families. Prev. Med. Rep. 2017, 8, 38–41. [Google Scholar] [CrossRef]
  81. To, Q.G.; Frongillo, E.A.; Gallegos, D.; Moore, J.B. Household food insecurity is associated with less physical activity among children and adults in the US population. J. Nutr. 2014, 144, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
  82. Artiga, S.; Hinton, E. Beyond health care: The role of social determinants in promoting health and health equity. Health 2019, 20, 1–13. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.