Correlation between Glycation-Related Biomarkers and Quality of Life in the General Japanese Population: The Iwaki Cross-Sectional Research Study
Abstract
:1. Introduction
2. Participants and Methods
2.1. Participants and Analysis
2.2. Clinical Features
2.3. Diabetes-Related Biomarkers
2.4. QOL Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Health Organization Quality of Life assessment (WHOQOL): Position paper from the World Health Organization. Soc. Sci. Med. 1995, 41, 1403–1409. [CrossRef]
- Ware, J.E., Jr. The status of health assessment 1994. Annu. Rev. Public Health 1995, 16, 327–354. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.R.; Peyrot, M. Quality of life and diabetes. Diabetes Metab. Res. Rev. 1999, 15, 205–218. [Google Scholar] [CrossRef]
- Haraldstad, K.; Wahl, A.; Andenæs, R.; Andersen, J.R.; Beisland, E.; Borge, C.R.; Engebretsen, E.; Esiemann, M.; Halvorsrud, L.; Hanssen, T.A.; et al. A systematic review of quality of life research in medicine and health sciences. Qual. Life Res. 2019, 28, 2641–2650. [Google Scholar] [CrossRef] [Green Version]
- Staquet, M.; Berzon, R.; Osoba, D.; Machin, D. Guidelines for reporting results of quality of life assessments in clinical trials. Qual. Life Res. 1996, 5, 496–502. [Google Scholar] [CrossRef]
- Salomon, J.A.; Wang, H.; Freeman, M.K.; Vos, T.; Flaxman, A.D.; Lopez, A.D.; Murray, C.J.L. Healthy life expectancy for 187 countries, 1990–2010: A systematic analysis for the Global Burden Disease Study 2010. Lancet 2012, 380, 2144–2162. [Google Scholar] [CrossRef]
- Phyo, A.Z.Z.; Freak-Poli, R.; Craig, H.; Gasevic, D.; Stocks, N.P.; Gonzalez-Chica, D.A.; Ryan, J. Quality of life and mortality in the general population: A systematic review and meta-analysis. BMC Public Health 2020, 20, 1596. [Google Scholar] [CrossRef]
- Kassem, L.S.; Aron, D.C. The assessment and management of quality of life of older adults with diabetes mellitus. Expert Rev. Endocrinol. Metab. 2020, 15, 71–81. [Google Scholar] [CrossRef]
- Trikkalinou, A.; Papazafiropoulou, A.K.; Melidonis, A. Type 2 diabetes and quality of life. World J. Diabetes 2017, 8, 120–129. [Google Scholar] [CrossRef]
- Alshayban, D.; Joseph, R. Health-related quality of life among patients with type 2 diabetes mellitus in Eastern Province, Saudi Arabia: A cross-sectional study. PLoS ONE 2020, 15, e0227573. [Google Scholar] [CrossRef]
- Crandall, J.P.; Knowler, W.C.; Kahn, S.E.; Marrero, D.; Florez, J.C.; Bray, G.A.; Haffner, S.M.; Hoskin, M.; Nathan, D.M. Diabetes Prevention Program Research Group. The prevention of type 2 diabetes. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Nouwen, A.; Nefs, G.; Caramlau, I.; Connock, M.; Winkley, K.; Lloyd, C.E.; Peyrot, M.; Pouwer, F. European Depression in Diabetes Research Consortium. Prevalence of depression in individuals with impaired glucose metabolism or undiagnosed diabetes: A systematic review and meta-analysis of the European Depression in Diabetes (EDID) Research Consortium. Diabetes Care 2011, 34, 752–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simó-Servat, O.; Planas, A.; Ciudin, A.; Simó, R.; Hernández, C. Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinol. Diabetes Nutr. 2018, 65, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Nakaji, S.; Ihara, K.; Sawada, K.; Parodi, S.; Umeda, T.; Takahashi, I.; Murashita, K.; Kurauchi, S.; Tokuda, I. Social innovation for life expectancy extension utilizing a platform-centered system used in the Iwaki health promotion project: A protocol paper. SAGE Open Med. 2021, 9, 20503121211002606. [Google Scholar] [CrossRef] [PubMed]
- Tsubokawa, M.; Nishimura, M.; Tamada, Y.; Nakaji, S. Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Healthcare 2022, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Breneman, C.B.; Tucker, L. Dietary fibre consumption and insulin resistance—The role of body fat and physical activity. Br. J. Nutr. 2013, 110, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, S.; Bito, S.; Green, J.; Hsiao, A.; Kurokawa, K. Translation, adaptation, and validation of the SF-36 Health Survey for use in Japan. J. Clin. Epidemiol. 1998, 51, 1037–1044. [Google Scholar] [CrossRef]
- Fukuhara, S.; Ware, J.E., Jr.; Kosinski, M.; Wada, S.; Gandek, B. Psychometric and clinical tests of validity of the Japanese SF-36 Health Survey. J. Clin. Epidemiol. 1998, 51, 1045–1053. [Google Scholar] [CrossRef]
- Mo, F.; Morrison, H.; Choi, B.C.K.; Vardy, L. Evaluation and measurement of health-related quality of life for individuals with diabetes mellitus by Health Utilities Index Mark 3 (HUI3) system. Sci. World J. 2006, 6, 1412–1423. [Google Scholar] [CrossRef] [Green Version]
- Hänninen, J.; Takala, J.; Keinänen-Kiukaanniemi, S. Quality of life in NIDDM patients assessed with the SF-20 questionnaire. Diabetes Res. Clin. Pract. 1998, 42, 17–27. [Google Scholar] [CrossRef]
- Schlotz, W.; Ambery, P.; Syddall, H.E.; Crozier, S.R.; Sayer, A.A.; Cooper, C.; Phillips, D.I.W.; Hertfordshire Cohort Study Group. Specific associations of insulin resistance with impaired health-related quality of life in the Hertfordshire Cohort Study. Qual. Life Res. 2007, 16, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ribu, L.; Hanestad, B.R.; Moum, T.; Birkeland, K.; Rustoen, T. A comparison of the health-related quality of life in patients with diabetic foot ulcers, with a diabetes group and a nondiabetes group from the general population. Qual. Life Res. 2007, 16, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Adriaanse, M.C.; Dekker, J.M.; Spijkerman, A.M.W.; Twisk, J.W.R.; Nijpels, G.; van der Ploeg, H.M.; Heine, R.J.; Snoek, F.J. Diabetes-related symptoms and negative mood in participants of a targeted population-screening program for type 2 diabetes: The Hoorn Screening Study. Qual. Life Res. 2005, 14, 1501–1509. [Google Scholar] [CrossRef]
- Egede, L.E. Effect of comorbid chronic diseases on prevalence and odds of depression in adults with diabetes. Psychosom. Med. 2005, 67, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, A.; Ohta, K.; Obayashi, H.; Fukui, M.; Hasegawa, G.; Nakamura, N.; Kozai, H.; Imai, S.; Ohta, M. Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: Relationship to glucose metabolism and biomarkers of insulin resistance. Clin. Biochem. 2008, 41, 812–817. [Google Scholar] [CrossRef]
- Krabbe, K.S.; Nielsen, A.R.; Krogh-Madsen, R.; Plomgaard, P.; Rasmussen, P.; Erikstrop, C.; Fischer, C.P.; Lindegaard, B.; Petersen, A.M.W.; Taudorf, S.; et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologica 2007, 50, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004, 27, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Castrén, E.; Rantamäki, T. Role of brain-derived neurotrophic factor in the aetiology of depression: Implications for pharmacological treatment. CNS Drugs 2010, 24, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grandy, S.; Chapman, R.H.; Fox, K.M. SHIELD Study Group. Quality of life and depression of people living with type 2 diabetes mellitus and those at low and high risk for type 2 diabetes: Findings from the Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes (SHIELD). Int. J. Clin. Pract. 2008, 62, 562–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroumandi, E.; Alizadeh, M.; Kheirouri, S.; Jafarabadi, M.A. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS ONE 2019, 14, e0213307. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Miyata, T.; Ueda, Y.; Tanaka, H.; Maeda, K.; Kawashima, S.; de Strihou, C.V.Y.; Kurokawa, K. Plasma levels of pentosidine in diabetic patients: An advanced glycation end product. J. Am. Soc. Nephrol. 1998, 9, 1681–1688. [Google Scholar] [CrossRef] [PubMed]
- Kerkeni, M.; Saïdi, A.; Bouzidi, H.; Letaief, A.; Yahia, S.B.; Hammami, M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab. Vasc. Dis. Res. 2013, 10, 239–245. [Google Scholar] [CrossRef]
- Ramasamy, R.; Vannucci, S.J.; Yan, S.S.D.; Herold, K.; Yan, S.F.; Schmidt, A.M. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005, 15, 16R–28R. [Google Scholar] [CrossRef]
- Verrotti, A.; Loiacono, G.; Mohn, A.; Chiarelli, F. New insights in diabetic autonomic neuropathy in children and adolescents. Eur. J. Endocrinol. 2009, 161, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Marumo, K. Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 2010, 21, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kanazawa, I.; Sugimoto, T. Elevated serum pentosidine and decreased serum IGF-I levels are associated with loss of muscle mass in postmenopausal women with type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2016, 124, 163–166. [Google Scholar] [CrossRef]
- Sun, K.; Semba, R.D.; Fried, L.P.; Schaumberg, D.A.; Ferrucci, L.; Varadhan, R. Elevated serum carboxymethyl-lysine, an advanced glycation end product, predicts severe walking disability in older women: The Women’s health and aging study I. J. Aging Res. 2012, 2012, 586385. [Google Scholar] [CrossRef] [Green Version]
- De la Maza, M.P.; Uribarri, J.; Olivares, D.; Hirsch, S.; Leiva, L.; Barrera, G.; Bunout, D. Weight increase is associated with skeletal muscle immunostaining for advanced glycation end products, receptor for advanced glycation end products, and oxidation injury. Rejuvenation Res. 2008, 11, 1041–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriwaki, K.; Matsumoto, H.; Tanimura, C.; Osaki, M.; Nagashima, H.; Hagino, H. Urinary pentosidine level is associated with grip strength and gait speed in community-dwelling adults: A cross-sectional study. BMC Musculoskelet. Disord. 2021, 22, 392. [Google Scholar] [CrossRef]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorthi, R.N.; Avin, K.G. Clinical relevance of sarcopenia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2017, 26, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Avin, K.G.; Moorthi, R.N. Bone is not alone: The effects of skeletal muscle dysfunction in chronic kidney disease. Curr. Osteoporos. Rep. 2015, 13, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsekoura, M.; Kastrinis, A.; Katsoulaki, M.; Billis, E.; Gliatis, J. Sarcopenia and its impact on quality of life. Adv. Exp. Med. Biol. 2017, 987, 213–218. [Google Scholar] [CrossRef]
- Beaudart, C.; Biver, E.; Bruyère, O.; Cooper, C.; Al-Daghri, N.; Reginster, J.Y.; Rizzoli, R. Quality of life assessment in musculo-skeletal health. Aging Clin. Exp. Res. 2018, 30, 413–418. [Google Scholar] [CrossRef]
- Bassi, G.; Mancinelli, E.; Dell’Arciprete, G.; Rizzi, S.; Gabrielli, S.; Salcuni, S. Efficacy of eHealth Interventions for Adults with Diabetes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8982. [Google Scholar] [CrossRef]
Total | (n = 1053) | Males | (n = 430) | Females | (n = 623) | ||
---|---|---|---|---|---|---|---|
Continuous Variables | (Unit) | Mean | (SD) | Mean | (SD) | Mean | (SD) |
Age | (years) | 52.6 | (15.24) | 52.4 | (15.03) | 52.7 | (15.40) |
BMI | (kg/m2) | 23.0 | (3.62) | 24.1 | (3.47) | 22.3 | (3.56) |
HbA1c | (%) | 5.7 | (0.62) | 5.7 | (0.69) | 5.7 | (0.56) |
Glycoalbumin | (%) | 14.6 | (1.96) | 14.4 | (2.33) | 14.7 | (1.64) |
Blood glucose | (mg/dL) | 96.0 | (16.26) | 99.3 | (17.54) | 93.7 | (14.91) |
Blood insulin | (μU/mL) | 5.1 | (2.79) | 5.1 | (3.09) | 5.1 | (2.56) |
HOMA IR | (-) | 1.2 | (0.83) | 1.3 | (0.92) | 1.2 | (0.76) |
Triglyceride | (mg/dL) | 97.7 | (85.08) | 124.6 | (116.91) | 79.1 | (44.39) |
Total cholesterol | (mg/dL) | 204.5 | (34.39) | 201.9 | (34.31) | 206.3 | (34.35) |
HDL cholesterol | (mg/dL) | 65.1 | (16.59) | 58.4 | (14.76) | 69.7 | (16.22) |
LDL cholesterol | (mg/dL) | 116.0 | (29.66) | 116.2 | (29.17) | 115.9 | (30.02) |
ALT | (U/L) | 20.8 | (13.91) | 26.4 | (16.96) | 16.9 | (9.58) |
AST | (U/L) | 21.8 | (7.88) | 23.8 | (8.42) | 20.5 | (7.17) |
γ-GTP | (U/L) | 32.5 | (39.62) | 48.0 | (55.19) | 21.8 | (16.47) |
Creatinine | (mg/dL) | 0.7 | (0.52) | 0.9 | (0.70) | 0.6 | (0.31) |
Urea nitrogen | (mg/dL) | 14.5 | (4.54) | 15.4 | (4.51) | 13.9 | (4.46) |
Plasma pentosidine | (pmol/mL) | 26.6 | (16.09) | 26.2 | (18.66) | 26.9 | (14.04) |
SBP | (mmHg) | 120.8 | (16.96) | 123.9 | (16.86) | 118.7 | (16.71) |
DBP | (mmHg) | 76.9 | (11.36) | 79.6 | (11.54) | 75.0 | (10.83) |
Physical functioning | (points) | 90.3 | (15.31) | 92.1 | (14.02) | 89.1 | (16.04) |
Role physical | (points) | 90.6 | (17.75) | 92.7 | (16.43) | 89.2 | (18.48) |
Bodily pain | (points) | 73.3 | (22.76) | 76.0 | (22.57) | 71.4 | (22.71) |
General health | (points) | 61.3 | (17.55) | 62.3 | (17.07) | 60.6 | (17.85) |
Vitality | (points) | 62.3 | (19.08) | 65.0 | (19.15) | 60.3 | (18.81) |
Social functioning | (points) | 91.6 | (16.08) | 93.0 | (15.12) | 90.6 | (16.65) |
Role emotional | (points) | 91.8 | (17.32) | 92.6 | (17.27) | 91.4 | (17.34) |
Mental health | (points) | 75.3 | (17.02) | 76.8 | (16.88) | 74.3 | (17.05) |
Categorical variables | n | (%) | n | (%) | n | (%) | |
Diabetes mellitus | No | 988 | (93.9%) | 399 | (92.8%) | 589 | (94.7%) |
Yes | 64 | (6.1%) | 31 | (7.2%) | 33 | (5.3%) | |
Hyperlipidemia | No | 872 | (83.0%) | 354 | (82.7%) | 518 | (83.3%) |
Yes | 178 | (17.0%) | 74 | (17.3%) | 104 | (16.7%) | |
High blood pressure | No | 788 | (74.8%) | 301 | (70.0%) | 487 | (78.2%) |
Yes | 265 | (25.2%) | 129 | (30.0%) | 136 | (21.8%) | |
Antihypertensive medication use | No | 807 | (76.6%) | 313 | (72.8%) | 494 | (79.3%) |
Yes | 246 | (23.4%) | 117 | (27.2%) | 129 | (20.7%) | |
Exercising (non-winter seasons) | No | 819 | (77.9%) | 334 | (77.9%) | 485 | (77.8%) |
Yes | 233 | (22.1%) | 95 | (22.1%) | 138 | (22.2%) | |
Exercising (winter season) | No | 817 | (78.1%) | 336 | (78.7%) | 481 | (77.7%) |
Yes | 229 | (21.9%) | 91 | (21.3%) | 138 | (22.3%) | |
Smoking | No | 669 | (64.0%) | 181 | (42.5%) | 488 | (78.7%) |
Current | 180 | (17.2%) | 125 | (29.3%) | 55 | (8.9%) | |
Previous | 197 | (18.8%) | 120 | (28.2%) | 77 | (12.4%) | |
Alcohol consumption | No | 501 | (48.1%) | 121 | (28.3%) | 380 | (61.8%) |
Current | 499 | (47.9%) | 293 | (68.6%) | 206 | (33.5%) | |
Previous | 42 | (4.0%) | 13 | (3.0%) | 29 | (4.7%) |
Characteristics | Univariate | Model 1 | Model 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |||||||
Physical functioning | −0.153 | −0.209 | to | −0.097 | < 0.001 | 0.012 | −0.044 | to | 0.068 | 0.671 | 0.019 | −0.037 | to | 0.075 | 0.499 |
Role physical | −0.101 | −0.167 | to | −0.035 | 0.003 | 0.002 | −0.068 | to | 0.072 | 0.958 | 0.015 | −0.057 | to | 0.087 | 0.685 |
Bodily pain | −0.117 | −0.201 | to | −0.032 | 0.007 | −0.015 | −0.107 | to | 0.078 | 0.756 | 0.009 | −0.084 | to | 0.103 | 0.847 |
General health | −0.140 | −0.205 | to | −0.075 | < 0.001 | −0.107 | −0.179 | to | −0.034 | 0.004 | −0.081 | −0.154 | to | −0.008 | 0.030 |
Vitality | 0.063 | −0.008 | to | 0.134 | 0.080 | −0.018 | −0.096 | to | 0.061 | 0.661 | −0.014 | −0.093 | to | 0.066 | 0.736 |
Social functioning | 0.001 | −0.059 | to | 0.061 | 0.982 | 0.001 | −0.066 | to | 0.068 | 0.972 | 0.005 | −0.064 | to | 0.074 | 0.891 |
Role emotional | −0.005 | −0.070 | to | 0.059 | 0.875 | 0.031 | −0.041 | to | 0.104 | 0.397 | 0.029 | −0.045 | to | 0.103 | 0.438 |
Mental health | 0.030 | −0.033 | to | 0.094 | 0.345 | −0.019 | −0.090 | to | 0.052 | 0.603 | −0.022 | −0.094 | to | 0.050 | 0.544 |
Characteristics | Univariate | Model 1 | Model 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |||||||
Physical functioning | −1.795 | −2.907 | to | −0.684 | 0.002 | 0.373 | −0.786 | to | 1.532 | 0.528 | 0.719 | −0.455 | to | 1.893 | 0.230 |
Role physical | −0.913 | −2.206 | to | 0.380 | 0.166 | −0.040 | −1.499 | to | 1.419 | 0.957 | 0.330 | −1.184 | to | 1.844 | 0.669 |
Bodily pain | −1.431 | −3.088 | to | 0.226 | 0.090 | 0.561 | −1.359 | to | 2.481 | 0.566 | 0.769 | −1.197 | to | 2.734 | 0.443 |
General health | −3.503 | −4.765 | to | −2.241 | < 0.001 | −3.328 | −4.824 | to | −1.832 | < 0.001 | −2.646 | −4.181 | to | −1.111 | 0.001 |
Vitality | −0.135 | −1.526 | to | 1.256 | 0.849 | −0.269 | −1.893 | to | 1.355 | 0.745 | 0.116 | −1.558 | to | 1.791 | 0.892 |
Social functioning | −0.961 | −2.132 | to | 0.210 | 0.107 | −0.470 | −1.861 | to | 0.920 | 0.507 | −0.548 | −1.991 | to | 0.895 | 0.456 |
Role emotional | −1.134 | −2.395 | to | 0.126 | 0.078 | −0.968 | −2.466 | to | 0.531 | 0.206 | −0.783 | −2.333 | to | 0.768 | 0.322 |
Mental health | −0.196 | −1.437 | to | 1.045 | 0.756 | −0.468 | −1.936 | to | 1.000 | 0.532 | −0.387 | −1.901 | to | 1.126 | 0.616 |
Characteristics | Univariate | Model 1 | Model 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |||||||
Physical functioning | −4.859 | −6.333 | to | −3.385 | < 0.001 | −0.728 | −2.156 | to | 0.701 | 0.318 | −0.427 | −1.853 | to | 1.000 | 0.557 |
Role physical | −4.249 | −5.972 | to | −2.527 | < 0.001 | −1.715 | −3.511 | to | 0.081 | 0.061 | −1.320 | −3.156 | to | 0.516 | 0.159 |
Bodily pain | −3.418 | −5.642 | to | −1.195 | 0.003 | −0.505 | −2.872 | to | 1.862 | 0.676 | −0.060 | −2.448 | to | 2.327 | 0.961 |
General health | −4.728 | −6.426 | to | −3.030 | < 0.001 | −3.824 | −5.670 | to | −1.977 | < 0.001 | −3.321 | −5.184 | to | −1.458 | < 0.001 |
Vitality | −0.142 | −2.014 | to | 1.730 | 0.882 | −1.894 | −3.892 | to | 0.105 | 0.063 | −1.636 | −3.666 | to | 0.395 | 0.114 |
Social functioning | −1.325 | −2.901 | to | 0.250 | 0.099 | −1.299 | −3.012 | to | 0.414 | 0.137 | −1.058 | −2.810 | to | 0.693 | 0.236 |
Role emotional | −1.206 | −2.904 | to | 0.492 | 0.164 | −0.438 | −2.287 | to | 1.412 | 0.643 | −0.334 | −2.217 | to | 1.550 | 0.728 |
Mental health | −0.008 | −1.678 | to | 1.662 | 0.992 | −1.055 | −2.864 | to | 0.754 | 0.253 | −1.130 | −2.967 | to | 0.706 | 0.227 |
Characteristics | Univariate | Model 1 | Model 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |||||||
Physical functioning | −1.482 | −1.948 | to | −1.017 | < 0.001 | −0.374 | −0.813 | to | 0.065 | 0.095 | −0.290 | −0.725 | to | 0.145 | 0.191 |
Role physical | −1.543 | −2.084 | to | −1.002 | < 0.001 | −0.659 | −1.210 | to | −0.107 | 0.019 | −0.536 | −1.096 | to | 0.025 | 0.061 |
Bodily pain | −1.062 | −1.763 | to | −0.360 | 0.003 | −0.341 | −1.069 | to | 0.387 | 0.359 | −0.212 | −0.941 | to | 0.517 | 0.569 |
General health | −1.226 | −1.764 | to | −0.687 | < 0.001 | −1.057 | −1.626 | to | −0.488 | < 0.001 | −0.883 | −1.453 | to | −0.313 | 0.002 |
Vitality | 0.041 | −0.550 | to | 0.631 | 0.893 | −0.447 | −1.063 | to | 0.168 | 0.154 | −0.351 | −0.972 | to | 0.270 | 0.268 |
Social functioning | −0.222 | −0.719 | to | 0.276 | 0.382 | −0.295 | −0.822 | to | 0.232 | 0.272 | −0.232 | −0.767 | to | 0.303 | 0.395 |
Role emotional | −0.474 | −1.009 | to | 0.061 | 0.083 | −0.276 | −0.845 | to | 0.292 | 0.341 | −0.227 | −0.803 | to | 0.348 | 0.438 |
Mental health | −0.057 | −0.584 | to | 0.470 | 0.831 | −0.339 | −0.895 | to | 0.218 | 0.233 | −0.323 | −0.885 | to | 0.238 | 0.258 |
Characteristics | Univariate | Model 1 | Model 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |||||||
Physical functioning | −0.143 | −0.200 | to | −0.086 | < 0.001 | −0.040 | −0.093 | to | 0.012 | 0.132 | −0.018 | −0.073 | to | 0.037 | 0.516 |
Role physical | −0.191 | −0.256 | to | −0.125 | < 0.001 | −0.109 | −0.175 | to | −0.044 | 0.001 | −0.112 | −0.182 | to | −0.042 | 0.002 |
Bodily pain | −0.102 | −0.187 | to | −0.016 | 0.019 | −0.042 | −0.129 | to | 0.045 | 0.341 | −0.037 | −0.128 | to | 0.055 | 0.431 |
General health | −0.108 | −0.173 | to | −0.042 | 0.001 | −0.094 | −0.162 | to | −0.025 | 0.007 | −0.093 | −0.164 | to | −0.021 | 0.011 |
Vitality | 0.037 | −0.035 | to | 0.109 | 0.311 | −0.019 | −0.093 | to | 0.054 | 0.608 | −0.002 | −0.080 | to | 0.076 | 0.956 |
Social functioning | −0.057 | −0.117 | to | 0.004 | 0.065 | −0.075 | −0.138 | to | −0.012 | 0.019 | −0.073 | −0.140 | to | −0.006 | 0.033 |
Role emotional | −0.114 | −0.179 | to | −0.049 | 0.001 | −0.103 | −0.171 | to | −0.035 | 0.003 | −0.073 | −0.144 | to | −0.001 | 0.048 |
Mental health | 0.016 | −0.048 | to | 0.080 | 0.629 | −0.015 | −0.082 | to | 0.051 | 0.656 | −0.007 | −0.077 | to | 0.064 | 0.856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsubokawa, M.; Nishimura, M.; Murashita, K.; Iwane, T.; Tamada, Y. Correlation between Glycation-Related Biomarkers and Quality of Life in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Int. J. Environ. Res. Public Health 2022, 19, 9391. https://doi.org/10.3390/ijerph19159391
Tsubokawa M, Nishimura M, Murashita K, Iwane T, Tamada Y. Correlation between Glycation-Related Biomarkers and Quality of Life in the General Japanese Population: The Iwaki Cross-Sectional Research Study. International Journal of Environmental Research and Public Health. 2022; 19(15):9391. https://doi.org/10.3390/ijerph19159391
Chicago/Turabian StyleTsubokawa, Masaya, Miyuki Nishimura, Koichi Murashita, Takuro Iwane, and Yoshinori Tamada. 2022. "Correlation between Glycation-Related Biomarkers and Quality of Life in the General Japanese Population: The Iwaki Cross-Sectional Research Study" International Journal of Environmental Research and Public Health 19, no. 15: 9391. https://doi.org/10.3390/ijerph19159391
APA StyleTsubokawa, M., Nishimura, M., Murashita, K., Iwane, T., & Tamada, Y. (2022). Correlation between Glycation-Related Biomarkers and Quality of Life in the General Japanese Population: The Iwaki Cross-Sectional Research Study. International Journal of Environmental Research and Public Health, 19(15), 9391. https://doi.org/10.3390/ijerph19159391