Association between Daily Physical Activity and Locomotive Syndrome in Community-Dwelling Japanese Older Adults: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Tests and Definition of Locomotive Syndrome
2.2.2. Habitual Daily Physical Activity
2.2.3. Anthropometrics and Body Composition
2.2.4. Maximal Isometric Strengths of Leg Muscle
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berthelot, G.; Johnson, S.; Noirez, P.; Antero, J.; Marck, A.; Desgorces, F.D.; Pifferi, F.; Carter, P.A.; Spedding, M.; Manoux, A.S.; et al. The age-performance relationship in the general population and strategies to delay age related decline in performance. Arch. Public Health 2019, 77, 51. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; D’Angelo, E.; Serafini, E.; Bernabei, R.; Marzetti, E. Impact of habitual physical activity and type of exercise on physical performance across ages in community-living people. PLoS ONE 2018, 13, e0191820. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, M.; Mohler, J.; Wendel, C.; D’Huyvetter, K.; Fain, M.; Taylor-Piliae, R.; Najafi, B. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: Baseline results of the Arizona frailty cohort study. Gerontology 2015, 61, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Oka, H.; Muraki, S.; Akune, T.; Hirabayashi, N.; Matsuda, S.; Nojiri, T.; Hatanaka, K.; Ishimoto, Y.; Nagata, K.; et al. Reference values for hand grip strength, muscle mass, walking time, and one-leg standing time as indices for locomotive syndrome and associated disability: The second survey of the ROAD study. J. Orthop. Sci. 2011, 16, 768–777. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. Sarcopenia ≠ dynapenia. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef]
- Watanabe, D.; Yoshida, T.; Watanabe, Y.; Yamada, Y.; Kimura, M.; Group, K.S. Objectively measured daily step counts and prevalence of frailty in 3616 older adults. J. Am. Geriatr. Soc. 2020, 68, 2310–2318. [Google Scholar] [CrossRef]
- Yoshinaga, S.; Shiomitsu, T.; Kamohara, M.; Fujii, Y.; Chosa, E.; Tsuruta, K. Lifestyle-related signs of locomotive syndrome in the general Japanese population: A cross-sectional study. J. Orthop. Sci. 2019, 24, 1105–1109. [Google Scholar] [CrossRef]
- Cabinet Office, Government of Japan. White Paper on the Aging Society 2021. Available online: https://www8.cao.go.jp/kourei/english/annualreport/2021/pdf/2021.pdf (accessed on 12 May 2022).
- Ishibashi, H. Locomotive syndrome in Japan. Osteoporos. Sarcopenia 2018, 4, 86–94. [Google Scholar] [CrossRef]
- Ogata, T.; Muranaga, S.; Ishibashi, H.; Ohe, T.; Izumida, R.; Yoshimura, N.; Iwaya, T.; Nakamura, K. Development of a screening program to assess motor function in the adult population: A cross-sectional observational study. J. Orthop. Sci. 2015, 20, 888–895. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Nakamura, K.; Tanaka, S. Epidemiology of the locomotive syndrome: The research on osteoarthritis/osteoporosis against disability study 2005–2015. Mod. Rheumatol. 2017, 27, 1–7. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Iidaka, T.; Oka, H.; Horii, C.; Kawaguchi, H.; Akune, T.; Nakamura, K.; Tanaka, S. Prevalence and co-existence of locomotive syndrome, sarcopenia, and frailty: The third survey of Research on Osteoarthritis/Osteoporosis Against Disability (ROAD) study. J. Bone Miner. Metab. 2019, 37, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Imagama, S.; Ando, K.; Kobayashi, K.; Machino, M.; Tanaka, S.; Morozumi, M.; Kanbara, S.; Ito, S.; Seki, T.; Ishizuka, S.; et al. Differences of locomotive syndrome and frailty in community-dwelling middle-aged and elderly people: Pain, osteoarthritis, spinal alignment, body balance, and quality of life. Mod. Rheumatol. 2020, 30, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- LaCroix, A.Z.; Rillamas-Sun, E.; Buchner, D.; Evenson, K.R.; Di, C.; Lee, I.M.; Marshall, S.; LaMonte, M.J.; Hunt, J.; Tinker, L.F.; et al. The objective physical activity and cardiovascular disease health in older women (OPACH) study. BMC Public Health 2017, 17, 192. [Google Scholar] [CrossRef] [PubMed]
- Seguin, R.; Lamonte, M.; Tinker, L.; Liu, J.; Woods, N.; Michael, Y.L.; Bushnell, C.; Lacroix, A.Z. Sedentary behavior and physical function decline in older women: Findings from the women’s health initiative. J. Aging Res. 2012, 2012, 271589. [Google Scholar] [CrossRef]
- Menai, M.; van Hees, V.T.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A.; Sabia, S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: Results from the Whitehall II study. Sci. Rep. 2017, 8, 45772. [Google Scholar] [CrossRef]
- Park, H.; Park, S.; Shephard, R.J.; Aoyagi, Y. Yearlong physical activity and sarcopenia in older adults: The Nakanojo Study. Eur. J. Appl. Physiol. 2010, 109, 953–961. [Google Scholar] [CrossRef]
- Park, H.; Togo, F.; Watanabe, E.; Yasunaga, A.; Park, S.; Shephard, R.J.; Aoyagi, Y. Relationship of bone health to yearlong physical activity in older Japanese adults: Cross-sectional data from the Nakanojo Study. Osteoporos. Int. 2007, 18, 285–293. [Google Scholar] [CrossRef]
- Nishimura, T.; Hagio, A.; Hamaguchi, K.; Kurihara, T.; Iemitsu, M.; Sanada, K. Associations between locomotive and non-locomotive physical activity and physical performance in older community-dwelling females with and without locomotive syndrome: A cross-sectional study. J. Physiol. Anthropol. 2021, 40, 18. [Google Scholar] [CrossRef]
- Seichi, A.; Hoshino, Y.; Doi, T.; Akai, M.; Tobimatsu, Y.; Iwaya, T. Development of a screening tool for risk of locomotive syndrome in the elderly: The 25-question Geriatric Locomotive Function Scale. J. Orthop. Sci. 2012, 17, 163–172. [Google Scholar] [CrossRef]
- Yoshihara, T.; Ozaki, H.; Nakagata, T.; Natsume, T.; Kitada, T.; Ishihara, Y.; Deng, P.; Osawa, T.; Ishibashi, M.; Ishijima, M.; et al. Effects of a progressive walking program on the risk of developing locomotive syndrome in elderly Japanese people: A single-arm trial. J. Phys. Ther. Sci. 2018, 30, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, C.; Hikihara, Y.; Ohkawara, K.; Tanaka, S. Locomotive and non-locomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr. Exerc. Sci. 2012, 24, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Nakagata, T.; Yamada, Y.; Naito, H. Estimating energy cost of body weight resistance exercise using a multistage exercise test. J. Strength Cond. Res. 2022, 36, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Seino, S.; Shinkai, S.; Iijima, K.; Obuchi, S.; Fujiwara, Y.; Yoshida, H.; Kawai, H.; Nishi, M.; Murayama, H.; Taniguchi, Y.; et al. Reference values and age differences in body composition of community-dwelling older Japanese men and women: A pooled analysis of four cohort studies. PLoS ONE 2015, 10, e0131975. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Greig, C.A.; Botella, J.; Young, A. The quadriceps strength of healthy elderly people remeasured after eight years. Muscle Nerve 1993, 16, 6–10. [Google Scholar] [CrossRef]
- Rantanen, T.; Era, P.; Heikkinen, E. Physical activity and the changes in maximal isometric strength in men and women from the age of 75 to 80 years. J. Am. Geriatr. Soc. 1997, 45, 1439–1445. [Google Scholar] [CrossRef]
- Nishimura, A.; Ito, N.; Asanuma, K.; Akeda, K.; Ogura, T.; Sudo, A. Do exercise habits during middle age affect locomotive syndrome in old age? Mod. Rheumatol. 2018, 28, 334–338. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Park, H.; Watanabe, E.; Park, S.; Shephard, R.J. Habitual physical activity and physical fitness in older Japanese adults: The Nakanojo Study. Gerontology 2009, 55, 523–531. [Google Scholar] [CrossRef]
- Miyamoto, R.; Sawada, S.S.; Gando, Y.; Matsushita, M.; Kawakami, R.; Muranaga, S.; Osawa, Y.; Ishii, K.; Oka, K. Stand-up test overestimates the decline of locomotor function in taller people: A cross-sectional analysis of data from the Kameda Health Study. J. Phys. Ther. Sci. 2019, 31, 175–184. [Google Scholar] [CrossRef]
- Janssen, W.G.; Bussmann, H.B.; Stam, H.J. Determinants of the sit-to-stand movement: A review. Phys. Ther. 2002, 82, 866–879. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Ozaki, H.; Nakagata, T.; Natsume, T.; Kitada, T.; Ishihara, Y.; Sawada, S.; Ishibashi, M.; Kobayashi, H.; Machida, S.; et al. Association between locomotive syndrome and blood parameters in Japanese middle-aged and elderly individuals: A cross-sectional study. BMC Musculoskelet. Disord. 2019, 20, 104. [Google Scholar] [CrossRef] [PubMed]
- Natsume, T.; Ozaki, H.; Nakagata, T.; Yoshihara, T.; Kitada, T.; Ishihara, Y.; Deng, P.; Osawa, T.; Sawada, S.; Kobayashi, H.; et al. Site-specific muscle loss in the abdomen and anterior thigh in elderly males with locomotive syndrome. J. Sports Sci. Med. 2021, 20, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Imagama, S.; Hasegawa, Y.; Ando, K.; Kobayashi, K.; Hida, T.; Ito, K.; Tsushima, M.; Nishida, Y.; Ishiguro, N. Staged decrease of physical ability on the locomotive syndrome risk test is related to neuropathic pain, nociceptive pain, shoulder complaints, and quality of life in middle-aged and elderly people—The utility of the locomotive syndrome risk test. Mod. Rheumatol. 2017, 27, 1051–1056. [Google Scholar] [CrossRef]
- Hagen, K.B.; Dagfinrud, H.; Moe, R.H.; Østerås, N.; Kjeken, I.; Grotle, M.; Smedslund, G. Exercise therapy for bone and muscle health: An overview of systematic reviews. BMC Med. 2012, 10, 167. [Google Scholar] [CrossRef]
- Kent-Braun, J.A.; Ng, A.V. Specific strength and voluntary muscle activation in young and elderly women and men. J. Appl. Physiol. 1999, 87, 22–29. [Google Scholar] [CrossRef]
- Omori, G.; Koga, Y.; Tanaka, M.; Nawata, A.; Watanabe, H.; Narumi, K.; Endoh, K. Quadriceps muscle strength and its relationship to radiographic knee osteoarthritis in Japanese elderly. J. Orthop. Sci. 2013, 18, 536–542. [Google Scholar] [CrossRef]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Tauchi, R.; Ishiguro, N.; Hasegawa, Y. Waist circumference is associated with locomotive syndrome in elderly females. J. Orthop. Sci. 2014, 19, 612–619. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Shephard, R.J. Sex differences in relationships between habitual physical activity and health in the elderly: Practical implications for epidemiologists based on pedometer/accelerometer data from the Nakanojo Study. Arch. Gerontol. Geriatr. 2013, 56, 327–338. [Google Scholar] [CrossRef]
- Ozaki, H.; Nakagata, T.; Yoshihara, T.; Kitada, T.; Natsume, T.; Ishihara, Y.; Deng, P.; Kobayashi, H.; Machida, S.; Naito, H. Effects of progressive walking and stair-climbing training program on muscle size and strength of the lower body in untrained older adults. J. Sports Sci. Med. 2019, 19, 722–728. [Google Scholar]
Variables | Total | Non-LS | LS | ES (d) a | |
---|---|---|---|---|---|
Age (years) | Men | 69.9 ± 4.8 | 68.6 ± 3.4 | 71.2 ± 5.6 | 0.56 |
Women | 68.7 ± 4.5 | 66.9 ± 4.0 | 70.3 ± 4.3 †† | 0.82 | |
Height (cm) | Men | 165.8 ± 6.4 | 163.4 ± 5.7 | 168.2 ± 6.3 †† | 0.81 |
Women | 152.9 ± 5.5 ** | 152.8 ± 3.5 | 153.0 ± 7.0 | 0.04 | |
Weight (kg) | Men | 65.2 ± 9.3 | 61.7 ± 8.5 | 68.7 ± 8.9 †† | 0.81 |
Women | 52.7 ± 7.3 ** | 51.0 ± 7.1 | 54.1 ± 7.3 | 0.43 | |
BMI (kg/m2) | Men | 23.7 ± 2.5 | 23.1 ± 2.6 | 24.2 ± 2.4 | 0.46 |
Women | 22.5 ± 2.8 | 21.9 ± 2.9 | 23.1 ± 2.7 | 0.43 | |
Body fat (%) | Men | 23.5 ± 5.4 | 22.0 ± 4.8 | 25.0 ± 5.5 | 0.58 |
Women | 31.7 ± 5.9 ** | 29.5 ± 6.3 | 33.6 ± 5.0 † | 0.72 | |
Muscle mass (kg) | Men | 27.3 ± 3.2 | 26.4 ± 2.9 | 28.2 ± 3.4 | 0.57 |
Women | 18.9 ± 2.1 ** | 19.0 ± 1.9 | 18.8 ± 2.3 | 0.07 | |
SMI (kg/m2) | Men | 7.56 ± 0.61 | 7.43 ± 0.67 | 7.70 ± 0.52 | 0.46 |
Women | 6.02 ± 0.59 ** | 6.01 ± 0.57 | 6.02 ± 0.62 | 0.02 | |
Leg-SMI (kg/m2) | Men | 5.64 ± 0.73 | 5.53 ± 0.52 | 5.76 ± 0.41 | 0.48 |
Women | 4.65 ± 0.43 ** | 4.62 ± 0.38 | 4.68 ± 0.47 | 0.14 | |
KE-WBI (kg/kg weight) | Men | 0.74 ± 0.17 | 0.82 ± 0.18 | 0.66 ± 0.13 †† | 1.04 |
Women | 0.64 ± 0.13 | 0.70 ± 0.13 | 0.60 ± 0.11 † | 0.84 | |
Stand-up test (score) | Men | 4.53 ± 1.18 | 5.30 ± 0.73 | 3.75 ± 1.02 †† | 1.75 |
Women | 4.65 ± 1.08 | 5.37 ± 0.60 | 4.00 ± 1.00 †† | 1.64 | |
Two-step test (score) | Men | 1.44 ± 0.11 | 1.48 ± 0.11 | 1.40 ± 0.10 †† | 0.82 |
Women | 1.36 ± 0.12 | 1.43 ± 0.09 | 1.31 ± 0.12 †† | 1.09 | |
GLFS-25 (score) | Men | 4.28 ± 3.73 | 2.37 ± 1.83 | 6.00 ± 4.18 †† | 0.73 |
Women | 3.90 ± 4.31 | 2.40 ± 1.98 | 5.40 ± 5.43 † | 1.11 |
Daily PA Variables | Total | Non-LS | LS | ES (d) a | |
---|---|---|---|---|---|
Step count (steps/day) | Men | 6807 ± 3410 | 7258 ± 3881 | 6356 ± 2895 | 0.26 |
Women | 5819 ± 2519 | 6829 ± 2390 | 4905 ± 2321 †† | 0.82 | |
Time spent on RSB (min/day) | Men | 1094.8 ± 78.6 | 1082.2 ± 67.9 | 1107.4 ± 88.0 | 0.32 |
Women | 1038.3 ± 83.6 ** | 1008.4 ± 78.1 | 1065.3 ± 80.7 † | 0.72 | |
Time spent on MVPA (min/day) | Men | 40.7 ± 25.4 | 42.1 ± 28.1 | 39.3 ± 23.1 | 0.11 |
Women | 31.2 ± 17.6 | 40.7 ± 18.0 | 22.6 ± 12.2 †† | 1.19 |
Daily PA Variables | Stand-Up Test | Two-Step Test | GLFS-25 | KE-WBI |
---|---|---|---|---|
Men (n = 40) | ||||
Step count | −0.08 | 0.16 | −0.22 | −0.01 |
Time spent on RSB | −0.06 | −0.27 | 0.27 | −0.04 |
Time spent on MVPA | −0.05 | 0.19 | −0.28 | −0.05 |
Women (n = 40) | ||||
Step count | 0.23 | 0.05 | −0.15 | 0.18 |
Time spent on RSB | −0.35 * | −0.14 | 0.04 | −0.31 |
Time spent on MVPA | 0.26 | 0.11 | −0.25 | 0.39 * |
Crude OR | p-Value | Adjusted OR | p-Value | Adjusted OR | p-Value | |
---|---|---|---|---|---|---|
(95%CI) | (95%CI) | (Bootstrap CI) | ||||
Men | ||||||
Step count (step/day) | ||||||
Low (≤6112.5) | Reference | Reference | Reference | |||
High (>6112.5) | 0.29 (0.08–1.06) | 0.062 † | 0.34 (0.09–1.31) | 0.117 | 0.34 (0.05–1.35) | 0.133 |
RSB (min/day) | ||||||
Low (≤1096.9) | Reference | Reference | Reference | |||
High (>1096.9) | 1.49 (0.43–5.19) | 0.528 | 1.72 (0.46–6.45) | 0.419 | 1.72 (0.45–9.55) | 0.430 |
MVPA (min/day) | ||||||
Low (≤39.85) | Reference | Reference | Reference | |||
High (≥39.86) | 0.44 (0.13–1.58) | 0.209 | 0.45 (0.12–1.68) | 0.236 | 0.45 (0.08–1.78) | 0.256 |
Women | ||||||
Step count (step/day) | ||||||
Low (≤5511.5) | Reference | Reference | Reference | |||
High (>5511.5) | 0.23 (0.06–0.87) | 0.030 * | 0.28 (0.07–1.15) | 0.076 † | 0.28 (0.03–1.23) | 0.080 † |
RSB (min/day) | ||||||
Low (≤1032.35) | Reference | Reference | Reference | |||
High (>1032.35) | 0.55 (0.16–1.91) | 0.344 | 1.64 (0.42–6.35) | 0.477 | 1.64 (0.38–9.70) | 0.468 |
MVPA (min/day) | ||||||
Low (≤27.99) | Reference | Reference | Reference | |||
High (≥28.01) | 0.14 (0.04–0.58) | 0.006 ** | 0.12 (0.02–0.59) | 0.009 ** | 0.12 (0.01–0.43) | 0.003 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, Y.; Ozaki, H.; Nakagata, T.; Yoshihara, T.; Natsume, T.; Kitada, T.; Ishibashi, M.; Deng, P.; Yamada, Y.; Kobayashi, H.; et al. Association between Daily Physical Activity and Locomotive Syndrome in Community-Dwelling Japanese Older Adults: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 8164. https://doi.org/10.3390/ijerph19138164
Ishihara Y, Ozaki H, Nakagata T, Yoshihara T, Natsume T, Kitada T, Ishibashi M, Deng P, Yamada Y, Kobayashi H, et al. Association between Daily Physical Activity and Locomotive Syndrome in Community-Dwelling Japanese Older Adults: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(13):8164. https://doi.org/10.3390/ijerph19138164
Chicago/Turabian StyleIshihara, Yoshihiko, Hayao Ozaki, Takashi Nakagata, Toshinori Yoshihara, Toshiharu Natsume, Tomoharu Kitada, Masayoshi Ishibashi, Pengyu Deng, Yasuyuki Yamada, Hiroyuki Kobayashi, and et al. 2022. "Association between Daily Physical Activity and Locomotive Syndrome in Community-Dwelling Japanese Older Adults: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 13: 8164. https://doi.org/10.3390/ijerph19138164
APA StyleIshihara, Y., Ozaki, H., Nakagata, T., Yoshihara, T., Natsume, T., Kitada, T., Ishibashi, M., Deng, P., Yamada, Y., Kobayashi, H., Machida, S., & Naito, H. (2022). Association between Daily Physical Activity and Locomotive Syndrome in Community-Dwelling Japanese Older Adults: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(13), 8164. https://doi.org/10.3390/ijerph19138164