Benefits of Two 24-Week Interactive Cognitive–Motor Programs on Body Composition, Lower-Body Strength, and Processing Speed in Community Dwellings at Risk of Falling: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Outcome Measures
Complementary Outcome Measures
2.4. Interactive Cognitive–Motor Programs
2.4.1. Psychomotor Intervention Program
2.4.2. Combined Exercise Program
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Sherrington, C. Exercise for falls prevention in community-dwelling older adults: Trial and participant characteristics, interventions and bias in clinical trials from a systematic review. BMJ Open Sport Exerc. Med. 2019, 5, e000663. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Thomas, S.M.; Veroniki, A.A.; Hamid, J.S.; Cogo, E.; Strifler, L.; Khan, P.A.; Robson, R.; Sibley, K.M.; MacDonald, H.; et al. Comparisons of Interventions for Preventing Falls in Older Adults: A Systematic Review and Meta-analysis. JAMA 2017, 318, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.R. Vibration Therapy to Prevent Bone Loss and Falls: Mechanisms and Efficacy. Curr. Osteoporos. Rep. 2015, 13, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Sprague, B.N.; Phillips, C.B.; Ross, L.A. Cognitive Training Attenuates Decline in Physical Function Across 10 Years. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2021, 76, 1114–1124. [Google Scholar] [CrossRef]
- Di Lorito, C.; Long, A.; Byrne, A.; Harwood, R.H.; Gladman, J.R.F.; Schneider, S.; Logan, P.; Bosco, A.; van der Wardt, V. Exercise interventions for older adults: A systematic review of meta-analyses. J. Sport Health Sci. 2021, 10, 29–47. [Google Scholar] [CrossRef]
- Senderovich, H.; Tsai, P.M. Do Exercises Prevent Falls Among Older Adults: Where Are We Now? A Systematic Review. J. Am. Med. Dir. Assoc. 2020, 21, 1197–1206.e2. [Google Scholar] [CrossRef] [PubMed]
- de Souto Barreto, P.; Rolland, Y.; Vellas, B.; Maltais, M. Association of Long-term Exercise Training With Risk of Falls, Fractures, Hospitalizations, and Mortality in Older Adults: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2019, 179, 394–405. [Google Scholar] [CrossRef]
- Falck, R.S.; Davis, J.C.; Best, J.R.; Crockett, R.A.; Liu-Ambrose, T. Impact of exercise training on physical and cognitive function among older adults: A systematic review and meta-analysis. Neurobiol. Aging 2019, 79, 119–130. [Google Scholar] [CrossRef]
- Desjardins-Crepeau, L.; Berryman, N.; Fraser, S.A.; Vu, T.T.; Kergoat, M.J.; Li, K.Z.; Bosquet, L.; Bherer, L. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clin. Int. Aging 2016, 11, 1287–1299. [Google Scholar] [CrossRef] [PubMed]
- Marmeleira, J. An examination of the mechanisms underlying the effects of physical activity on brain and cognition. Eur. Rev. Aging Phys. Act. 2013, 10, 83–94. [Google Scholar] [CrossRef]
- Smith-Ray, R.L.; Hughes, S.L.; Prohaska, T.R.; Little, D.M.; Jurivich, D.A.; Hedeker, D. Impact of Cognitive Training on Balance and Gait in Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2015, 70, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Marusic, U.; Verghese, J.; Mahoney, J.R. Cognitive-Based Interventions to Improve Mobility: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2018, 19, 484–491.e3. [Google Scholar] [CrossRef]
- Gavelin, H.M.; Dong, C.; Minkov, R.; Bahar-Fuchs, A.; Ellis, K.A.; Lautenschlager, N.T.; Mellow, M.L.; Wade, A.T.; Smith, A.E.; Finke, C.; et al. Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. Ageing Res. Rev. 2021, 66, 101232. [Google Scholar] [CrossRef] [PubMed]
- Schoene, D.; Valenzuela, T.; Toson, B.; Delbaere, K.; Severino, C.; Garcia, J.; Davies, T.A.; Russell, F.; Smith, S.T.; Lord, S.R. Interactive Cognitive-Motor Step Training Improves Cognitive Risk Factors of Falling in Older Adults—A Randomized Controlled Trial. PLoS ONE 2015, 10, e0145161. [Google Scholar] [CrossRef] [PubMed]
- Kwag, E.; Stuckenschneider, T.; Schneider, S.; Abeln, V. The effect of a psychomotor intervention on electroencephalography and neuropsychological performances in older adults with and without mild cognitive impairment. Psychogeriatrics 2021, 21, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Freiberger, E.; Menz, H.B.; Abu-Omar, K.; Rutten, A. Preventing falls in physically active community-dwelling older people: A comparison of two intervention techniques. Gerontology 2007, 53, 298–305. [Google Scholar] [CrossRef]
- Pereira, C.; Rosado, H.; Cruz-Ferreira, A.; Marmeleira, J. Effects of a 10-week multimodal exercise program on physical and cognitive function of nursing home residents: A psychomotor intervention pilot study. Aging Clin. Exp. Res. 2018, 30, 471–479. [Google Scholar] [CrossRef]
- Sarabon, N.; Kozinc, Z.; Lofler, S.; Hofer, C. Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 2902. [Google Scholar] [CrossRef]
- Boerema, A.S.; Heesterbeek, M.; Boersma, S.A.; Schoemaker, R.; de Vries, E.F.J.; van Heuvelen, M.J.G.; Van der Zee, E.A. Beneficial Effects of Whole Body Vibration on Brain Functions in Mice and Humans. Dose Response 2018, 16, 1559325818811756. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Lafarga, C.; Cordellat, A.; Forte, A.; Roldan, A.; Monteagudo, P. Short and Long-Term Trainability in Older Adults: Training and Detraining Following Two Years of Multicomponent Cognitive-Physical Exercise Training. Int J. Environ. Res. Public Health 2020, 17, 5984. [Google Scholar] [CrossRef] [PubMed]
- Boa Sorte Silva, N.C.; Gill, D.P.; Owen, A.M.; Liu-Ambrose, T.; Hachinski, V.; Shigematsu, R.; Petrella, R.J. Cognitive changes following multiple-modality exercise and mind-motor training in older adults with subjective cognitive complaints: The M4 study. PLoS ONE 2018, 13, e0196356. [Google Scholar] [CrossRef]
- Rosado, H.; Bravo, J.; Raimundo, A.; Carvalho, J.; Marmeleira, J.; Pereira, C. Effects of two 24-week multimodal exercise programs on reaction time, mobility, and dual-task performance in community-dwelling older adults at risk of falling: A randomized controlled trial. BMC Public Health 2021, 21, 408. [Google Scholar] [CrossRef] [PubMed]
- Joubert, C.; Chainay, H. Aging brain: The effect of combined cognitive and physical training on cognition as compared to cognitive and physical training alone—A systematic review. Clin. Interv. Aging 2018, 13, 1267–1301. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.; Rose, D.J. Predicting which older adults will or will not fall using the Fullerton Advanced Balance scale. Arch. Phys. Med. Rehabil. 2008, 89, 2309–2315. [Google Scholar] [CrossRef]
- Guerreiro, M.; Silva, A.; Botelho, M.; Leitão, O.; Castro-Caldas, A.; Garcia, C. Adaptação à população portuguesa da tradução do Mini Mental State Examination (MMSE). Rev. Port. Neurol. 1994, 1, 9–10. [Google Scholar]
- Tomás, R.; Lee, V.; Going, S. The Use of Vibration Exercise in Clinical Populations. ACSM’s Health Fit. J. 2011, 15, 25–31. [Google Scholar] [CrossRef]
- Focht, B.C.; Knapp, D.J.; Gavin, T.P.; Raedeke, T.D.; Hickner, R.C. Affective and self-efficacy responses to acute aerobic exercise in sedentary older and younger adults. J. Aging Phys. Act. 2007, 15, 123–138. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Knols, R.; Murer, K.; de Bruin, E.D. Reproducibility of an isokinetic strength-testing protocol of the knee and ankle in older adults. Gerontology 2009, 55, 259–268. [Google Scholar] [CrossRef]
- Cavaco, S.; Goncalves, A.; Pinto, C.; Almeida, E.; Gomes, F.; Moreira, I.; Fernandes, J.; Teixeira-Pinto, A. Trail Making Test: Regression-based norms for the Portuguese population. Arch. Clin. Neuropsychol. 2013, 28, 189–198. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Falls. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 20 January 2021).
- Ricart, W.; Lopez, J.; Mozas, J.; Pericot, A.; Sancho, M.A.; Gonzalez, N.; Balsells, M.; Luna, R.; Cortazar, A.; Navarro, P.; et al. Maternal glucose tolerance status influences the risk of macrosomia in male but not in female fetuses. J. Epidemiol. Community Health 2009, 63, 64–68. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Yoshihara, S.; Kanno, N.; Fukuda, H.; Arisaka, O.; Arita, M.; Sekine, K.; Yamaguchi, K.; Tsuchida, A.; Yamada, Y.; Watanabe, T.; et al. Caregiver treatment satisfaction is improved together with children’s asthma control: Prospective study for budesonide monotherapy in school-aged children with uncontrolled asthma symptoms. Allergol. Int. 2015, 64, 371–376. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; American College of Sports, M. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 1998. [Google Scholar]
- Marin-Cascales, E.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of 24 Weeks of Whole Body Vibration Versus Multicomponent Training on Muscle Strength and Body Composition in Postmenopausal Women: A Randomized Controlled Trial. Rejuvenation Res. 2017, 20, 193–201. [Google Scholar] [CrossRef]
- Englund, U.; Littbrand, H.; Sondell, A.; Pettersson, U.; Bucht, G. A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos. Int. 2005, 16, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T.; Tien, C.W.; Lin, P.S.; Peng, H.Y.; Song, C.Y. Novel Mat Exergaming to Improve the Physical Performance, Cognitive Function, and Dual-Task Walking and Decrease the Fall Risk of Community-Dwelling Older Adults. Front. Psychol. 2020, 11, 1620. [Google Scholar] [CrossRef]
- Sipila, S.; Tirkkonen, A.; Savikangas, T.; Hanninen, T.; Laukkanen, P.; Alen, M.; Fielding, R.A.; Kivipelto, M.; Kulmala, J.; Rantanen, T.; et al. Effects of physical and cognitive training on gait speed and cognition in older adults: A randomized controlled trial. Scand. J. Med. Sci. Sports 2021, 31, 1518–1533. [Google Scholar] [CrossRef] [PubMed]
- Gschwind, Y.J.; Eichberg, S.; Ejupi, A.; de Rosario, H.; Kroll, M.; Marston, H.R.; Drobics, M.; Annegarn, J.; Wieching, R.; Lord, S.R.; et al. ICT-based system to predict and prevent falls (iStoppFalls): Results from an international multicenter randomized controlled trial. Eur. Rev. Aging Phys. Act. 2015, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- von Stengel, S.; Kemmler, W.; Engelke, K.; Kalender, W.A. Effects of whole body vibration on bone mineral density and falls: Results of the randomized controlled ELVIS study with postmenopausal women. Osteoporos. Int. 2011, 22, 317–325. [Google Scholar] [CrossRef]
- Hill, T.R.; Aspray, T.J. The role of vitamin D in maintaining bone health in older people. Ther. Adv. Musculoskelet. Dis. 2017, 9, 89–95. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Prevalence or Mean ± SD | p-Value |
---|---|---|
Age (years) | ||
EG1 | 74.3 ± 5.4 | 0.750 |
EG2 | 74.7 ± 5.5 | |
CG | 75.9 ± 5.7 | |
Sex, female (%) | ||
EG1 | 14 (87.5) | 0.571 |
EG2 | 15 (93.8) | |
CG | 13 (81.3) | |
Educational level (years) | ||
EG1 | 6.0 ± 2.6 | 0.992 |
EG2 | 6.1 ± 3.4 | |
CG | 7.0 ± 5.1 | |
MMSE (points) | ||
EG1 | 27.7 ± 1.7 | 0.421 |
EG2 | 28.2 ± 1.7 | |
CG | 28.4 ± 1.7 | |
BMI (kg/m2) | ||
EG1 | 29.1 ± 3.0 | 0.601 |
EG2 | 28.6 ± 4.3 | |
CG | 28.0 ± 4.8 | |
CPF (points) | ||
EG1 | 21.5 ± 2.7 | 0.579 |
EG2 | 20.8 ± 2.2 | |
CG | 21.4 ± 2.9 | |
IPAQ (MET-min/week) | ||
EG1 | 927.0 ± 557.9 | 0.803 |
EG2 | 953.4 ± 638.5 | |
CG | 791.7 ± 482.2 | |
Number of falls within the last six months (n) | ||
EG1 | 1.13 ± 0.8 | 0.978 |
EG2 | 1.19 ± 1.0 | |
CG | 1.13 ± 0.3 |
Baseline (A) (Mean ± SD) | Post-Intervention (B) (Mean ± SD) | Follow-Up (C) (Mean ± SD) | p-Value | Pairwise Comparison | ||
---|---|---|---|---|---|---|
Body composition | ||||||
Body weight (kg) | ||||||
EG1 | 66.8 ± 9.7 | 67.5 ± 9.0 | 67.1 ± 9.1 | 0.494 | -- | |
EG2 | 66.1 ± 10.4 | 65.7 ± 10.7 | 66.2 ± 11.2 | 0.223 | -- | |
CG | 67.9 ± 11.9 | 68.3 ± 12.0 | 67.2 ± 11.9 | 0.085 | -- | |
Fat mass (%) | ||||||
EG1 | 39.3 ± 4.7 | 39.8 ± 5.1 | 39.0 ± 4.9 | 0.185 | -- | |
EG2 | 41.1 ± 6.1 | 40.6 ± 6.2 | 41.0 ± 6.3 | 0.269 | -- | |
CG | 38.8 ± 6.9 | 38.7 ± 6.4 | 38.4 ± 6.7 | 0.570 | -- | |
Lean body mass (kg) | ||||||
EG1 | 41.1 ± 7.1 | 40.9 ± 7.3 | 41.5 ± 7.3 | 0.368 | -- | |
EG2 | 38.6 ± 5.6 | 38.6 ± 5.7 | 38.7 ± 5.9 | 0.829 | -- | |
CG | 40.2 ± 7.3 | 40.3 ± 7.7 | 40.3 ± 7.6 | 0.829 | -- | |
Total BMC (g) | ||||||
EG1 | 1923.4 ± 313.0 | 2024.9 ± 402.0 | 1934.3 ± 271.6 | 0.047 | -- | |
EG2 | 1705.9 ± 322.3 | 1901.0 ± 392.8 | 1770.3 ± 404.6 | <0.001 | B > A, C | |
CG | 1992.8 ± 443.0 | 1997.1 ± 485.0 | 2026.1 ± 461.7 | 0.939 | -- | |
Total BMD (g/cm2) | ||||||
EG1 | 1.050 ± 0.098 | 1.072 ± 0.097 | 1.045 ± 0.091 | 0.022 | B > A | |
EG2 | 0.974 ± 0.112 | 1.043 ± 0.124 | 0.990 ± 0.133 | <0.001 | B > A, C | |
CG | 1.091 ± 0.141 | 1.084 ± 0.156 | 1.093 ± 0.146 | 0.570 | -- | |
T-score (n) * | ||||||
EG1 | −0.6 ± 1.2 | −0.4 ± 1.1 | −0.7 ± 1.1 | 0.062 | -- | |
EG2 | −1.6 ±1.2 | −0.9 ± 1.2 | −1.5 ± 1.3 | <0.001 | B > A, C | |
CG | −0.6 ± 1.5 | −0.7 ± 1.6 | −0.5 ± 1.6 | 0.225 | -- | |
Z-score (n) * | ||||||
EG1 | 1.3 ± 1.1 | 1.5 ± 1.0 | 1.3 ± 0.9 | 0.101 | -- | |
EG2 | 0.3 ± 1.3 | 1.1 ± 1.3 | 0.5 ± 1.4 | <0.001 | B > A, C | |
CG | 1.4 ± 1.3 | 1.4 ± 1.4 | 1.5 ± 1.4 | 0.192 | -- |
Baseline (A) (Mean ± SD) | Post-Intervention (B) (Mean ± SD) | Follow-Up (C) (Mean ± SD) | p-Value | Pairwise Comparison | ||
---|---|---|---|---|---|---|
Lower-body strength | ||||||
30CST (n) | ||||||
EG1 | 12.4 ± 3.2 | 18.1 ± 3.1 a | 14.2 ± 2.3 | <0.001 | B > A, C | |
EG2 | 11.9 ± 3.5 | 17.1 ± 4.2 b | 13.4 ± 3.5 | <0.001 | B > A, C | |
CG | 13.2 ± 3.3 | 12.3 ± 3.2 | 12.0 ± 3.3 | 0.325 | -- | |
Isokinetic peak torque (extension 60°) (N·m) | ||||||
EG1 | 82.3 ± 26.3 | 82.3 ± 25.6 | 75.3 ± 23.6 | 0.008 | A > C | |
EG2 | 71.2 ± 27.8 | 77.5 ± 21.0 | 75.6 ± 25.6 | 0.144 | -- | |
CG | 75.6 ± 24.9 | 71.7 ± 22.9 | 68.7 ± 19.7 | 0.010 | A > C | |
Isokinetic peak torque (flexion 60°) (N·m) | ||||||
EG1 | 42.5 ± 13.7 | 45.0 ± 14.2 | 43.3 ± 16.5 | 0.646 | -- | |
EG2 | 40.3 ± 10.3 | 40.8 ± 9.5 | 39.9 ± 10.5 | 0.829 | -- | |
CG | 43.7 ± 14.7 | 38.7 ± 12.3 | 38.0 ± 11.3 | 0.022 | A > C |
Baseline (A) (Mean ± SD) | Post-Intervention (B) (Mean ± SD) | Follow-Up (C) (Mean ± SD) | p-Value | Pairwise Comparison | ||
---|---|---|---|---|---|---|
Processing speed | ||||||
TMT-A time (s) | ||||||
EG1 | 91.3 ± 31.6 | 72.3 ± 27.8 | 85.1 ± 35.5 | 0.010 | A > B | |
EG2 | 85.2 ± 36.4 | 64.7 ± 29.3 | 68.2 ± 31.1 | 0.003 | A > B, C | |
CG | 80.4 ± 39.8 | 73.3 ± 34.6 | 72.1 ± 30.8 | 0.305 | -- | |
TMT-A errors (n) | ||||||
EG1 | 0.6 ± 1.1 | 0.3 ± 0.6 | 0.5 ± 1.0 | 0.438 | -- | |
EG2 | 0.4 ± 0.5 | 0.3 ± 0.6 | 0.3 ± 0.6 | 0.368 | -- | |
CG | 0.4 ± 0.6 | 0.3 ± 0.6 | 0.4 ± 0.7 | 0.595 | -- | |
TMT-B time (s) | ||||||
EG1 | 254.9 ± 70.9 | 196.0 ± 81.2 | 204.9 ± 81.6 | <0.001 | A > B, C | |
EG2 | 224.0 ± 87.1 | 172.7 ± 76.9 | 186.0 ± 89.1 | <0.001 | A > B, C | |
CG | 202.5 ± 80.1 | 200.1 ± 83.1 | 187.8 ± 75.7 | 0.105 | -- | |
TMT-B errors (n) | ||||||
EG1 | 2.1 ± 1.4 | 1.4 ± 1.2 | 2.0 ± 1.4 | 0.109 | -- | |
EG2 | 1.6 ± 1.3 | 0.9 ± 1.1 | 1.3 ± 1.3 | 0.217 | -- | |
CG | 1.9 ± 1.3 | 1.4 ± 1.0 | 1.8 ± 1.2 | 0.234 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosado, H.; Pereira, C.; Bravo, J.; Carvalho, J.; Raimundo, A. Benefits of Two 24-Week Interactive Cognitive–Motor Programs on Body Composition, Lower-Body Strength, and Processing Speed in Community Dwellings at Risk of Falling: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 7117. https://doi.org/10.3390/ijerph19127117
Rosado H, Pereira C, Bravo J, Carvalho J, Raimundo A. Benefits of Two 24-Week Interactive Cognitive–Motor Programs on Body Composition, Lower-Body Strength, and Processing Speed in Community Dwellings at Risk of Falling: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(12):7117. https://doi.org/10.3390/ijerph19127117
Chicago/Turabian StyleRosado, Hugo, Catarina Pereira, Jorge Bravo, Joana Carvalho, and Armando Raimundo. 2022. "Benefits of Two 24-Week Interactive Cognitive–Motor Programs on Body Composition, Lower-Body Strength, and Processing Speed in Community Dwellings at Risk of Falling: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 12: 7117. https://doi.org/10.3390/ijerph19127117